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1. Introduction. Consider the simple system in Figure 1 which satisfies the 

equation 

(I) x = Tu+N~.  

Here T: HI -+ H3 and N: H2 -+ H3 are bounded linear transformations between 

Hilbert spaces. Our initial concern is with the following optimization problem: 

For a fixed element, ~: ~ 112, find the control u ~ Ha which minimizes the functional 

(2) J(u) = I]ull2+ ]lZu+ N~l] 2. 

This problem is extensively considered in the literature and includes the 

familiar optimal regulator and optimal tracking problems for linear systems 

with a quadratic performance criterion (see [1]). The solution may be obtained 

by the following rather direct method (see [2], Section 4.4). Observe that H1 × H3, 

equipped with the usual inner product, is a Hilbert space whose norm is com- 

puted by [(u, x)] 2 = I] u []2 + I I x 112 for (u, x) ~ Hx × H3. Note also that the infimum 

of J over H1 is the distance of (0, N~:) ~ H1 x H3 from the graph of T. Since the 

graph of T is a closed linear subspace, this infimum is attained uniquely by the 

orthogonal projection of(0, N~:) on this subspace. It is then easily established that 

the optimal control is given by 

(3) Uo = - ( I +  7~*: r ) -  ~ 7"*N~:. 

This solution although concise and elegant can lead to difficulties in its 

physical implementation. To illustrate, let H 1 be L 2 ( - ~ ,  ~ )  while T is the 

delay line: ( T u ) ( t ) =  u ( t - to ) ,  t ~ ( - ~  ~ ) .  It is easily shown then that 

( T ' x )  ( t) = x( t + to) , t ~ ( - ~ ,  ~ ). In other words T* is a pure predictor. Similarly 

there are many familiar examples involving continuous, discrete, and distributive 

phenomena where nonanticipatory systems have anticipatory adjoints. Thus the 

implementation of Equation (3), particularly in feedback form, may well be 

physically impossible. 

From these remarks it is evident that the problem posed above should be 

augmented with a physical realizability constraint. The analytic description of 
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physical realizability, however, is not obvious in the setting of abstract spaces. 

The idea of a causal system, for instance, seems intimately related to concrete 

properties of the system as a mapping between spaces composed of functions 

defined on an underlying ordered set. 

Consider, however, a bounded linear transformation u --~ x determined by 

x(t) = o w ( t - 8 )  u@) cl~, t ~ (o, oo) 

where w, u, x e L2(0, oe). In Laplace transform notation this system may be 

represented in multiplicative form, 

2(s) = ~(s)ft(s), s = cr+joJ. 

Now bounded causal convolutions can be identified with transfer functions 

which are analytic in ~ > 0. Indeed for the causal map u ~ x on L2(0, oc) the 

functions fi # and hence 2 are all members of the closed linear subspace of 

functions analytic in ~ > 0. Thus it would seem that one useful (tentative) con- 

straint on the optimization problem would be that the optimal control must lie 

in an appropriate closed linear subspace. 

With this as motivation a sequence of abstract constrained optimization 

problems are posed and solved, and the solutions are characterized. While 

examples are given to motivate and illustrate the development, emphasis is 

placed on the method itself. In this regard the following questions are dealt with. 

(i) Can the Wiener-Hopf methodology be generalized to a form which is inde- 

pendent of analytic function theory 9. (ii) Can this same generalization encompass 

multivariate cases and related time-frequency domain results which utilize the 

algebraic Riccati equation? (iii) Can nonstationary systems and finite-time- 

interval problems be solved using the generalized solution? 

To illustrate that no hard results have been lost in the abstraction, some 

well-known results on the optimal regulator problem are derived. Some new 

results related to system sensitivity are also derived. 

2. The Basic Problem. I n t h i s  section we consider in some detail the 

Problem 1 : Characterize the element Uo e L which minimizes J of Equation (2). 

It is noted that this constrained minimization problem has a unique solution 

for arbitrary L. Indeed the remarks of Section 1 hold for the constrained case 

where the element (0, N~:) E L x / / 3  is projected orthogonally on the graph of the 

restriction of T to L. Our emphasis in this section therefore lies in characterizing 

and identifying this solution. 

The functional J has a Fr6chet derivative (see [3], Chapter 6) which will be 

denoted by 3J. It is easily verified that 

8J(u, ~u) = 2Re {(u+ T * T u +  T*N~, 8u)} 

where ( , )  denotes the inner product on H 1. This expansion leads to 

LEMMA 1. Uo ~ L is minimal f o r  J on L i f  and only i f  

uo + T*Tuo + T * N  ~ ~ L ±. 
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Proof. If  u o + T*Tu  o + T*N~ ~ L l, then clearly 3d(Uo; 3u) = 0 for all 3u ~ L. 

Conversely, if for some Uo, d(Uo; 3u) = 0 for all ~u ~ L, then clearly Re (u o 

+ T * T u o + T * N ~ ,  3u) = 0 for all ~u ~L. However, if we use the identity 

Im (x, y)  = Re (x ,  iy)  for complex spaces and the fact that L is a linear subspace, 

it follows immediately that if J(uo; 3u) -- 0 for all 3u ~L  then u o + T * T u o +  

T*N~ ~ L ±. The lemma now follows immediately from the expansion 

J(u+3u)  = J (u)+3J(u;  3u)+[]3u]]2+ i[T3u]i 2. 

Consider the function V defined on H~ by 

Vu = ( I+ T * T ) u +  T*N~, u ~ H 1. 

This function is everywhere defined, continuous and strongly monotone: 

(ua - u2, Vus - Vu2) = ((us - u2), ( I+ T ' T )  (u s - u2) ) > I! ul - u2112. 

In view of Lemma 1 a critical question is where a u E L exists such that Vu E L ±. 

This question is concisely answered by the theorem of Minty (see [4], Theorem 

2.4). 

T H E O R E M  1. Let  V be an everywhere defined, continuous strongly monotone 

function. Let  L be any closed subspace o f  Hs. Then there is a unique point in L 

which is mapped by V into a point o f  L 1. 

To paraphase the above development: For every ~ E//2 and any closed sub- 

space L c H 1 a unique u 0 ~ L exists satisfying (4) and minimizing J over L. 

As we have noted, this result can be obtained directly by considering the graph of 

the restriction of T to L in L × H3. The formulation given in (4) and Theorem 1 

is more convenient for later developments. 

While Theorem 1 establishes the existence of a unique solution, it does not 

lend much insight into the form of this solution. With some (temporary) assump- 

tions it is possible to further characterize this solution. 

LEMMA 2. Let  F be an invertible operator on H 1 which maps L onto L. 

The set {u: F*Fu+ x ~ L -L } has a unique element u o ~ L which is given by 

(5) u o = - F -  sP(F*) -  Ix, 

where P is the orthogonal projection on L. 

Proo f  The hypothesis of the lemma suffices for the mapping u--~ F * F u + x  

to satisfy the requirements of Theorem 1; thus Uo exists and is unique. The 

hypothesis F(L)  = L implies F * ( L ' )  = L ± which implies F*-S(L±) = L ±. Thus 

it suffices to consider the condition F *[F u+(F*) - l x ]  ~L  ± which implies that 

F u + ( F * ) - I x ~ L  ". Since P annihilates L ±, P F u + P ( F * ) - S x  = 0. Now since 

PFu = Fu for u ~ L and choosing u = u 0, the solution supplied by Theorem 1, 

we see that u o = - F - 1 P ( F * ) - S x ,  which implies directly the lemma. 

Consider now the case where M = F(L)  has no particular relationship to 

L other than the defining relationship. If F is one-to-one and onto, then M 

inherits closedness from L and the orthogonal projection Q on M may be 

defined. In Lemma 2 the condition F(L)  = L was used in an essential way. 

The following corollary removes this condition altogether. 
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COROLLARY. Let F be an invertible operator on Ht,  and let Q denote the 

orthogonal projection on M -- F(L). Then the minimal element u o ~ L of  Lemma 2 

is given by u o = - F - 1 Q F * - l x .  

Proof. It suffices to find Uo e L such that 

0 = (F*Fuo+X,V)  = ( F u o + F * - l x ,  Fv) for all v e L .  

By definition Fv spans M as v spans L. It is therefore necessary and sufficient to 

solve u o eL ,  Fuo + F * - l x  e M ±. Since Q projects on M, QFu o = Fuo, u o e L ;  

moreover, Q annihilates M l and hence the corollary follows. 

Our next theorem summarizes these results in the context of the original 

problem. 

T H E O R E M  2. Let F*F = I+ T*T  and let Q be the orthogonal projection on 

M = F(L). Then Problem 1 has the solution 

(6) Uo = - F -  1QF, - 1T*N~ 

which is unique in L. I f  F(L) = L then Q = P. 

Proof. It is necessary only to note that the identity F*F = I+ T*T  auto- 

matically requires that F is one-to-one and onto. 

Remark 1. In Theorem 2 there are two distinct possibilities. The first is to 

find a factorization of I+ T * T  such that F(L) = L. This problem is dealt with 

in the next section and in Appendix B. The second possibility is to use any 

factorization of I+ T ' T ,  for instance, the positive square root and then determine 

the projection Q on M. If the projection P on L is computationally convenient, 

then all the difficulties in the first case lie with the factorization problem. In the 

second case, however, some of the difficulties are transferred to the determination 

of Q. This latter problem is dealt with in Appendix C. 

Suppose now that T is an operator on a Hilbert space H. Let L be a closed 

subspace of H. The following two definitions are offered for consideration. ~ 

Definitions (1) T is  L-causal if T(L) c L; 

(2) T is L-miniphase if T(L) = L. 

These two definitions are temporary and will be improved upon at a later point. 

However, with this notation a portion of our above results may be restated as 

follows. If F is an L-miniphase partition of I+  T ' T ,  then Equation (6) with 

P -- Q characterizes the solution of Problem 1. 

Finally we note that under some circumstances it is possible to choose Q = P 

in Theorem 2 although F ( L ) #  L. If  F(L) c L and P F * - i x  e F(L), then, for the 

Uo in (5), 

(i) F*Fuo+x e L ± 

(ii) Fuo e L 

(iii) PF*-  ix e F(L) if and only if Uo e L. 

*These hyphenated terms are contractions for causal with respect to L and minimum 
phase with respect to L 
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Indeed since Fu o = - P F * - l x ,  (ii) and (iii) are evident. To establish (i) we 

note that F*Fuo + x = ( I -  F * P F * -  ' ) x  ~ L if and only if (l, x )  - (1, F*PF*  - ix> 

= 0 for all l ~ L. However, if we use <l, F * P F * -  ix> = ( F - ' P F I ,  x )  = (l, x ) ,  

l, ~ L, this latter identity follows. Thus (5) supplies the proper u o ~ L. 

Example  1. The above development bears a definite relationship with the 

classical Wiener-Hopf methodology. To bring this connection to the surface 

we shall consider in this example a stationary system T on L 2 ( - o o  ~) .  Once 

more the summary given in Appendix A will be relied on. Because this example 

takes place entirely in the transform domain the notation x rather than ~, for 

instance, will be used. In Fourier transform notation our example system is 

modeled as 

x(~) = (u(o,) + ~)lq~ + a), ~ ~ ( -  ~ ,  ~ ) ,  

where a > O, which is also recognizable as an equivalent model to that of a 

first-order stationary differential system with initial condition ~: at t = O. The 

following identifications will be made: ( Tu) (o~) = (joJ + a) -  lu(oJ), ( T*z)(oJ) = 

( - joJ+a) - l z (~o) ,  and (N~:)(oJ) = (jo~+a)-l{ :. It follows immediately that 

~o2+b 2 - j o J + b j ~ o + b  
- ,.~ F ' F ,  

co2+a 2 - j c o + a p o + a  

T * N $  ,-, - -  • . 

- j c o + a  joo+a 

In Appendix A the set E of all L 2 functions with Laplace transforms analytic 

in the right half-plane is introduced. It is known that the convolution T is causal 

if and only if the transfer function associated with T is in E. Similarly, since 

our system is at rest for t _< 0, all controls must be contained in E which is a 

closed linear subspace. In our optimization problem we take L = E in which 

case the projection P can be viewed as the familiar operation of taking the left 

half-plane part of the transform in question. It is clear then that (6) has identified 

the proper factorization of I +  T*T.  

To continue with the solution we have, for the left half part, 

P F * -  i T* N~ = - jco  + ~ (j~o + a) = a-b b " joT+ a ' 

which results in the optimal control 

u°(°~) = a + b  f i o + b  

The system response to this control is given by Xo(~O) = ~/(fio+b) and hence 

Uo(OJ) = -xo(~o)/(a +b)  defines the optimal control in feedback form. 

With regard to the above example it is noted that L-causal mappings include 

all transfer functions with no poles in the right-half plane. Similarly, L-miniphase 

mappings include all transfer functions with no poles or zeros in the right-half 

plane• For  instance, the mapping F of Example 1 is L-miniphase. 
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It is of interest at this point to consider the projection P (i.e. taking left-half 

plane parts) as an operator on L 2 ( -  o% o0). A moment's reflection reveals that 

P is L-miniphase. Also P is obviously not invertible. Thus the concepts of L- 

causality and L-miniphase are independent of the invertibility of the operator in 

question. However any invertible L-causal operator with an L-causal inverse is 

L-miniphase. 

3. Multivariate Differential Systems. In this section we consider systems 

described by families of linear differential equations acting between cartesian 

products of L2(t0, tl). The notation to be used in this study is embodied in the 

equations 

~2(t) = A(t)x(t)  + B(t)u(t) 

(7) [y(t) C(t)x(t) ,  t E [to, ql. 

Here x, y, u are n-, r- and m-tuples of functions from L2[to, t,]. The matrices 

A, B and C are of compatible dimensions and, without loss of generality, they 

are assumed to consist of piecewise continuous functions on [to, td. 

Our attention turns first to the stationary case on the interval ( - o o ,  m). 

In doing so we shall assume that A has only eigenvalues with negative real parts. 

In the Fourier domain, this system may be identified with the matrix 

(8) T ~ c o ( o , ) B ,  ,o ~ ( -  0% oo), 

where O(w) = (yogi-  A ) -  1, oj e ( -  0% oo). 

The present study is an obvious generalization of Example 1 and we shall 

continue the use of material from Appendix A. Of particular interest is the closed 

linear subspace E of functions analytic in cr > 0 where s = e +jco is the Laplace 

variable. The subspace L is taken as theobvious multivariate generalization of E. 

It is evident from Section 2 that the solution of the posed optimization problem 

hinges on the factorization problem. More generally for an arbitrary subspace 

L, does an operator F exist such that F(L)  = L and F * F  = I +  T ' T ?  This 

question is the subject of Appendix B where the affirmative answer of the Theorem 

B.1 is established. 

THEOREM B.1. For every bounded transformation T and every closed 

subspace L there exists an operator F such that F(L)  = L and F * F  = I +  T*T.  

We note that F is by no means unique for if tz is a unitary operator such that 

L is a reducing subspace, then (tzF)(L) = L and (izF)*(/zF) = F*F.  

In the context of (8) the factorization problem takes the following form. 

For the A, B, C and • above, find an invertible matrix F such that F, F -  1 are 

analytic in ~ > 0 and 

F*(~,)F(,,) = I+B*~*(~,)C*C¢,(o, )B,  , ,  ~ ( -  0% oo) 

Here ~* is the conjugate transpose of O. For emphasis we note that Theorem B.1 

removes any doubt as to the existence of such an Fnor  does this existence depend 

in any way on the fact that • is a rational matrix. 

In our quest for the operator F the contents of Lemma B.4 and its corollary 

are directly applicable. These are summarized in 
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LEMMA 3. Let K be a constant matrix. I f  K is selfadjoint and satisfies 

(9) - K A - A * K  = C*C-KBB*K,  

then 

(10) I+ B*a)*C*Ca)B = (I~- B*Ka)B)*(I+ B*Ke)B). 

Accordingly our attention focuses on the solution of (9), which is called the 

algebraic Ricatti equation. First some known results concerning (9). The matrix 

tuplet { A, B, C} is called regular if (1) no eigenvector of A with a non-negative 

real part is a null vector of C, and (2) no eigenvector of A* with a non-negative 

real part is a null vector of B*. It can be shown that this definition is equivalent 

to the assumption that all unstable open loop modes of (7) are completely 

controllable and observable. The following lemma is due to Potter [12]. 

LEMMA 4. I f { A ,  B, C} is regular then (9) has a unique solution K >_ 0; 

moreover, A -  BB*K is stable. 

We shall need also the 

LEMMA 5. Whenever the inverses ( s I -  A)-  1 and ( s I -  A + BB*K)- 1 exist, 

the identity 
(I+ B*K~)B) - 1 = I+ B*K[sI-  A + BB*K] - 1B 

holds. 

In this lemma it is understood that * = ( s / -  A)- 1. A proof can be constructed 

by direct expansion. The details are left to reader with the suggestion that the 

two intermediate identities 

( s I -  A + BB*K)-  1 = [I+ ( s I -  A)-  1BB*K]- l ( s I -  A) - I  

B*K(s I -  A + BB*K)-  ~B = [I+ B*K(s I -  A)-  I B]B*K(sI- A)-  ~B 

be verified first and used with the identity I + ( I - ~ ) - l f l  = (I-/~) -1 which is 

valid for any linear/3 such that the right-hand side exists. 

A corollary which follows by inspection of the lemma is the following. 

COROLLARY. If  the spectrum ofA - BB*Klies in cr < 0 then ( I+  B*K*B)-  1 

is analytic in ~ > 0. 

Using this result with Lemma 4 we have the key result, 

T H E O R E M  3. I f  the matrices { A, B, C} are regular, then the corollary of 

Lemma 5 provides a splitting of I+ T*T such that (I+ B*K~bB) (L) = L. 

In terms of  Definitions 1 and 2 with L = E the above development can be 

interpreted as follows. A necessary and sufficient condition for the matrix 

F = I+ B*K*B to represent an L-causal operator is that F be analytic in cr > 0. 

If, in addition, F -  1 is analytic in ~ > 0, then F is L-miniphase. If the spectra of 

A and A - B B * K  lie in cr < 0, then F and F -1 are both L-miniphase and are 

bounded. 

With regard to the above development attention is called to the work of 

Youla [9] and Anderson [10] who have considered related problems. The tools 

used here however are quite different and the present treatment extends readily to 

nonstationary systems. 
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Nonstationary Systems. Our attention turns now to nonstationary systems. 

Let v denote an ordered set and {(Lp, Pp): fle v} a family of closed linear sub- 

spaces and associated orthogonal projections respectively. It is assumed that 

L,o = { 0}, Lt~ = H, and that Lp c L~ whenever fl < y in v. This induces a 

natural ordering on the orthogonal projections; Pp c Pv if Lp cz_ L~. 

For u ~ H let (up = Ppu:/3 e v } denote a parameterization of u by projection 

on the subspaces {Lp,/3 e v }. Here we view u as a function and up as a truncation, 

in the sense indicated, of that function. 

We shall have also need for the following definitions. 

Definitions (3) The function u e H is called (Lp }-minimal for J if/~p minimizes 

J over Lp, all fle v. 
(4) The operator T is called (Lp }-causal if T(Lp) c Lp, all/3 e v. 

(5) The operator T is called {Lp }-miniphase if T(Lp) = Lp, all/3 e v. 

A natural questions is that of the existence of {Lp }-minimal functions. This 

is answered concisely by the following lemma. 

LEMMA 6. For every collection of  closed linear subspaces ( Lp : /3 ~ v }, ordered 

by containment there is a unique (Lp}-minimal element which is specified by 

up = - F -  1QpF*- 1T*N~,/3 e v, where Qp is the orthogonal projection on Mp = 
F(Lp). 

Proof. Theorem 2 establishes the existence of the unique up for each specific/3. 

It suffices to note that Lp c L~ implies that Mp c My and hence that (up:/3 e v} 

is a well-defined parameterization which satisfies the necessary conditions. 

An obvious corollary is the following. 

COROLLARY. I f  F is (Lp }-miniphase, then the result o f  Lemma 6 simplifies to 
up = - F - i p p F * - I T * N ~ ,  /3 e v. 

It is claimed that Lemma 6 solves the optimization problem for large classes 

of nonstationary systems. The next example will serve to clarify this assertion. 

Example 2. Let v = [to, tl] and T be the mapping u -+ y computed by (7). 

In this case A, B, C are piecewise continuous time-varying matrices. We may, 

of course, model T in explicit form by the equation 

ft, oC (Tu)(t) = (t)q)(t, s)B(s)u(s)ds, t e v. 

In our discussion of this example we shall need some specific tools which may 

be found in [2], Section 3.3, and are summarized in the following. First we write 

T = C~B,  where B, C are the mappings computed by multiplication with the 

obvious time-varying matrix, i.e., (Bu)(t) = B(t)u(t) and • is the integral map: 

(q,f)(t) = St, o~(t, s)f(s)ds. We note that q) has a densely defined inverse given by 

(qJ-lx)(t) = 2 (O-A( t ) x ( t ) ,  t ~ v. It is also known that 

(®*z)(t) = fl **(s, t)z(s)ds, 

and that @-1 has the formal adjoint 

(~ - l*x ) ( t )  = - x ( t ) - A * ( t ) x ( t ) ,  t ~ v 

where, in terms of this formal adjoint, 

(11) <v, C - i x > -  ( ~ - l * v ,  x> = ~ vi(tOxi(tO. 
i 
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Use has been made of the fact that X(to) = 0. Of course, T* = B * ~ * C *  holds 

with the natural interpretation, where for instance, (C*z)(t) = C*(t)z(t). It is 

evident that Pa is the orthogonal projection of  L~(v) onto La. 

We shall use Lemma B.3 of Appendix B and since qb is one-to-one we write 

part (i) of that lemma in the form 

(12) C*C = Kd~ -1 +~b*- lK* + K*BB*K.  

Consider the equation z = ~ * - l K * x  for some suitable x. From the above 

remark it is clear that 

z ( t ) =  - { f f t +  A*(t)}K*(t)x( t ) ,  K*( t l )x ( t l )  = O. 

Here the boundary condition is necessary to make the right-hand side of (11) 

zero. If  we let both sides of  (12) operate on a typical function x, the identity 

0 = { - C * ( t ) C ( t ) - K ( t ) A ( t ) - A * ( t ) K * ( t ) - l ~ * ( t ) + K * ( t ) B ( t ) B * ( t ) K ( t ) } x ( t )  

+ {K(t)- K*(t) 

plus the condition K*(t l )x ( t l )  = O, results. Since this must hold for all x, obviously 

K must be selfadjoint and satisfy 

- K (t) = A*(t)K(t)  + K ( t ) A ( t ) -  K( t )B( t )B*( t )K( t )+ C*(t)C(t)  
(13) 

K ( q )  = O. 

Our results thus far are summarized in the 

LEMMA 7. I f  K satisfies (13) and i f  F is defined by 

= u(t) + B*(t)K(t) flo ,( t ,  s)B(s)u(s)ds, (Fu)(t) 

then F * F  = I +  T*T.  

Proo f  The lemma follows by inspection from Lemma B.3 and the above 

development. 

LEMMA 8. l f  z = Fv, then F -~ may be computed by the equations 

v(t) = z(t) - B*(t)K(t)p(t)  

p(t)  = [A(t) -  B(t)B*(t)K(t)]p(t)  + B(t)z(t), p(t  o) = O. 

Proo f  For p satisfying p(t) = A( t )p( t )+ B(t)v(t) it is clear that z(t) = v(t) 

+B*(t)K(t)p( t ) .  If we solve this expression for v and substitute this in the 

differential equation for p, the lemma follows. 

A direct consequence is the 

COROLLARY. The adjoint o f  F is determined by 

(F*v)(t) = v(t)+ B*(t)  f l  i cb*(s, t)K(s)B(s)v(s)ds. 

The inverse o f  F* may be identified with the equations 

v(t) = x(t) -- B*(t)q(t),  

c)(t) = -- [A*(t) + K(t)B(t)B*(t)]q(t) + K(t)B(t)x(t) ,  q(tx) -~ O, 

where v = F*-ax .  
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Proof. The integral form of F* follows without difficulty from Lemma 7. 

To arrive at the differential equation representation for F * -  1 it is helpful to first 

note the identity 

- f:o ¢b*(s, t)g(s)B(s)x(s)ds. 

Note also that q)*(to, t) is the transition matrix for the formal adjoint system. 

With these two facts the proof proceeds exactly as in the proof of the lemma. 

In Lemmas 7 and 8 a factorization of I +  T* T is given and it is demonstrated 

that F, F* and their respective inverses can be computed by direct means. The 

optimization problem of interest is the minimization of the functional 

J(u) = ff',o [u(t), u(t)ldt + if'to [y(t) + (g~)(t), y(t  + (g~)(t)dt, 

where [,  ] denotes the inner product on EL The subspaces {L~} are defined by 

L B = {u ~ LT(O:  u(t)  = 0, t < / 3 } ,  /3 ~ ~.  

The orthogonal projections of L'~(v) onto the { Lp } are evidently given by 

= ~u(t) fl <_t < t~ 
(Pau)(t) 

(o t o < t < ~ 3  • 

From Lemma 7 it is readily shown that F is {La}-causal. Indeed we have that 

( I - P a ) F P  a - 0 for all t3 e v. To see that F i s  {Lp}-miniphase, consider Lemma 8. 

For  arbitrary z e L a clearly p e L a and hence v e L a. This shows that F -  1 is 

{L a }-causal and hence both F and F -  1 are {L a )-miniphase. 

To summarize, the element u e L'~(v) is {La)-minimal for J if and only if 

u has the parameterization {up}, where u a is computed by Lemma 6. The 

mappings F* - 1 and F -  ~ are computed as specified by Lemma 8 and its corollary. 

Equation (13) above is known as the matrix Riccati differential equation. 

There are several interesting relationships between the algebraic and differential 

equations, however, we shall not explore these here. The interested reader is 

referred to [3] and [19] which will serve as entries to this literature. 

4. The Optimal Regulator Problem. One specific optimization problem which 

is included by the present theory is the optimal regulator problem. This class of  

special problems arises when the function N~: is induced by the free response of 

the plant. A well-known result for both systems treated in Section 3 is that the 

optimal regulator can be realized by matrix feedback of the plant state vector. 

In view of the importance of this basic result it is of  interest to see how it falls 

out of the present formulation. 

In the following it is convenient to use the notation (N£)(t) = C(t)(Tr£)(t), 
t ~ v, where (~r~)(t) -- q~(t, to)~:, t E v. In the stationary case we have that ~ = ~£. 

In the time-varying case, however, • has been used to denote an integral operator 

and the use of the symbol 7r as above is a strategem to avoid delta functions. 

A useful tool in the development is the content of the following result. 
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LEMMA 8. T*Crr¢ = F*B*Krr¢. 

Proo f  In the stationary case it follows from Equation (B.2) of Appendix 

B that 

B*aP*C*C* = B * * * K + ( I +  B * * * K B ) B * K * * .  

Now since T*Crr¢ = B * * * C * C * ¢  and in view of the fact that 

F*B*KTr¢ = ( I+ B*KekB)*B*KCb¢, 

the lemma follows by inspection. 

For the time-varying case we begin with (13) which implies that 

d 
ap*(t, to )C*( t )C( t )*( t  , to) = - ~ {**(t, to)K(t)O(t  , to) } 

+~b*(t, to)K(t )B( t )B*( t )K(t )*( t  , to), 

where the defining equation for * has been used in an obvious manner. 

Integrating both sides and using K(t l )  = 0 results in 

fttl **(s,  to)C*(s)C(s)a)(s, to)ds = e~*(t, to)K(t)*(t ,  to) 

f'~ **(S, to)K(s)B(s)B*(s)K(s)*(s  , to)as. + 

Now in view of the defining equation for T*, namely 

(T*x)( t )  =- B*(t)**(to,  t) frt' **(s,  to)C*(s)x(s)ds , t e v, 

and the assumed form of 7r~: it follows from the above identity that 

(T*CTr~)(t) = B*(t)  {K(t)*(t, to) 

t) f,l **(s, to)K(s)B(s)B*(s)K(s)*(s, to)ds)8. +**(to, 

Consider now the computation of F*B*K~r~. In view of the corollary to 

Lemma 8 we have that 

(F*B*Krr~)(t) = { B*( t )K( t )*( t ,  to) 

B*(t) **(s, to)aS) + 

= B*(t){K(t)*(t, to) 

+**(to, t) f" **(s, to)K(s)B(s)B*(s)K(s)*(s, to)ds) :~ 

By direct comparison the lemma is established. 

A direct consequence of the last lemma is that B*K~r~ = F-1T*Crr~ which 

implies that Uo = - F - I P B * K ~ r ~ .  Here, in the time-varying case we have sup- 

pressed the subscript/3 on both Uo and P. With this understanding the equality 

Xo = *Pouo+Tr~ holds, which, together with the form of u o, results in x o = 

{ I - C b B F -  1PB*K}~-(; hence 

- B*Kxo  = - { ( I -  P ) B * K +  F -  aPB*K}~-~ 

= - ( 1 - P ) B * K z r ~ + U o .  
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In the stationary case the assumption that the spectrum of A lies in ~ < 0 

implies that ~r~:, and hence B*K~r~, lies in L. Thus Uo(t) = - B * K x o ( t ) ,  which 

is the desired result. In the time-varying case, operating with P we see that it 

suffices to consider Uo, p = - P a B * K x o ,  p. Now B * K  is a matrix multiplier and 

in view of the definition of Pa it follows that (Paz)(fl) = z(/~) holds for all z and/3. 

Consequently 

Uo,~(~) = Uo(/3) = -B*( /~) /<@)Xo( /3 ) ,  /3 ~ v, 

which establishes the desired result. 

It is sometimes possible to implement the optimal control in output feedback 

form. In this regard let Yo = Tuo + N~ with the optimal control, Uo, for example 

of (5). By a simple substitution we then have 

( I -  F -  1PF*-  1 T* T)u o = - F -  1 p F , -  1 T ,Yo .  

Thus when the indicated inverses exist 

(14) 
u o = - ( I - F - 1 P F * - I T * T ) - I F - 1 P F * - I T * y o  

= - F -  1PF* - 1 T * ( I -  T F -  :PF* - 1 T* ) -  ly  o. 

In many cases this solution has dubious practical value. The trouble lies with 

the fact that this relationship is really implicit in P and unwieldy for solution. 

5. The System Sensitivity Problem. In the study of system sensitivity for 

negative feedback closed loop systems the operator S = ( I+ T M ) - 1 ,  where T 

is the forward gain and M is the feedback gain, plays an important role (see [13], 

[14], [16]). Several authors ([14], [15], [17]) have addressed themselves to the 

question: does the optimal feedback compensator reduce system sensitivity. In 

Hilbert spaces the basic requirement is that 0 < R -  S*RS,  where R is an appro- 

priate weighting operator. The results of the studies cited can be easily obtained 

from the above development as we shall now show. 

The following development utilizes the context of Lemma B.3 of Appendix 

B. Here T = COB and u 0 = -B*Kxo  where K satisfies Lemma B.3. It is noted 

for later use that we do not require any properties from the frequency domain, 

that is, the development is carried out in an abstract operator setting. 

Attention is called first to Figure 3, where the plant and the controller have 

been depicted as compositions of the operators {B, C, ~, K, B* }. It is of interest 

to consider disturbances in each and/or combinations of these component 

transformations. In this regard one can consider any two distinct nodes of 

Figure 3 as an input/output position and thereby define a feedback system. For 

example, to consider the sensitivity to changes in K let e3 be viewed as an input 

and e4 as an output. The feed forward transmission then is K while the feedback 

transmission is -COBB*. 

As a sample calculation, consider the case where e: ~ e 5 is the forward 

transmission, namely B*Ke~B, and the feedback is unity, thus making the 

identifications T = B*Kq~B and M = L It follows that 

S = ( I + T M )  -1 = (I+B*KdgB) -1 = F -1. 
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By direct calculation we have that 

I - S * S  = S * { S * - a S - I - I } S  = S * T * T S  > 0 

and the desired sensitivity property is established. 

In considering the sensitivity question between other node pairs it is con- 

venient to present first a generalization of the problem under study. In this 

regard {Ta, " " ,  T, } will denote a collection of linear operators. With no loss of 

generality we assume that this collection is finite and that all operators act between 

a single Hilbert space H. In Figure 4 this operator family is used as branch 

transmissions on a closed loop signal flow graph. The inputs and outputs on the 

graph have been suppressed; however, it is assumed that an input-ouput pair can 

be attached to any two distinct nodes. 

For instance, suppose an output is attached to the node e, and an input to 

the node ej. We have then a closed loop system with forward transmission 

T =  T ,T ,_ I ""  "Tj  and feedback transmission M = T j _ I . . . T 2 T a .  The pair 

{T, M} is said to be an insensitive partition of the loop if the sensitivity operator 

S = ( I+  T M ) -  1 exists (that is, the indicated inverse exists) and if, for some self- 

adjoint non-negative operator R, the condition 

(15) 0 <_ R - S * R S  

holds. 

LEMMA 12. I f  an insensitive partition o f  the loop exists, all partitions are 

insensitive partitions. 

Proof. First let Va and V b be any two operators on H such that I +  Va and 

I +  Vb are invertible and define Sa = ( I+  V,)- i and Sb = ( I+  Vb)- a respectively. 

Suppose that E is an operator such that I'V, = VbF. It then follows that 

I ' ( I+ Va) = ( I+  Vb)F if and only if SbI ~ = F S  a. If R b is an arbitrary operator on 

H then 

F [ R b -  S*RbSb]r = I'*Rb I" - S*F*RbI'Sa 

= Ra-Sa*RaSa, 

where R~ = P*Rb p. 

Suppose now that an insensitive partition of the loop has been found. Since 

the subscripts are arbitrary, let the output node be labeled e, and the input node ea. 

We have that T = T , . . .  T,, M = T~_ 1"'" T, T M  = T n ' " T ~  while Equation 

(a) holds for some R _> 0, and S = ( I+  T M ) -  1. 

Let e~, ej be any two distinct nodes. If we take e i as the input and ej as the 

output, it follows that the forward loop transmission is Tji  = T j_  1 T j - 2 " " T ~  

while the feedback transmission is Mij = Ti- 1" " "7"i 7",... Tj, and consequently 

T j i M  U = T~_ 1"'" 7"17","" Tj.  Now let I" = T n ' " T  j and note that F ( T j i M u )  

= ( T M ) F .  If  we use the above result,'then it follows that 0 < R j -  S * R j S j  holds, 

where Fj = F*RI" and S i = ( I+  TjiM~j) -1 

In the above proof  we have tacitly assumed the invertibility of  the operators 

I +  T j i M i j  , i, j = i , .  • . ,  n. From a physical point of view this is closely related 

to the stability (that is input/output boundedness) between the respective nodes.  

Since all physical systems have saturation the basic assumption of linearity is ~ 

enough to justify the invertibility assumptions. 
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From a mathematical viewpoint, it is not necessary that I +  T M  be invertible. 

In short, it can be shown that the sensitivity condition, 

(16) ( I+  T M ) * R ( I +  T M ) - R  > O, 

is valid for all I +  T M  and is equivalent to (15) when the subject inverse exists. 

If we use (16) in place of (15), it can easily be seen that the last lemma is still 

valid. 

Returning now to the optimal system of Figure 3, if we combine the above 

results we have the 

COROLLARY. I f  K satisfies Lemma B.3, then a F. exists such that 0 <_ P'P,, 

- S~ F. ['.So, where S.  is the sensitivity operator between any two distinct loop 

node pairs. In particular this relation holds f o r  

(i) P.  = I T.  =- B*KdPB 

(ii) r a = B* T, = K ¢ B  

(iii) r .  = B * K  L = dgB 

(iv) F a = B*KB T.  = cb 

M , = I  

Ma = B* 

M .  = B * K  

M a = B*KB 

Proof. It remains only to verify that [' ,TAM, = B * K ~ B F ,  in each case. 

The corollary has the following interpretation in terms of Figure 2. Part (i) 

deals with the forward transmission e 1 --> e 5. Part (ii) deals with the forward 

transmission el ~ e4 with feedback transmission e4 -+ e~. Part (iii) deals with 

the forward transmission el ---> e3 and the feedback transmission e3 -+ el. Part 

(iv) deals with the forward transmission e2 --> e3 and the feedback transmission 

e3 -+ e2. In all cases (15) is satisfied by an appropriate choice of a positive self- 

adjoint operator R. 

It is known that, except in case (i), R may not necessarily be chosen arbi- 

trarily if the sensitivity criterion is to be satisfied. In particular, in case (iii), (18) 

holds with R = I if and only if K commutes with BB* (see [17]). 

The implementation of the optimal control in output feedback form, rather 

than state feedback form, suggests similar problems in sensitivity analysis. To 

illustrate, consider the forward gain T and the optimal feedback law Uo = - Myo 

where M is specified in (14). Consequently 

I +  T M  = I +  T F -  I P F * -  1 T * ( I -  T F  - IPF* - 1T*) -  1 = ( I -  T F -  ~PF* - 1T*) -  1, 

and hence 

(19) S = I -  T F -  1PF*-  1T*. 

Now for the present case 

I -  S* S = I -  ( I -  T F -  ~ PF* - 1 T * ) ( I -  T F -  x PF* - 1 T*) 

= T F -  1 P ( 2 I - F * T * T F -  1)PF*-  1 T* 

= T F - 1 P F * - I ( 2 F * F _  T * T ) F - 1 P F * - I T  , ,  

where P = p2 was used. Noting that I + T * T  = F * F  we then have 

I -  S* S = T F -  ~ PF* - ~ (2I+ T* T ) F -  ~ PF* - ~ T*,  

the right-hand side of this expression being positive. 



34 WILLIAM A. PORTER 

6. Comments and Conclusions. In the body of the paper the concepts of 

causality and minimum phase were introduced in conjunction with the optimiza- 

tion problem. These concepts are of interest in their own right and we shall first 

comment on them. 

First it is apparent that the Hilbert-space structure is extraneous to the defini- 

tions. It suffices to have two sets X, Y with parameterizations {X~,/~ ~ v), (Yp, 

/3 e v), where v is an ordered set and the parameterizations are ordered by contain- 

ment. A function f :  X --> Y is called v-causal ifJ(Xp) c yp for all/3 ~ v and/or 

v-miniphase iff(X~) = Y~ for all/3 ~ v. Such definitions generalize in an obvious 

way the definition offered in Section 3. However, it should be noted that these 

latter two definitions can be used in Section 3 without disturbing that develop- 

ment. Indeed the Hilbert-space structure, and the linearity and closedness of L~ 

all bear on the optimization problem but not on the concepts of causality and 

minimum phase. Finally these latter two concepts do not require boundedness, 

invertibility or linearity of the mapping in question. 

While the concepts of causality and minimum phase do not require the 

optimization problem for support, the converse is also true. Namely, it is not 

necessary, only convenient, to construct a minimum phase factorization of 

I + T*T. This was pointed out for instance in Lemma 6. It can be shown, how- 

ever, with only slight modifications to the proof of Theorem B. 1, that for every 

family of ordered (by containment) subspaces (Lp) there exists an Lrminiphase 

operator F such that F*F = I+  T*T. 

It is interesting to note that Theorem 1 does not require linearity of the function 

V. This allows certain classes of nonlinear problems to be brought within the 

framework of this study. 

Suppose that all function spaces are real and the I is of the form l(u) = IJul]2 

+ Ill(u)+ q [I 2. Heref is  a nonlinear mapping from H1 to tt2 which is everywhere 

Fr~chet differentiable. That is, for small II 8u rl the expansion./'(u+~u) = f ( u ) +  

T(u)Su holds to a first order where T(u) is linear in 8u. By direct methods it follows, 

to first order in rlSull, that 

J(u+Su)-J(u)  = 2(u+ T*(u)q+ T*(u) f (u) ,  8u) 

Now if the mapping V defined by 

V(u) = u +  r*(u)q+ T * ( u ) f ( u )  

satisfies the hypotheses of Theorem 3, then there exists a unique u o ~ L which 

minimizes I over L; moreover V(uo) E L ±. The solution of the subsequent non- 

linear equations are more difficult than in the linear case and we shall not consider 

these matters here. 
While the examples given here all arise from finite families of ordinary differ- 

ential equations, the results apply as well to discrete time and distributive systems. 
We shall not consider these applications. However, the interested reader will 

find, in [2] (Appendix 9) and [20] an entry to this literature. 
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Figure 2. A Single Loop System 

Appendix A. A Summary of Fourier Analysis 

Throughout this appendix Lp will denote the usual Lebesgue space on the 

infinite interval ( -  ~ ,  ~). That is, Lp consists of all measurable complex-valued 

functions f of a real variable such that 

llf[[ = [f_~® If(t)l p dt] l/p< oo 

holds (with integration in the Lebesgue sense). The cases p = 1, 2 will be of 

primary interest. The Hilbert space L2 is equipped with the inner product ( , )  

where 

(x, y) = f~  x(s)y(s) ds, x, y L2. 

The following discussion extends easily to finite products of L2. The notation 

L~ will denote the space of all tuplets 

f = (fx,"" ",f.), fi  ~ L2 

being finite with respect to the norm 

[If [J :  [i=~ f ~  ]f/(t)12 dt] 1/2" 

Again L~ is a Hilbert space with the inner product ( , ) ,  where 

(f '  g) = ~ f~o  fi(t)gi(t)dt f '  g ~ L"2. 
i = 1  

L$ is equipped with the usual algebraic operations. 
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In dealing with physical systems an important notion is that of stationarity. 

Let D(T) denote the domain of Tand let K., for real a, denote the time translation 

operator 

(K,x) (t) = x ( t -  a), x e L"2. 

Then T is stationary whenever 

(1) D(T) = K.D(T) for all real a; 

(2) TKa -- K .T  for all real a. 

In other words if x e D(T) and if y = Tx then K.x e D(T)  and Kay = TK.x. 

In dealing with stationary systems Fourier transforms play an important role. 

The Fourier transform F of a function x e L 2 is to be defined by the expression 

(A.1) (Fx) (w) = 1.i.m.N_,o~ \ ~ ]  eJ°'tx(t) dt. 

Here l.i.m, denotes limit in the mean. Some salient properties of F are sum- 

marized in the following theorem of Plancherel (see [5], page 51). 

T H E O R E M  A.1. As an operator on L2, F is one-to-one, onto, and norm- 

preserving. The inverse of  F is determined by 

(A.2) (F-~y) (t) = 1.i.m.u_~ \ ~ , ]  e-J°'ty(oJ) &o. 

In other words F is an isometric isomorphism of L2 onto itself. A consequence 

of this is that for x, y e L2 (Fx, Fy) = (x, y); moreover F* = F -  1. The Fourier 

transform is also extended to the space L~ in the natural way, the Fourier trans- 

form of a tuplet being the tuplet of component Fourier transforms. We remark 

only that the inner product relationship takes the form 

do~ 
/ = 1  

: ~ ,-(7® xi(t)Yi(t) dt = (x,  y )  
i = l  

The next result which is apparently due to Bochner (see [6]) is a cornerstone 

in the study of stationary systems. In this theorem y = Tx is mapping from 

L~ into L~ while 9 and 2 denote the L2 Fourier transform o fy  and x respectively. 

denotes an n x m matrix of measurable functions. 

T H E O R E M  A.2. A necessary and sufficient condition for T to be linear, 

bounded and stationary is that j?(o~) = ~(co)2(co), co s ( -  0% oo) where each com- 

ponent of  the matrix T is a uniformly bounded measurable function. 
This theorem may be paraphrased as stating that the transformation T from 

L~' into L~ is linear, bounded and stationary if and only if T has a multiplicative 

form. Since y = Tx if and only if )~ = ;P~, the matrix 2r which represents T in its 

multiplicative form can be represented as T = F T F -  1, as we see from the equality 

chain :9 = Fy = FTx = FTF-1Fx .  



A Basic Optimization Problem in Linear Systems 37 

Convolutions. The examples to be presented later come from the class of 

systems which may be identified with convolution operators. The convolution 

operator f ®  is defined by 

(A.3) (f®g) (t) = f ~ o f ( t - s ) g ( s )  ds, t ~ ( -  0% oo). 

The well-known o.perational properties : f®g = g ®k andf®(g  ®k) = (f®g) ®k 

are easily verified. The convolution of an n x m matrix and an m x k matrix is 

defined in the obvious manner. In particular, the case m x 1 is of interest for, as 

we shall see, such convolutions can define the type of linear transformation 

under discussion. 

The next theorem (see [7], p. 951) isolates several important facts concerning 

convolutions on L~ and Lz. 

T H E O R E M  A.3. For f ,  x e L1 the convolution f ®x is well defined and satisfies 

[]f®x[[x < I[flll"[Lx][1. For f e L1, x ~ L 2 the convolution f Q x  exists in L2 and 

satisfies It f ®x [12 < [If111" IL x [[1. I f  f , x ~ L2 the convolution f ® x defines a continuous 

function with norm (sup norm) at most [[flL2"llxl]2. 

In view of Equation (A.3) and this theorem it is clear that fo r fE  L1 the con- 

volution f ®  defines a bounded linear transformation on both L 1 and L2. With 

the domain o f f@ being the entire space L2, it is easily verified that this operator 

is stationary. The theorem also generalizes easily to the multivariate setting. 

For instance, if W is an n x m matrix of functions W~ e L1 such that [W[ e L1, 

where t W[ (t) = [W(t)] denotes the norm of W(t) as a mapping from ll(m ) into 

ll(m), then W@ is a bounded linear stationary transformation sending L~ into L~ 

with norm satisfying IIW® I[ < S~o ]W(t)] dt. Finally it is noted that f ® ,  as an 

operator on L2, has a Hilbert space adjoint (f®)*.  This adjoint is itself a con- 

volution, namely (f®)* = f ® ,  wheref(t) = f ( -  t), t e ( -  0% o0). More generally, 

for any bounded linear stationary system T, acting between finite products of L2 

with iV the matrix multiplicative representation T, the identity chain (T ' z ,  x )  = 

(z, Tx)  = <~, ~)2) = ((iV)*~,)2) shows that (it)*, the conjugate transpose of T, 

is the multiplicative matrix representation of T*. 

Nonanticipatory Systems. Heuristically a nonanticipatory system is one in 

which present values of the output are not influenced by future values of the input. 

To sharpen this somewhat let P~, for real ~-, denote the projection operator 

defined by 

( P ' x ) ( t ) =  {o(t) , < < t < "r 

In other words, P~ is computed by multiplication with the characteristic function 
of the interval ( -  0% r). A function T is said to be nonanticipatory if for  every 

xl,  x2 e D(T) such that P~xl = P~x2, for any real r, then P~Txl = P~Tx2. 

A convolution f ®  is non anticipatory if and only iff( t)  = 0 for t < 0. In this 

case with y = f ® x  we have 

= f '  , .  = f :  as, ,o  ( -  0% oo), 
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and the output y at any t ~ ( -  oo, ~ )  clearly depends only on past values of the 

input. Similarly a convolution f ® ,  where f ( t)  = 0 for t > 0, is called purely 
anticipatory. In this case evidently 

f S  f ( t - s ) x ( s )  ds, t e ( -  ~ ,  ~),  ( f®x)  (t) 

and hence present output values depend only on future values of the input. 

The Fourier transform representation of a nonanticipatory convolution has a 

certain familiar and important property. To state this result we introduce the 

complex Fourier transform on L2 by means of definition 

2(s) = (Fx)(s) = \ ~ /  . x(t) e-Stdt, s = a+joJ. 

From the definition it is not difficult to show that if x(t) = O, t <_ O, then 2(s) is 

analytic in the right half(i.e., a > 0) of the complex plane. Furthermore, for cr > 0 

f ~  ]x(~r+joO}2do~ = f :  Ix(t)lae-2°'dt < Hxll 2 < m. 

The converse of this result is also true as is stated in the next theorem (see [8], 

Section 1.4). 

THEOR EM A.4. The two subsets of  L 2 ( -  m, m), E'  = {x: x(t) = 0, t < 0} 

and E = {x: £(s) is analytic in ~ > 0, II~(cr)ll _< I]xH, a > 0}, are identical. 

Moreover, for x e E, £(co) = 1.i.m.o_.o+ 2(s), where the limit exists for almost all 

Theorem 4 extends to L[ with norms replacing absolute values where neces- 

sary. 

Suppose now that x e L 2 satisfies x(t) = 0 for t > 0 and that y is the function 

defined by y(t) = x ( -  t). Then y e L2 and y(t) = 0 for t < 0. The equality chain 

~(s) : f :  e-Stx(t) dt : - f : ~  e-S tx( -  t) dt 

then shows that the properties set forth in Theorem A.4 for .9 in the half-space 

a > 0 hold also for ~ in the half-space a < 0. This observation establishes the 

corollary: the conjugate of a nonanticipatory convolution is a purely anticipatory 

convolution. The proof of this statement follows from the above remarks and 

the fact that if @(s) +-+ q~® then O(s)* +-+ (~®)*. 

Appendix B. Splitting I + T * T  

In this appendix the following theorem is proved. 

T H E O R E M  B.1. For every bounded linear operator T and every closed linear 
subspace L there exists an operator F such that F(L) = L and F*F = I+ T+ T. 

Following the proof of this theorem the operator F is characterized. In 
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establishing Theorem B.1 some standard notation will be helpful. First let 

H = H i x/-/3, equipped with the usual inner product. For fixed linear bounded 

T sending H1 into Ha the graph of Tis defined to be the set ~7"(T) = {(x, Tx): 

x e H1 }. ~7"(T) is known to be a closed linear subspace t of H. Two other linear 

subspaces, namely, -~(T) = {(x, Tx): x E L} and ..//(T) = {(x, Tx): x e L±}, 

will also be of interest in the following. The subspaces .~(T) and .//(T) are 

closed in H1 x/-/3 and although they are not in general orthogonal they do yield 

a direct-sum decomposition of 3"(T). 

The transformation of M: H1 --->3"(T) is now defined by M x  = (x, Tx), 

x e H~. M is linear, bounded, one-to-one and onto 3"(T). Moreover, it is readily 

verified that M*: 3"(T)---> H~ is computed by the rule M*(x,  Tx) = x +  T*Tx  

and hence M * M  = I+  T*T. Thus, in this sense, M provides a type of factoriza- 

tion for I+  T*T. 

Now, since M is invertible, the subspaces L and .2' are closed, in one-to-one 

correspondence and are in fact congruent. Thus a norm-preserving transformation 

U~ exists such that Ul(.ff') = L. 

We shall note that L ± and ..¢/' are congruent and since L,a, , / /constitute a 

direct-sum decomposition ofoq'(T) it follows that U~ may be extended to all of 

,9"(T) while preserving its unitary properties (see [18]). That is, a transformation 

U exists such that U* U = I and U(L#) -- L. The operator F on H1 is then 

defined by F = UM. Since M(L)  = .~e, the operator Fhas the properties F*F = 

M* U* UM = M * M  = I+  T* T and F(L) = L, which establishes Theorem B. 1. 

Our attention turns now to characterizing unitary transformations from 

H to Hi. Suppose that S is a linear transformation from H to H~. Then linear 

transformations G: H~ ~ Hi and D:/ /3  ~ H1 exist such that S(x, y) = Gx + Dy, 

(x, y) ~ H. The adjoint of S is easily determined, being given by S*z = (G'z, D'z) ,  

z e H~, from which it follows that 

S*S(x, y) = (G*Gx+ G*Dy, D*Gx+D*Dy),  (x, y) ~ H. 

In the following we shall consider the restriction of S*S  to 3"(T) for which 

we have 

(B.1) (S*S) (x ,  Tx) = (G*Gx+G*DTx, D*Gx+D*DTx,  x e H 1 .  

In our first lemma, the notation K is used to denote a square root of I +  T* T 

(see [3], p. 157), that is, K = K*, K 2 = I + T * T .  

LEMMA B.1. The following statements are equivalent: (a) S*S  = I; (b) 

G*G+G*DT = I and D*G+ D*DT = T; (c) D = GT* and G*G = K-2;  (d) G 

= VK -1, where V*V = I and D = GT*. 

Proof. In view of equation (B. 1), S*S = I if and only if condition (b) holds; 

thus (a) and (b) are equivalent. The second part of (b) implies that T * T  = 

T*D*DT. Using this with the first part of (b) shows that I+  T*T  = (G+DT)*(G 

+ DT), from which it follows that (G + DT) is invertible. Thus condition (b)may 

be written as G* = (G+DT)  -~ and D* = T ( G + D T )  -1 from which the first 

t That 3"(T), ~(T) and ~'(T) are all closed follows from the boundedness of T (see [2], 
p. 432). 



40 WILLIAM A. PORTER 

part of (c) is apparent. Using D = GT* in either part of (b) completes the proof  

of  (c). Now G*G = K -2 implies that KG*GK = / ,  which means that V = GK 

satisfies part (d). Finally for G and D as in (d), it is readily verified that (b), which 

is equivalent to (a), holds, which completes the proof. 

LEMMA B.2. The following statements are equivalent. There exists a Q 

such that (e) T * T  = T ' Q *  + Q T +  T*Q*QT; (f) 1+ T * T  = (I+ QT)*(I+ QT); 

(g) ( I + Q T ) K  - I  = W where W * W  = L 

Proof. The equivalence of (e) and (f) is made apparent by expanding the right- 

hand side of  (f). If  (g) holds, then clearly K* W* W K  = (I+ QT)*(I+ QT), Since 

K = K*, K 2 = I + T * T  and W * W  = L we see that (g) implies (f). Since Kis  

invertible, (f) implies that K -  1(1+ QT)*(I+ Q T ) K -  1 = I, which means that 

W = (I+ Q T ) K -  1 satisfies condition (g). 

Since Lemmas B.1 and B.2 both deal with conditions for factoring the 

operator 1+ T ' T ,  it is not surprisingto find that the operators G and Q are related. 

Using parts (d) and (g), we see that for every I +  Q T  satisfying Lemma B.2 the 

operator G = ( I+  Q T)K 2 satisfies Lemma B. 1, and conversely. Thus conditions 

(a) through (g) are all equivalent. 

In some applications, a slight generalization of Lemma B.2 is useful. Assume 

now that T is the composition T = COB of linear transformations between 

compatible spaces. 

LEMMA B.3. Let K be a linear transformation. Then the identity 

implies that 

(i) ~*C*CO = ¢b*K+ K*dg +O*K*BB*Kcb 

(ii) I +  T * T  = ( I + B * K ~ B ) * ( I + B * K ~ B ) .  

Proof. The proof of this lemma is similar to our previous considerations. 

Using (i) we have 

B * ~ * C * C ~ B  = B*O*KB+ B*K*q~B+ B*~b*KBB*K*CbB, 

which, if we add the identity to both sides and inspect, implies identity (ii). When 

B is nonsingular the reverse implication is also obviously true. 

Of special interest in the applications is a factorization of I +  T * T  where C, 

B, K are constant matrices and ~(co) = (jo~I- A ) -  1. For this further specialization 

we have 

LEMMA B.4. I f  K is a constant matrix, then the identity 

(B.2) ¢b*K+K*O = ~*C*CCb-cb*KBB*K*Cb 

holds i f  and only i f  K = K* and 

(B.3) - K A - A * K  = C * C - K B B * K .  

Proof. Since • is invertible, Equation (B.2) may be rewritten as 

1£0 -1 + ~ * - ~ K *  = C*C - KBB*K*. 
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The right-hand side of this equality is a constant matrix. The left-hand side has 

the form 
Kcb- ~ + ~* - X K* = j w ( K -  K*) - ( A K  + A ' K * ) .  

Thus for Equation (B.2) to hold, it is both necessary and sufficient that K = K* 

and that Equation (B.3) holds. 

In view of Lemma B.3, an obvious corollary is the following. 

COROLLARY. I f  K is a selfadjoint matrix satisfying equation (B.3), then 

I + :r* :r = ( I +  B * K * B ) .  

I f  B is nonsingular, then the converse is true. 

Remark.  Attention is called to [11] which contains the following development. 

Suppose that/3 denotes a commutative Banach algebra with identity I and norm p. 

The operator P on/3 is called a projection if P = p2 and if xy  ~ R(P)  whenever 

x, y E R(P) .  The operators P+ and P_ = l - P +  are two such projections with 

ranges/3+ and/3_ respectively. Also fl+ and/~_ denote subspaces spanned by 

{/,/3 + } and {/,/3_ } respectively. The result of [11] of interest here is the following. 

LEMMA. For every 0 ~ Z ~ [3 with p(Z)  < 1 elements Z+ E fl+ and Z _  ~ fl_ 

exist such that (a) I + Z = Z _ Z  + and (b) Z~  1 Eft+, Z :  1 ~]~_. Moreover, Z+ = 

exp {P+[log (I+Z)]}, Z_ = exp {P_[log (I+Z)]}, Z ~ . I =  exp {-P+[ log 

( I+ Z)] } and Z-- 1 = exp { -  P_ [log ( I+ Z)] }. 

The proof of the lemma uses in an essential way the commutative property of/3. 

Suppose we specialize the context of this appendix with the assumptions (1) 

liT [I < 1, and (2) the class of operators (of the form T ' T )  in question is a com- 

mutative Banach algebra. Then this lemma can be used to sharpen somewhat the 

basic result. To do this it is necessary only to choose/~+ = {X~/3: X(L)  = L}.  

Conversely, when Z is selfadjoint, the development of the appendix removes the 

assumption of commutativity in the factorization of [11]. 

Appendix C. The Projection Q 

Let h s H be arbitrary and L, M, P, Q be as defined in Section 2. We wish to 

compute the orthogonal projection Q, that is, to find elements h 1 E M, h2 ~ M l 

such that h = hi +h2. It is apparent that hi = Fu for some u ~ L. It is also true 

that h2 = F* - iv  for some v E L ' .  This latter statement follows from the implica- 

tion chain: h 2 ~ M i  ~ (h2, F P u )  = 0 for all u <~ (PF*h2,  u ) =  0 for all 

u ~ PF*h 2 = 0 <=> F*h 2 E L"  <=~ h 2 E F * -  I(L±), where the fact that Fis invertible 

has been used in an obvious way. The computation of h 1 is therefore equivalent 

to finding the (unique) solution to 

(C.1) h = F u + F * - l v ,  u ~ L ,  v E L  x. 

It is convenient to introduce the mapping K from H 2 into H defined by 

K(u, v) = F P u + F * - I ( I - P ) v ,  (u, v) ~ H 2. 

From the above remarks it follows that K is onto. Moreover, the tuplet (u, v) 
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which satisfies Equation (C.l) is the minimum norm pre-image of h under K. 

To establish this suppose that (fi, 0) is the (unique) minimum norm pre-image of 

h under K; then 2 e L. Indeed if 2 = ul + u2, ul e L, 0 # u2 e L ±, then FPul = 

FP2 while Ilull > Ilul II and hence II(Q, v)ll > II(ul, v)L which is a contradiction. 

Similarly, it follows that 2 e L ±, and consequently that (2, 0) is a solution, and 

hence the unique solution. 

Now (2, 0) may be determined by direct means (see [2], Chap. 4). Indeed, 

(2, 0) = K*(KK*)- lh ,  where the invertibility of KK* follows from the property 

that K is onto. It is only a moment's calculation to show that KK* = FPF*+ 

F*-  1 ( I -  P ) F-  1 and consequently that 

2 = PF*[FPF* + F* - 1 ( I -  P ) F -  1] - 1 h 

0 = ( I - P ) F - a [ F P F *  + F* - 1 ( I -  P ) F -  1]-lh. 

As a check on this result the reader should note that Equation (C. 1) is satisfied. 

LEMMA C.1. I f  Q is the orthogonal projection on M = F(L), then 

Q = F P F * [ F P F * + F * - I ( I - P ) F - 1 ]  -1 

where P is the orthogonal projection on L. 

Proof. It is necessary only to note that Qh = F2. 

To obtain the optimal control let h = F * -  1T*N~ and compute - F -  1Qh. 

However, since Qh = F2 it follows that Uo = - 2  and hence we have 

COROLLARY 1. The minimizing element Uo for J on L is given by 

Uo = - PF*[FPF* + F* - 1(1- P ) F -  1]- 1 F , -  1T*N~. 

We have noted above that when F(L) = L then Q = P. This can be shown 

directly as is done in proving 

COROLLARY 2. F(L) = L implies that Q = P. 

Proof. First note that F(L) = L implies that FP = PFP and that F - 1 p  = 

PF-1P.  Taking adjoints we have also that P F *-1 = PF* - IP .  Now using the 

explicit form of Q we have the implication chain 

a = P .~. FPF* = P [ F P F * + F * - ~ ( I - P ) F  -1] 

• ¢~ ( F P - P F P ) F *  = (PF *-1 - P F * - I P ) F  -1. 

The lemma then follows by inspection. 
The optimal control Uo and the projection Q may also be written explicitly 

in terms of T and P as we see in 

COROLLARY 3. For Q of  Lemma C.1 and Uo of  Corollary 1, 

a = FD(I+ T* T)[(I+ PT* T)(I+ T*TP)]-  1F* 

Uo = - P ( / +  T *  T ) [ ( I +  PT* T)(Z+ T* TP)]- 1 T*;V~. 
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Proof. With some elementary manipulations the equality chain 

F*[FPF* + F * -  1 ( I -  P ) F -  z]- 1F , -  1 = F*[I+ FF*(FPF* - F* -  1PF- ~)]- 1F 

= F * F [ I + F * F P F * F - P ] -  1 

is established. If we use F*F = I+  T ' T ,  this chain may be continued in the form 

= (I+ T*T)[I+ T * T P + P T * T  

+ T*TPT*T]-  1 

= (I+ T*T)(I+ PT*T)-1([+ T ' r e ) -  1. 

The corollary then follows from this identity and the lemma. 

In this last proof an identity of the form [/+ FA]-1 = F[I+ AF]- ~ is used, 

where [I+FA] and F are known to be invertible. If x = [ I+FA]- IFy ,  then 

x = F y -  FAx and hence the range of [I+ FA]- 1F is contained in the range of F 

and the equality [I+ FA]-1F = F~ therefore holds for some linear operator t,. 

Clearing fractions we have F = [I+ FA]FV. = F[I+ AF]/~ which implies [I+ AF]/~ 

= I and in turn the identity. 

It is noted also that the identity 

I +  F * F P F * F - P  = ( I+ T * T P ) ( I +  P T * T )  

and  the invert ibi l i ty  of  the lef t-hand side implies the invert ibi l i ty of  the right. 
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