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Many cool stars possess complex magnetic fields [1] that are considered to 
undertake a central role in the structuring and energising of their atmospheres 
[2]. Alfvénic waves are thought to make a critical contribution to energy transfer 
along these magnetic fields, with the potential to heat plasma and accelerate 

stellar winds [3] [4] [5]. Despite Alfvénic waves having been identified in the 
Sun’s atmosphere, the nature of the basal wave energy flux is poorly 
understood. It is generally assumed that the associated Poynting flux is 
generated solely in the photosphere and propagates into the corona, typically 
through the continuous buffeting of magnetic fields by turbulent convective 
cells [4] [6] [7]. Here we provide evidence that the Sun’s internal acoustic modes 
also contribute to the basal flux of Alfvénic waves, delivering a spatially 
ubiquitous input to the coronal energy balance that is sustained over the solar 
cycle. Alfvénic waves are thus a fundamental feature of the Sun’s corona. 
Acknowledging that internal acoustic modes have a key role in injecting 
additional Poynting flux into the upper atmospheres of Sun-like stars has 
potentially significant consequences for the modelling of stellar coronae and 
winds.  
 

Alfvénic fluctuations have been observed regularly in the solar wind since the 1970’s 

[8] [9] and are typically considered to be of solar origin. Their atmospheric counterpart 

was inferred from the non-thermal broadening of coronal emission lines [10], but only 

within the last decade have studies of the Sun’s atmosphere been able to demonstrate 

unambiguously that magnetised plasma structures undergo displacements transverse 

to the magnetic axis [11] [12] [13]. Here we use infrared spectroscopic data (Fe xiii 

1074.7nm emission line) taken from the Coronal Multi-channel Polarimeter (CoMP) 

coronagraph, which yield Doppler velocity time-series above the limb in the Sun’s 

corona and provide a measure of Alfvénic wave motions along a viewer’s line-of-sight 

[14] [15]. This is supported by extreme ultraviolet images of the corona from the 

17.1nm (Fe ix) channel on-board the Solar Dynamics Observatory (SDO) Atmospheric 

Imaging Assembly (AIA), which enables direct measurement of the transverse 

oscillatory displacements of the corona’s fine-scale magnetic structure [16] [17] (Fig. 

1a, b, c). The data sets range between 2005 and 2015, hence covering various phases 

of the 11-year magnetic cycle, as the Sun’s global magnetic geometry undergoes 

substantial changes (Supplementary Table 1). Since they can be subject to 

unambiguous and detailed measurements, we utilise the observed transverse 

displacements of magnetised plasma structures to probe the flux of Alfvénic wave 

energy.  
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The power spectral density (PSD) provides a means to investigate Alfvénic waves and 

is straightforward to obtain from CoMP Doppler velocity time-series (see Methods). 

The PSDs show evidence for power law behaviour and display an enhancement of 

power around 4 mHz, sitting atop of the power law base-line (Figure 1d). This 

behaviour has been noted in previous observations of individual coronal regions [11] 

[14]. Significantly, recent magnetohydrodynamic (MHD) wave models demonstrate the 

potential for coronal Alfvénic modes to be excited at the transition region [18] [19] [20], 

resulting from a double mode conversion of the Sun’s internal acoustic (pressure or 

p-) modes that have leaked into the atmosphere through magneto-acoustic portals 

[21]. It is the observed enhancement of power that is considered to be the signature 

of Alfvénic waves generated by p-modes [11] [14] [20]. However, if p-modes are to 

play a crucial role in exciting coronal Alfvénic waves, their signature should have a 

spatially ubiquitous presence throughout the corona and over the solar cycle. Through 

examination of the Alfvénic waves associated with the power enhancement, we 

demonstrate that this is indeed the case. 

 

The counterpart to the velocity fluctuations measured in CoMP is thought to be the 

swaying motions of coronal structures observed in SDO/AIA [13] [17], but no direct 

comparison has previously been undertaken. To remedy this, we measured large 

numbers of oscillatory Alfvénic waves in SDO/AIA (see Methods), where the imaging 

observations project the transient, transverse motions of plasma structures onto the 

plane-of-sky (Fig. 1b). The new detailed analysis of SDO/AIA data reveal that the 

coronal wave properties are more complex than previously thought. A bivariate 

relationship is found between frequency and amplitude (Fig. 1c), with the periods and 

amplitudes occupying greater ranges of values than previously reported [16, 17]. The 

increased statistics permit a way to cross-calibrate the two sets of waves observations, 

enabling an estimate for the time-averaged wave properties of a particular coronal 

region and, hence, the PSD of the oscillatory motions in SDO/AIA data (Fig. 1d). 

    The PSDs estimated from SDO/AIA data reveal the power spectra have a parabolic 

profile, which peaks around 3-4 mHz. Other peaks are also visible above the parabolic 

profile, but with the current uncertainties we cannot say whether these are genuine 

(See Methods). Comparison between the CoMP and SDO estimates for the PSDs of 

the Alfvénic waves reveals that the frequency location of enhanced power is 

congruous to the peak of the parabolic profile. Furthermore, the spectral indices from 

power law fits to both PSDs at frequencies > 4 mHz are in excellent agreement. The 

close relationship between PSDs suggests that the enhanced power in the CoMP data 

is due to the transient, oscillatory motions observed in SDO/AIA.  

 

Given this relationship, the enhanced power in the CoMP PSDs then provides a 

distinct marker for oscillatory Alfvénic waves and enables us to examine their nature 

throughout the corona and solar cycle. Our analysis of the CoMP data reveals that the 

enhancement exists in a large majority (>95%) of coronal power spectra, meaning that 

Alfvénic waves are present throughout the entire corona. An example of the key 

measured parameters obtained for 10 May 2014 data are shown in Figure 2. We 

obtain similar findings when extending to data from different phases of the latest solar 

cycle (Fig. 3 & 4), from 2005, two years before solar minima, to the decline from 

maxima in 2015.  
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   The frequency corresponding to the centre of the enhancement is found to fall within 

a narrow range, with its distribution having a mean and standard error of 4.0 0.1 mHz 

and standard deviation of 1 mHz (Figs. 2 & 3a). While the sample populations are 

small for each yearly data set, a comparison of the distributions from different years 

suggests there is little variation in the centre values over the solar cycle. The enhanced 

power is distributed over a broader range of frequencies, and the characteristic width 

has a sharply peaked distribution around 0.12 frequency decades (Fig. 3b). The 

ubiquitous presence of the enhanced power through the corona is further evidenced 

in PSDs averaged across all the coronal time-series from a single day (Fig. 4), where 

it is seen that the signature of Alfvénic waves is still clear. 

    

Aside from the enhanced power, the coronal PSDs from CoMP also display ubiquitous 

power-law-like behaviour, which indicates the presence of stochastic (or non-

oscillatory) Alfvénic waves (Fig. 1d). However, it should be kept in mind we are 

examining a relatively short frequency range (0.1-10 Hz) and cannot determine if the 

coronal Alfvénic waves display scale-free behaviour. In spite of this shortcoming, we 

suggest the index from the fitting of a power law to the coronal PSDs can also provide 

insight into the nature of the coronal velocity fluctuations. This is based on previous 

analysis [13] that revealed the Alfvénic waves in coronal holes had similar spectral 

slopes to those found from studies of Alfvénic fluctuations in fast solar wind streams 

(where the measurements span a much greater frequency range) [9]. The distribution 

of power law indices shows a broad spread of values, with some evidence that it is 

bimodal (Fig. 3c). It is observed that the power law index typically decreases as the 

complexity of the local magnetic field increases (Fig. 2b), in line with previous results 

[14]. In particular, open field regions were found to have the shallowest slopes (−1) 

and active regions the steepest (< −1.5). The distributions from the different stages 

of the solar cycle show qualitatively similar shapes and spread, although there is some 

indication of variability (Fig. 3c).  

    Alfvénic waves that propagate in the corona are expected to interact non-linearly 

[4] [5] [6] and set up a turbulent MHD state [7] [22]. The spectral indices for the inertial 

range of a fully MHD turbulent state are thought to be < −3/2 (See Supplementary 

Text Section 1 for further discussion on the expected scaling). If MHD turbulence is in 

action throughout the Sun’s low corona, the results would suggest that, in general, the 

currently observable frequency ranges typically only reveal the energy-containing (or 

correlative) scales. Observations of Alfvénic fluctuations in the fast solar wind 

demonstrate that the slope of power spectra is a function of frequency [23], with a 

change from the energy-containing scales (index ≈	−1) to the inertial scales around 

5 mHz at 0.3 AU. The frequency of this break-point decreases with distance from the 

Sun and is thought to be related to the decay of Alfvénic fluctuations with distance. 

With the presence of spectral indices close to −1 found in open and quiescent regions 

(Fig. 2 & [13] [14]), one may then naively expect such a break point to be located (if it 

exists) at higher frequencies in the lower corona. Hence, the current results imply the 

onset of inertial-scales in the corona occur generally at higher frequencies than those 

currently observable. However, the measured spectral indices suggest approximately 

25% of the coronal velocity fluctuations have indices < −3/2, found primarily in active 

regions (Fig. 2), which could indicate the development of turbulence cascades at 

observable frequencies in more complex magnetic geometries. 

 

±
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Overall, the properties of the oscillatory Alfvénic waves (e.g., amplitude, frequencies) 

in the corona are unexpectedly similar throughout the solar cycle. Remarkably, the 

magnitude of the average coronal power enhancement varies only 10-15% between 

the dates analysed (Fig 4a). The near homogenous nature of the global wave 

properties occurs despite the fact that they show variability across different magnetic 

geometries (Fig. 2, e.g., quiescent Sun compared to active region). Moreover, at the 

peak of the enhancement, the extra power above the power law component is 

comparable to that from the stochastic contribution (Fig. 4b). Hence, the results imply 

that the Sun’s internal acoustic oscillations play a significant role in exciting Alfvénic 

wave modes at this frequency range, and signify they provide a basal source of 

Poynting flux to the Sun’s corona. 

     Recently there have been questions raised concerning the paradigm that a broad 

spectrum of coronal Alfvénic waves can originate from the photosphere. For example, 

the low ionisation fraction of the photosphere potentially restricts Alfvénic wave 

excitation [24] and causes additional wave damping from ion-neutral collisions [25]. 

Additionally, coupling of Alfvénic waves to slow magneto-acoustic waves via the 

pondermotive force can also lead to significant wave damping in the chromosphere 

[26], while the transition region provides a substantial reflective barrier for their 

propagation into the corona [6]. The excitation of coronal Alfvénic modes at the 

transition region via the mode coupling (beginning with the Sun’s internal acoustic 

waves) circumvents these issues. The findings presented here reveal that, despite 

concerns, a broad spectrum of Alfvénic waves is present throughout the Sun’s corona, 

and distributions of wave properties change minimally over the solar cycle (Figs. 3 & 

4a).  

 

Importantly, a basal flux of Alfvénic waves is a crucial requirement for any mechanism 

to be considered as a major component in the heating of quiescent and open field 

regions in the Sun’s atmosphere, where the temperature and emission measure are 

relatively homogenous [27]. Using the wave measurements from SDO, an order of 

magnitude estimate for the observed Alfvénic wave energy flux in quiescent and 

coronal holes is 50-80 Wm-2 (see Supplementary Text section 2), which falls below 

the standard values for coronal radiative losses (100-200 Wm-2). However, the 

observed transverse motions are likely to be only a fractional detectable component 

of the total Alfvénic energy in the corona. Previous measurements of the transverse 

waves suggest a disparity between the observed wave amplitudes and those inferred 

from line widths [13] [28], hinting at the presence of additional Alfvénic modes in the 

corona that cannot currently be directly measured. It is expected that p-modes can 

excite a number of Alfvénic modes [20] and, if the non-thermal line widths are an 

accurate measure of the combined Alfvénic mode amplitudes [13] [28], this implies the 

energy requirements to counter radiative losses in the corona (excluding active 

regions) may easily be met by Alfvénic modes.  

    Furthermore, the findings may have significant implications for many Alfvénic wave 

models of solar plasma heating and wind acceleration [4] [5] [6], that largely neglect 

the additional energy contribution available from p-mode conversion in favour of 

excitation solely by the horizontal motions of the photospheric convection. Given that 

other cool, magnetised stars will have acoustic modes generated in their convective 

envelopes [29], p-modes potentially have an important role in energising other stellar 

coronae as well.  
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Methods 
 
Observations The CoMP instrument [30] is able to make measurements of the 

Doppler shift of the Fe xiii emission line (1074.7 nm), giving line-of-sight averaged 

velocities for the coronal plasma. The data are processed by the CoMP data pipeline, 

correcting for a number of standard data artefacts, e.g., dark current, flat-fielding, 

subtraction of photospheric continuum emission. Final data products have a fixed 

cadence and spatial sampling of 4.46 arcsec. Specific details on cadence and length 

of time-series are given in Supplementary Table 1. The data is rigidly aligned using 

cross-correlation to remove frame-to-frame misalignments. Most data sets contain 

measurements that cover the entire off-limb corona (except the darkest coronal holes), 

except 2005 which only covers a quarter of the off-limb corona. 

 

SDO/AIA [31] makes intensity measurements close to 17.1 nm using a relatively 

broad-band filter, of which a dominant contributor to emission in coronal plasma is Fe 

ix. The data is processed using the standard AIA data pipeline, with all data sets 

having a cadence of 12 s and a spatial sampling of 0.6 arcsec.  

 

Wave nomenclature Here we use the term Alfvénic to refer to MHD wave modes that 

are highly incompressible, transverse, and for which the main restoring force is 

magnetic tension. Pure MHD modes only exist in idealised plasmas, i.e., systems with 

an ignorable/invariant coordinate. For example, a homogenous media can support 

Alfvén, slow & fast magneto-acoustic modes [20] and a cylindrical flux tube model with 

a boundary discontinuity can support an infinite number of modes, a kink mode being 

one example. However, the solar atmosphere is an inhomogeneous, continuous and 

highly dynamic plasma where MHD wave modes have a hybrid nature. This property 

is highlighted by adding a simple continuous radial density profile to the cylindrical 

model [16] [32] [33], where the kink mode becomes strongly coupled to a quasi-

torsional Alfvén mode [32] and will transfer energy to this other mode as it propagates, 

meaning that wave identification as kink/Alfvén is not absolute and insufficient. While 

acknowledging that the observed transverse displacement of plasma structures 

observed in the CoMP and SDO/AIA data display characteristics of the idealised kink 

mode [15] – the term Alfvénic better acknowledges the rich and complex nature of the 

coupled wave system within a real continuous and inhomogeneous media. 

 

Automated wave detection We have shown previously that the transverse modes in 

the corona can be directly measured with SDO/AIA even in regions with low signal-to-

noise [17] [34]. These previous measurements were manual, meaning it required a 

substantial time to collect a statistically significant number of samples and the results 

were open to subjective event-selection biases. We now utilise an automated wave 

detection algorithm based upon the Fourier analysis of time-series (Fig. 1b), which 

permits the collection of large samples of wave measurements. Due to the nature of 

the Fourier analysis, the algorithm is tuned to preferentially detect oscillatory signals.  

  The automated detection of waves in SDO/AIA data relies on utilising time-distance 

plots to measure the plane-of-sky projection of transverse displacements of the fine-

scale magnetic structure. We use the NUWT software [34], which finds and measures 

the location of structures in the time-distance plots, generating times-series for the 

location of each structure. The latest version of the software enables an automated 
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analysis of large data volumes, using Fast Fourier Transforms to measure the 

frequency and displacement amplitude of the swaying motions. 

 

We note that the SDO data possess an inherent limitation for measuring the waves 

due to the instrument resolution. Potentially this could alter the shape (and trend) of 

the bivariate distribution found in the measurements depicted in Fig 1c. The higher-

frequency, oscillatory, transverse waves found typically have the smallest 

displacement amplitudes (although largest velocity amplitudes) and hence there is the 

potential that high-frequency, small-displacement amplitude waves are excluded from 

our measurements (i.e., waves occupying the lower right hand part of the frequency 

against velocity amplitude plot in Fig. 1c). However, we believe that this is not the case. 

If we were to assume that there are unseen high-frequency waves with smaller 

displacement/velocity amplitudes, then this would lead to a smaller values of time-

averaged power. Hence, the corresponding power spectral density will also be altered 

(Fig. 1d), and it would have smaller power at the higher frequencies than those 

currently shown. Such a shift in the high-frequency power would then lead to an 

inconsistency between the CoMP and SDO PSDs, which is not observed to be the 

case. 

 
Power spectral density 
CoMP – The power spectral densities (PSD) used in the following analysis are based 

on region-averaged PSDs, increasing the signal-to-noise over individual estimates of 

the PSD. The corona is divided into 5 degree sections, with each section containing 

between 130 and 200 individual time-series. The division starts at solar north. The 

choice of location of the section boundaries is arbitrary, in the sense the corona is 

equally divided up without care for magnetic geometry. We work under the assumption 

that in each section of the corona, the time-series are all different realisations of the 

same process. Certain sections of the corona are removed from analysis where there 

is no signal or only a very small number of time-series. The periodogram is a common 

way to display the time-averaged power as a function of frequency and is easily 

obtained from the discrete Fourier transform (DFT) of an evenly-sampled velocity time-

series of length N samples, evaluated at discrete frequencies, fj = j/N*dt for j = 1,..,N/2 

(where dt is the cadence). 

      It is known the power of the DFT in each frequency bin is distributed as χ-squared 

with two degrees of freedom [35], hence, the mean log-power at each frequency 

ordinate is calculated in each section and a bias correction applied. The distribution of 

the mean log-power at each frequency ordinate is checked for normality by generating 

bootstrap samples (500) of the mean log-power from the sample distributions. The 

distributions of the bootstrap mean are compared at the 5% level to a Normal 

distribution via a Kolmogorov-Smirnov test (correcting for unknown mean and variance 

and also for multiple comparisons). It is found that the majority (>99.9%) of the 

bootstrap distributions show no evidence for differing from a Normal distribution at this 

level. From the distribution of bootstrap means, the standard deviation of the mean is 

measured for each frequency ordinate. A correction is applied to the standard 

deviations of the means to account for the dependence of time-series from 

neighbouring pixels in the data [36].  
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SDO – The calculation of the PSD for SDO/AIA data is different to that for CoMP. The 

time-series generated by NUWT are of varying length, so cannot be combined without 

correction. The Fourier power is directly comparable to mean-square velocity. 

Assuming each signal measured, V, is a sinusoid, it exists for a fixed time T over the 

course of the observations period, Ndt, e.g., 

                 (1) 

The mean-squared velocity for each sinusoid is then: 

                                          .                                                               (2) 

Over the total observation period the mean-squared velocity is: 

         ,               (3) 

for each signal. For a fixed frequency, there may be a number, P, of independent 

signals measured over the total time, of differing length T1, T2 ,…. The total mean-

square velocity is just an addition of the mean-square velocity of each signal. For 

simplicity, if assume each signal has a characteristic time T and amplitude, then the 

total mean-square velocity is given by: 

                                         .                        (4) 

To calculate the actual total mean-square velocity, an estimate for the occurrence rate 

of the waves over the total observation period at a fixed frequency is required. To 

obtain this, we bin the measured signals as a function of frequency (i.e., the histogram 

in Fig. 1b), denoting the number of signals in each bin as P. Finally, each value is 

normalised by the total number of signals observed, Ptot, due to the time-distance 

diagrams spanning a large spatial extent. Mean-square velocities of signals that fall 

within each frequency bin are multiplied by the respective P/Ptot.  

     To obtain the average PSD from the individual values, non-parametric regression 

is performed using a Nadaraya-Watson Kernel estimator. This methodology utilises 

multivariate kernel density estimation as an alternative to histograms [37]. The kernel 

bandwidth is selected by cross-validation and bootstrapping is used to determine the 

standard errors (see Supplementary Text Section 3). 

 

The lower number of measurements for waves with frequencies greater than ~4 mHz 

(Fig. 1c) means the significance of these peaks above the parabolic shape is small. 

We note that the SDO/AIA PSD is limited to a smaller range of frequencies than that 

from CoMP, which is mainly determined by the lifetimes of the features under 

observation (e.g., plumes, coronal loops). The visibility of the coronal features is 

potentially due to the thermodynamic cycle of the atmospheric plasma, which is 

thought to be subject to impulsive or episodic heating and cooling events [38]. This 

would impact upon the low-frequency part of the PSD (<0.8 mHz), potentially leading 

to an underestimate of the power here. Furthermore, Figure 1c demonstrates that the 

wave velocity amplitude increases with frequency, suggesting that the higher-

frequency Alfvénic waves typically carry more energy than their lower-frequency 

counterparts. We do not believe this feature is an artefact of our methodology as 

V =
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testing of the sensitivity suggests we should be able to measure smaller disturbances.  

Moreover, the occurrence of high-frequency waves is sporadic in comparison, hence 

they contribute less energy on average, which is reflected in the PSD from both 

instruments. Any unresolved high-frequency waves with velocity amplitudes smaller 

than those shown would decrease the PSD at high frequencies and lead to 

disagreement with the CoMP data. The observed bivariate behaviour explains, in part, 

the approximate log-normal marginal distributions of the wave properties observed 

previously [17]. 

 

 
Non-linear regression and model comparison We perform non-linear regression 

on the mean log-power spectra in each section of the corona. Two models are used 

for regression to assess whether all power spectra studied display the enhancement 

that peaks around 4 mHz and to parametrise the properties of the enhancement. We 

start with the hypothesis that all power spectra display power-law behaviour, and some 

of these may have a power enhancement. The first model (M1) we fit to the data is a 

simple power law, namely: 

                                                            (5) 

where α is the power law index, A is a constant of proportionality, and B is a constant 

to describe the noise-dominated power ordinates at high frequencies (i.e., B 

represents a Gaussian white noise process). The second model (M2) takes into 

account any excess power that causes a deviation from power law behaviour via the 

addition of an exponential term, 

                                                                      (6) 

where constants C, D and E parametrise a log-normal function. 

 

To fit the models to the data, we use maximum likelihood, maximising:  

                  (7) 

for Normally-distributed data (neglecting the power at the Nyquist frequency), fitting 

the models in log-space (see Supplementary Text Section 3). Supplementary Table 2 

provides the details of the parameters obtained from the fitting of the model given in 

Eq. 6. 

 

In order to compare the model’s ability to describe the power spectra, we utilise the 

Akaike Information Criteria (AIC). The AIC is based on information theory and provides 

a means to measure the information lost when fitting a model, enabling a comparison 

between goodness-of-fit and model complexity. The measure of the AIC is defined as: 

                                   ,                               (9) 

where Lmax is the maximum value of the likelihood surface, k is the number of 

parameters and n is the sample size. The model comparison is summarised by the 

quantity ∆AIC = AICM1 − AICM2. The suitability of the ∆AIC statistic for comparison 

between these two models is tested by performing Monte Carlo simulations. The 

PM1( f j ) = Af j
α
+B

PM 2 ( f j ) = Af j
α
+B+C exp −

(ln f j −D)
2

2E 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

L = (2πσ j

2
)
−1/2
exp −

(Pj −PM ( f j ))
2

σ j

2

⎛

⎝
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⎞

⎠
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j=1

N /2−1

∏

AIC = 2k − 2ln(L
max
)+
2k(k +1)
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simulations mimic the described analysis procedure, using time-series generated from 

the suggested models (see Supplementary Text Section 3) and run 5000 times. When 

using M2 as the underlying power model, the simulations demonstrate approximately 

95% of the time model M2 is favoured correctly. Conversely, upon performing 

simulations using only a power law spectra (M1), it is found that the AIC test performs 

worse - identifying M1 power spectra only 70% of the time. The observed percentage 

of M2 type models preferred by the AIC test is in line with the expected rate of success 

from the Monte Carlo simulations, which would imply that all measured coronal power 

spectra contain a power enhancement. Moreover, if we are expecting to identify ∼ 70% 

of the M1 type spectra from the AIC test, this further supports the idea that the potential 

number of M1 type power spectra in the corona is small. 

 

 

 

Data Availability The data that support the findings of this study are available from 

the corresponding author upon reasonable request. The SDO data are available 

from the Joint Science Operations Center - http://jsoc.stanford.edu. The CoMP data 

are available from the High Altitude Observatory data repository 

https://www2.hao.ucar.edu/mlso/mlso-home-page.  
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Figure 1 The signature of coronal Alfvénic waves. The corona is constituted of fine-

scale magnetic structure as revealed by data from the SDO/AIA 17.1nm channel (a). 

Direct measurements of Alfvénic waves can be made through analysis of time-

distance diagrams, with structures found to have displacements transverse to their 

axes. This is shown in b, where the coloured tracks mark oscillating structures in a 

time-distance diagram from the Quiet Sun (data taken from region shown by dashed 

slit in a). The measured properties of the waves are found to have a bivariate 

distribution (c), leading to approximately log-normal marginal distributions for both 

frequency (blue filled histogram) and amplitude (red filled histogram). Panel d shows 

the velocity power spectral density of Alfvénic waves from 27 March 2012 obtained 

from CoMP (solid lines; dashed lines are standard errors) and SDO/AIA (triangles and 

squares; error bars are standard errors). These are typical examples of average 

spectra found in an open magnetic field region (coronal hole - CH) and the quiescent 

Sun (QS). The PSD is shown on an arbitrary scale as CoMP is known to underestimate 

the power due to coarse spatial resolution. The QS data have also been offset by a 

factor of 1/10 for clarity.  
 



 16 

 
Figure 2 Properties of Alfvénic waves throughout the corona. The angle vs radius 

distance maps (a) show intensity images of the corona on 10 May 2014. The map 

starts at solar north and progresses clockwise around the limb. The corona was split 

into 5 degree wide segments and the CoMP data lying between the horizontal dashed 

grey lines was used in calculating region-averaged Doppler velocity power spectra in 

each segment. The active regions visible are located at 𝜃 ≈ 70° (AR12050) 𝜃 ≈ 100° 
(AR12049) and 𝜃 ≈ 250° (AR12061), and a coronal hole is present at 𝜃 ≈ 150°. It is 

found that the majority of Doppler velocity power spectra follow a power law with 

enhanced power around 4 mHz. The values of spectral indices (red diamonds) and 

frequency values for the centre of enhanced power (blue triangles) are shown (b) from 

the non-linear regression to the power spectra, along with their standard error. The 

light blue shaded area highlights the 68% coverage of the central frequency Probability 

Density Function (shown in Figure 3a). The plot highlights the centre of enhanced 

power is constrained to a narrow range of frequencies, while the spectral index shows 

variation as the structure of the magnetic field changes between open and closed 

geometries.  

 

 

 

 

 

 

 



 17 

Figure 3 Power spectra parameter distributions for Alfvénic waves. The majority 

of coronal Doppler velocity power spectra are composed of a power law and a region 

of enhanced power (e.g., Fig. 1d). The characteristic parameters of these features are 

determined from region-averaged power spectra and are subject to non-linear 

regression. The frequency of the central location of the enhanced power shows a 

sharply peaked distribution (a) (central frequency of log-normal function fit to power 

spectra - parameter D in Eq. 6 in Methods). The enhanced power is found to be 

present over a broader frequency range (b) as shown by the characteristic width of 

log-normal function. These distributions do not appear to vary significantly over the 

course of the solar cycle. The distribution of spectral indices from the coronal Doppler 

velocity power spectra (c) shows a greater variability between years, e.g., location of 

left-hand peak. The variability could be related to the changes in coronal magnetic 

geometry over the solar cycle, reflecting the variation in spectral index between 

different geometries indicated in Figure 2. However, we do not undertake further 

investigation here to confirm this due to the small yearly sample sizes.  There is a total 

of 305 measurements from all dates (parameters for individual measurements given 

in Supplementary Table 2). The vertical red and blue dashed lines indicate the mean 

and median values, respectively.  
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Figure 4 Global measures of Alfvénic waves through the solar cycle. The power 

spectra of velocity fluctuations after averaging over all eligible sections of the corona 

(a). The dates chosen cover the solar minimum in 2005, close to the northern (late 

2011) and southern (late 2013) sunspot number maxima and the declining phase of 

the cycle. The enhancement of power around 4 mHz is clear in the global averages 

and across the solar cycle. Upon calculating the fraction of power above that of the 

underlying power law (b), the additional power at the peak of the enhancement is 

found to be comparable to the contribution from the stochastic velocity fluctuations. 

The data points are the average power spectra values and corresponding solid lines 

show the average values from the fitted models. Combined with the measured 

properties shown in Figure 3, the results reveal that the enhanced power is largely 

insensitive to the variations in global magnetic geometry of the corona over the Sun’s 

magnetic activity cycle. 
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Supplementary Text 
 
1. MHD Turbulence 
In incompressible turbulence with a strong mean magnetic field, the Alfvén effect is 

thought to be important and it is expected from phenomenological arguments that the 

inertial range should scale as -3/2 [1] [2] [3] [4]. However, it is currently unclear if this 

case is applicable to the low corona. The corona does contain a relatively strong mean 

magnetic field, i.e., the magnetic field strength is much greater than the perturbations, 

and it is clear from the observations that the fluctuations behave as Alfvénic waves. In 

such a case, it is not unreasonable to suggest that the system is essentially two 

dimensional and the Alfvén waves control the cascade rate, generating small-scales 

perpendicular to the mean magnetic field [3] [5].   

 

However, if the strong mean magnetic field is not important, it expected that the scaling 

goes as -5/3 or steeper [3].  

 

As the study of turbulence in the solar wind has a longer history, we may be able to 

draw parallels with results from observational studies. There are a number of reports 

of velocity fluctuations with spectral indices of -3/2 in the fast wind streams [4]. 

Although this is thought to be a transient state of the wind, with indications the spectra 

evolves to a Kolmogorov scaling (-5/3) as it propagates further from the Sun [6].  

 

We note that the study of MHD Turbulence is an active and on-going area of research. 

Early phenomenological methods are now giving way to increasingly detailed 

computational methods. However, there is still on-going debate about the applicability 

of some of the phenomenological results, with simulations of MHD turbulence suggest 

an even steeper slope than the Kolmogorov spectrum (e.g., [3]). 

 

2. Alfvénic wave energy  

Here we provide further discussion on whether the energy content of the p-modes in 

the low solar atmosphere is enough to excite the observed wave modes.  

 

We note that there is still an on-going debate over the amount of energy carried by 

transverse wave modes in the corona [7] [8] [9]. However, we provide a cautious 

estimate for the coronal energy flux of the observed transverse displacements in the 

quiescent regions and coronal holes. The energy flux, F, associated with the kink 

mode is given by [10], namely 

 
where f is the filling factor of over-dense plasma structures in the coronal region, 

ρ=(ρi+ρe)/2 is the mass density averaged over the coronal structure and ambient 

plasma, v is the peak velocity amplitude, and cp is the propagation speed.  

     The values for the parameters used in the energy flux equation are given in 

Supplementary Table 3. The values of electron density, ne ,are taken from [11] and 

assumed to represent the average value of the coronal density. The mass density in 

a fully ionised plasma is then given by ρ=μne where μ=2.12x10-27 kg is the mean mass 

per particle. The value of vobs is the mean value of the measured velocity amplitudes 

from SDO. This value is the mean of the plane-of-sky motions, which are expected to 

F = f ρv2c
p



 21 

contain oscillations not polarised in the plane of observation. There is no obvious 

reason that the wave modes would be polarised in a particular direction, hence we 

assume that the wave mode polarisation is uniformly distributed with respect to 

viewing angle. This implies the mean of the wave amplitudes will be reduced by a 

factor of √2 upon measurement (e.g., [12]). Hence we use 𝑣 = √2𝑣345 . Finally, we 

note the values of energy flux given in Supplementary Table 3 use f=1, although the 

filling factor is likely less than 1. However, there is no consensus on what this value 

may be. The values of energy flux given in the main text assume a conservative value 

of f=0.5. The obtained values are in line with previous estimates of the coronal Alfvénic 

wave energy flux [8] [9]. 

 

The above calculation is only applicable to SDO/AIA data where the wave motions are 

resolved. The majority of the analysis in the main paper uses CoMP data and the 

amplitudes of the waves obtained from these measurements are under-resolved, 

making it difficult to convert the measured velocity values to actual amplitudes. It is 

envisioned that further combined analysis with SDO will help to resolve this issue. 

   

 

The magneto-acoustic wave energy flux in quiet Sun magnetic elements at 400 km 

above the photosphere is found to be on the order of ~3000 W/m2 at 3 mHz [13], with 

the wave energy integrated over a wider frequency range likely to be larger than this. 

If we can assume the magneto-acoustic waves at 400 km have not yet passed through 

the equipartition layer, then only 1-7% of this flux needs to be converted to meet the 

requirements for exciting the observed Alfvénic waves. Given that the current 

theoretical estimates suggest up to 30% of the p-mode energy can be converted to 

Alfvénic modes [14], the measured energy flux of magneto-acoustic energy in the 

lower solar atmosphere appears not to preclude the p-mode conversion model.  

 

 

3. Further methodology and software details 
 
The np package in R is used to perform the Kernel Density Estimation (Methods – 

Power spectral density) [15]. 

 
To undertake the non-linear regression (Methods - Non-linear regression and model 

comparison) we use the mpfit code in IDL [16]. 

 

To generate time-series in the Monte-Carlo simulations we use an inverse Fourier 

Transform method [17]. 
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Supplementary Tables 
 

 
Supplementary Table 1 CoMP data specifics Properties of the CoMP data sets used. 

 

 

 
 

Supplementary Table 2 Results from enhanced power model fit Excerpt from 

extended table detailing all parameters and 1 sigma uncertainties from non-linear least 

squares fitting. Extended table available in machine readable format as an additional 

supplementary file. 

 

 

 
Supplementary Table 3 Wave and plasma parameters. The parameters given are 

used in the calculation of coronal Alfvénic wave energy flux. 

 

 

 

 

 

Date Cadence (s) Duration (s) Number of coronal
regions

30-10-2005 29 10179 -
27-03-2012 30 4,890 61
08-07-2013 30 4,620 64
14-09-2013 30 5,460 60
10-05-2014 30 5,460 64
21-01-2015 30 5,460 56
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