
A BASIS FOR A MATHEMATICAL

THEORY OF COMPUTATION
∗

JOHN McCARTHY

1961–1963

[This 1963 paper was included in Computer Programming and Formal Sys-

tems, edited by P. Braffort and D. Hirshberg and published by North-Holland.
An earlier version was published in 1961 in the Proceedings of the Western

Joint Computer Conference.]

1 Introduction

Computation is sure to become one of the most important of the sciences.
This is because it is the science of how machines can be made to carry out
intellectual processes. We know that any intellectual process that can be car-
ried out mechanically can be performed by a general purpose digital computer.
Moreover, the limitations on what we have been able to make computers do
so far clearly come far more from our weakness as programmers than from the
intrinsic limitations of the machines. We hope that these limitations can be
greatly reduced by developing a mathematical science of computation.

There are three established directions of mathematical research relevant to
a science of computation. The first and oldest of these is numerical analysis.
Unfortunately, its subject matter is too narrow to be of much help in forming
a general theory, and it has only recently begun to be affected by the existence
of automatic computation.

∗This paper is a corrected version of the paper of the same title given at the Western
Joint Computer Conference, May 1961. A tenth section discussing the relations between
mathematical logic and computation has bean added.

1

The second relevant direction of research is the theory of computability
as a branch of recursive function theory. The results of the basic work in
this theory, including the existence of universal machines and the existence
of unsolvable problems, have established a framework in which any theory of
computation must fit. Unfortunately, the general trend of research in this
field has been to establish more and better unsolvability theorems, and there
has been very little attention paid to positive results and none to establishing
the properties of the kinds of algorithms that are actually used. Perhaps for
this reason the formalisms for describing algorithms are too cumbersome to
be used to describe actual algorithms.

The third direction of mathematical research is the theory of finite au-

tomata. Results which use the finiteness of the number of states tend not to
be very useful in dealing with present computers which have so many states
that it is impossible for them to go through a substantial fraction of them in
a reasonable time.

The present paper is an attempt to create a basis for a mathematical theory
of computation. Before mentioning what is in the paper, we shall discuss
briefly what practical results can be hoped for from a suitable mathematical
theory. This paper contains direct contributions towards only a few of the
goals to be mentioned, but we list additional goals in order to encourage a
gold rush.

1. To develop a universal programming language. We believe that this
goal has been written off prematurely by a number of people. Our opinion of
the present situation is that ALGOL is on the right track but mainly lacks the
ability to describe different kinds of data, that COBOL is a step up a blind
alley on account of its orientation towards English which is not well suited
to the formal description of procedures, and that UNCOL is an exercise in
group wishful thinking. The formalism for describing computations in this
paper is not presented as a candidate for a universal programming language
because it lacks a number of features, mainly syntactic, which are necessary
for convenient use.

2. To define a theory of the equivalence of computation processes. With
such a theory we can define equivalence preserving transformations. Such
transformations can be used to take an algorithm from a form in which it is
easily seen to give the right answers to an equivalent form guaranteed to give
the same answers but which has other advantages such as speed, economy of
storage, or the incorporation of auxiliary processes.

2

3. To represent algorithms by symbolic expressions in such a way that sig-
nificant changes in the behavior represented by the algorithms are represented
by simple changes in the symbolic expressions. Programs that are supposed
to learn from experience change their behavior by changing the contents of
the registers that represent the modifiable aspects of their behavior. From
a certain point of view, having a convenient representation of one’s behavior
available for modification is what is meant by consciousness.

4. To represent computers as well as computations in a formalism that
permits a treatment of the relation between a computation and the computer
that carries out the computation.

5. To give a quantitative theory of computation. There might be a quan-
titative measure of the size of a computation analogous to Shannon’s measure
of information. The present paper contains no information about this.

The present paper is divided into two sections. The first contains several
descriptive formalisms with a few examples of their use, and the second con-
tains what little theory we have that enables us to prove the equivalence of
computations expressed in these formalisms. The formalisms treated are the
following:

1. A way of describing the functions that are computable in terms of given
base functions, using conditional expressions and recursive function definitions.
This formalism differs from those of recursive function theory in that it is not
based on the integers, strings of symbols, or any other fixed domain.

2. Computable functionals, i.e. functions with functions as arguments.
3. Non-computable functions. By adjoining quantifiers to the computable

function formalism, we obtain a wider class of functions which are not a priori
computable. However, such functions can often be shown to be equivalent to
computable functions. In fact, the mathematics of computation may have, as
one of its major aspects, rules which permit us to transform functions from a
non-computable form into a computable form.

4. Ambiguous functions. Functions whose values are incompletely speci-
fied may be useful in proving facts about functions where certain details are
irrelevant to the statement being proved.

5. A way of defining new data spaces in terms of given base spaces and
of defining functions on the new spaces in terms of functions on the base
spaces. Lack of such a formalism is one of the main weaknesses of ALGOL but
the business data processing languages such as FLOWMATIC and COBOL
have made a start in this direction, even though this start is hampered by

3

concessions to what the authors presume are the prejudices of business men.
The second part of the paper contains a few mathematical results about

the properties of the formalisms introduced in the first part. Specifically, we
describe the following:

1. The formal properties of conditional expressions.
2. A method called recursion induction for proving the equivalence of

recursively defined functions.
3. Some relations between the formalisms introduced in this paper and

other formalisms current in recursive function theory and in programming.
We hope that the reader will not be angry about the contrast between the

great expectations of a mathematical theory of computation and the meager
results presented in this paper.

2 Formalisms For Describing Computable Func-

tions and Related Entities

In this part we describe a number of new formalisms for expressing computable
functions and related entities. The most important section is 1, the subject
matter of which is fairly well understood. The other sections give formalisms
which we hope will be useful in constructing computable functions and in prov-
ing theorems about them.

2.1 Functions Computable in Terms of Given Base Func-

tions

Suppose we are given a base collection F of functions (including predicates)
having certain domains and ranges. In the case of the non-negative integers, we
may have the successor function and the predicate of equality, and in the case
of the S-expressions discussed in reference 7, we have the five basic operations.
Our object is to define a class of functions C {F} which we shall call the class
of functions computable in terms of F .

Before developing C {F} formally, we wish to give an example, and in order
to give the example, we first need the concept of conditional expression. In
our notation a conditional expression has the form

4

(p1 → e1, p2 → e2, . . . , pn → en)

which corresponds to the ALGOL 60 reference language (12) expression

if p1 then e1 else if p2 then e2 . . . else if pn then en.

Here p1, . . . , pn are propositional expressions taking the values T or F
standing for truth and falsity respectively.

The value of (p1 → e1, p2 → e2, . . . , pn → en) is the value of the e corre-
sponding to the first p that has value T. Thus

(4 < 3 → 7, 2 > 3 → 8, 2 < 3 → 9, 4 < 5 → 7) = 9.

Some examples of the conditional expressions for well known functions are

|x| = (x < 0 → −x, x ≥ 0 → x)

δij = (i = j → 1, i 6= j → 0)

and the triangular function whose graph is given in figure 1 is represented by
the conditional expression

tri(x) = (x ≤ −1 → 0, x ≤ 0 → x + 1, x ≤ 1 → 1− x, x > 1 → 0).

(0,1)

(-1,0) (1,0)

Fig. 1

x

y

Now we are ready to use conditional expressions to define functions recur-
sively. For example, we have

5

n! = (n = 0 → 1, n 6= 0 → n · (n− 1)!)

Let us evaluate 2! according to this definition. We have

2! = (2 = 0 → 1, 2 6= 0 → 2 · (2− 1)!)

= 2 · 1!

= 2 · (1 = 0 → 1, 1 6= 0 → 1 · (1− 1)!)

= 2 · 1 · 0!

= 2 · 1 · (0 = 0 → 1, 0 6= 0 → 0 · (0− 1)!)

= 2 · 1 · 1

= 2.

The reader who has followed these simple examples is ready for the con-
struction of C{F} which is a straightforward generalization of the above to-
gether with a tying up of a few loose ends.

Some notation. Let F be a collection (finite in the examples we shall give)
of functions whose domains and ranges are certain sets. C{F} will be a class
of functions involving the same sets which we shall call computable in terms
of F .

Suppose f is a function of n variables, and suppose that if we write y =
f(xi, ..., xn), each xi takes values in the set Ui and y takes its value in the set
V . It is customary to describe this situation by writing

f : U1 × U2 × . . .× Un → V.

The set U1 × · · · × Un of n-tuples (x1, . . . , xn) is called the domain of f ,
and the set V is called the range of f .

Forms and functions. In order to make properly the definitions that follow,
we will distinguish between functions and expressions involving free variables.
Following Church [1] the latter are called forms. Single letters such as f, g, h,
etc. or sequences of letters such as sin are used to denote functions. Expres-
sions such as f(x, y), f(g(x), y), x2 + y are called forms. In particular we may
refer to the function f defined by f(x, y) = x2 + y. Our definitions will be
written as though all forms involving functions were written f(, ...,) although
we will use expressions like x + y with infixes like + in examples.

6

Composition. Now we shall describe the ways in which new functions are
defined from old. The first way may be called (generalized) composition and
involves the use of forms. We shall use the letters x, y, ... (sometimes with
subscripts) for variables and will suppose that there is a notation for constants
that does not make expressions ambiguous. (Thus, the decimal notation is
allowed for constants when we are dealing with integers.)

The class of forms is defined recursively as follows:
(i) A variable x with an associated space U is a form, and with this form

we also associate U . A constant in a space U is a form and we also associate
U with this form.

(ii) If e1, ..., en are forms associated with the spaces U1, ..., Un respectively,
then f(e1, ..., en) is a form associated with the space V . Thus the form
f(g(x, y), x) may be built from the forms g(x, y) and x and the function f .

If all the variables occurring in a form e are among x1, ..., xn, we can de-
fine a function h by writing h(x1, ..., xn) = e. We shall assume that the reader
knows how to compute the values of a function defined in this way. If f1, ..., fm

are all the functions occurring in e we shall say that the function h is defined by
composition from f1, ..., fm. The class of functions definable from given func-
tions using only composition is narrower than the class of function computable
in terms of these functions.

Partial functions. In the theory of computation it is necessary to deal with
partial functions which are not defined for all n-tuples in their domains. Thus
we have the partial function minus, defined by minus(x, y) = x − y, which
is defined on those pairs (x, y) of positive integers for which x is greater than
y. A function which is defined for all n-tuples in its domain is called a total

function. We admit the limiting case of a partial function which is not defined
for any n-tuples.

The n-tuples for which a function described by composition is defined is
determined in an obvious way from the sets of n-tuples for which the func-
tions entering the composition are defined. If all the functions occurring in a
composition are total functions, the new function is also a total function, but
the other processes for defining functions are not so kind to totality. When
the word “function” is used from here on, we shall mean partial function.

Having to introduce partial functions is a nuisance, but an unavoidable
one. The rules for defining computable functions sometimes give computation
processes that never terminate, and when the computation process fails to
terminate, the result is undefined. It is well known that there is no effective

7

general way of deciding whether a process will terminate.
Predicates and propositional forms. The space Π of truth values whose only

elements are T (for truth) and F (for falsity) has a special role in our theory.
A function whose range is Π is called a predicate. Examples of predicates on
the integers are prime defined by

prime(x) =

{

T if x is prime
F otherwise

and less defined by

less(x, y) =

{

T if x < y
F otherwise

We shall, of course, write x < y instead of less(x, y). For any space U there
is a predicate eqU of two arguments defined by

eqU(x, y) =

{

T if x = y
F otherwise

We shall write x = y instead of eqU(x, y), but some of the remarks about
functions might not hold if we tried to consider equality a single predicate
defined on all spaces at once.

A form with values in Π such as x < y, x = y, or prime(x) is called a
propositional form.

Propositional forms constructed directly from predicates such as prime(x)
or x < y may be called simple. Compound propositional forms can be con-
structed from the simple ones by means of the propositional connectives ∧,∨,
and ∼. We shall assume that the reader is familiar with the use of these
connectives.

Conditional forms or conditional expressions. Conditional forms require
a little more careful treatment than was given above in connection with the
example. The value of the conditional form

(p1 → e1, ..., pn → en)

is the value of the e corresponding to the first p that has value T; if all p’s
have value F, then the value of the conditional form is not defined. This rule
is complete provided all the p’s and e’s have defined values, but we need to

8

make provision for the possibility that some of the p’s or e’s are undefined.
The rule is as follows:

If an undefined p occurs before a true p or if all p’s are false or if the e

corresponding to the first true p is undefined, then the form is undefined. Oth-

erwise, the value of the form is the value of the e corresponding to the first

true p.

We shall illustrate this definition by additional examples:

(2 < 1 → 1, 2 > 1 → 3) = 3

(1 < 2 → 4, 1 < 2 → 3) = 4

(2 < 1 → 1, 3 < 1 → 3) is undefined

(0/0 < 1 → 1, 1 < 2 → 3) is undefined

(1 < 2 → 0/0, 1 < 2 → 1) is undefined

(1 < 2 → 2, 1 < 3 → 0/0) = 2

The truth value T can be used to simplify certain conditional forms. Thus,
instead of

|x| = (x < 0 → −x, x ≥ 0 → x),

we shall write

|x| = (x < 0 → −x, T → x).

The propositional connectives can be expressed in terms of conditional
forms as follows:

p ∧ q = (p → q, T → F)

p ∨ q = (p → T, T → q)

∼ p = (p → F, T → T)

p ⊃ q = (p → q, T → T)

Considerations of truth tables show that these formulae give the same
results as the usual definitions. However, in order to treat partial functions
we must consider the possibility that p or q may be undefined.

9

Suppose that p is false and q is undefined; then according to the conditional
form definition p ∧ q is false and q ∧ p is undefined. This unsymmetry in the
propositional connectives turns out to be appropriate in the theory of compu-
tation since if a calculation of p gives F as a result q need not be computed
to evaluate p ∧ q, but if the calculation of p does not terminate, we never get
around to computing q.

It is natural to ask if a function condn of 2n variables can be defined so
that

(p1 → e1, ..., pn → en) = condn(p, ..., pn, e1, ..., en).

This is not possible unless we extend our notion of function because normally
one requires all the arguments of a function to be given before the function is
computed. However, as we shall shortly see, it is important that a conditional
form be considered defined when, for example, p1 is true and e1 is defined and
all the other p’s and e’s are undefined. The required extension of the concept
of function would have the property that functions of several variables could
no longer be identified with one-variable functions defined on product spaces.
We shall not pursue this possibility further here.

We now want to extend our notion of forms to include conditional forms.
Suppose p1, ..., pn are forms associated with the space of truth values and
e1, ..., en are forms each of which is associated with the space V . Suppose
further that each variable xi occurring in p1, ..., pn and e1, ..., en is associated
with the space U . Then (p1 → e1, ..., pn → en) is a form associated with V .

We believe that conditional forms will eventually come to be generally used
in mathematics whenever functions are defined by considering cases. Their
introduction is the same kind of innovation as vector notation. Nothing can
be proved with them that could not also be proved without them. However,
their formal properties, which will be discussed later, will reduce many case-
analysis verbal arguments to calculation.

Definition of functions by recursion. The definition

n! = (n = 0 → 1, T → n · (n− 1)!)

is an example of definition by recursion. Consider the computation of 0!

0! = (0 = 0 → 1, T → 0 · (0− 1)!) = 1.

10

We now see that it is important to provide that the conditional form be defined
even if a term beyond the one that gives the value is undefined. In this case
(0 - 1)! is undefined.

Note also that if we consider a wider domain than the non-negative integers,
n! as defined above becomes a partial function, since unless n is a non-negative
integer, the recursion process does not terminate.

In general, we can either define single functions by recursion or define sev-
eral functions together by simultaneous recursion, the former being a particular
case of the latter.

To define simultaneously functions f1, ..., fk, we write equations

f1(x1, ..., xn) = e1

...

fk(x1, ..., xn) = ek

The expressions e1, ..., ek must contain only known functions and the functions
f1, ..., fk. Suppose that the ranges of the functions are to be V1, ..., Vk respec-
tively; then we further require that the expressions e1, ..., ek be associated with
these spaces respectively, given that within e1, ..., ek the f ’s are taken as having
the corresponding V ’s as ranges. This is a consistency condition.

fi(xi, ..., xk) is to be evaluated for given values of the x’s as follows.
1. If ei is a conditional form then the p’s are to be evaluated in the pre-

scribed order stopping when a true p and the corresponding e have been eval-
uated.

2. If ei has the form g(e∗1, ..., e
∗

m), then e∗1, ..., e
∗

m are to be evaluated and
then the function g applied.

3. If any expression fi(e
∗

1, ..., e
∗

n) occurs it is to be evaluated from the
defining equation.

4. Any subexpressions of ei that have to be evaluated are evaluated ac-
cording to the same rules.

5. Variables occurring as subexpressions are evaluated by giving them the
assigned values.

There is no guarantee that the evaluation process will terminate in any
given case. If for particular arguments the process does not terminate, then
the function is undefined for these arguments. If the function fi occurs in the
expression ei, then the possibility of termination depends on the presence of
conditional expressions in the ei’s.

11

The class of functions C{F} computable in terms of the given base func-
tions F is defined to consist of the functions which can be defined by repeated
applications of the above recursive definition process.

2.2 Recursive Functions of the Integers

In Reference 7 we develop the recursive functions of a class of symbolic expres-
sions in terms of the conditional expression and recursive function formalism.

As an example of the use of recursive function definitions, we shall give
recursive definitions of a number of functions over the integers. We do this for
three reasons: to help the reader familiarize himself with recursive definition,
to show how much simpler in practice our methods of recursive definition are
than either Turing machines or Kleene’s formalism, and to prove that any par-
tial recursive function (Kleene) on the non-negative integers is in C{F} where
F contains only the successor function and the predicate equality.

Let I be the set of non-negative integers {0,1,2,...} and denote the successor
of an integer n by n′ and denote the equality of integers n1 and n2 by n1 = n2.
If we define functions succ and eq by

succ(n) = n′

eq(n1, n2) =

{

T if n1 = n2

F if n1 6= n2

then we write F = {succ, eq}. We are interested in C{F}. Clearly all functions
in C{F} will have either integers or truth values as values.

First we define the predecessor function pred(not defined for n = 0) by

pred(n) = pred2(n, 0)

pred2(n,m) = (m′ = n → m, T → pred2(n,m′)).

We shall denote pred(n) by n−.
Now we define the sum

m + n = (n = 0 → m, T → m′ + n−),

12

the product
mn = (n = 0 → 0, T → m + mn−),

the difference
m− n = (n = 0 → m, T → m− − n−)

which is defined only for m ≥ n. The inequality predicate m ≤ n is defined by

m ≤ n = (m = 0) ∨ (∼ (n = 0) ∧ (m− ≤ n−)).

The strict inequality m < n is defined by

m < n = (m ≤ n)∧ ∼ (m = n).

The integer valued quotient m/n is defined by

m/n = (m < n → 0, T → ((m− n)/n)′).

The remainder on dividing m by n is defined by

rem(m/n) = (m < n → m, T → rem((m− n)/n)),

and the divisibility of a number n by a number m,

m|n = (n = 0) ∨ ((n ≥ m) ∧ (m|(n−m))).

The primeness of a number is defined by

prime(n) = (n 6= 0) ∧ (n 6= 1) ∧ prime2(n, 2)

where

prime2(m,n) = (m = n) ∨ (∼ (m|n) ∧ prime2(n,m′)).

The Euclidean algorithm defines the greatest common divisor, and we write

gcd(m,n) = (m > n → gcd(n,m), rem(n/m) = 0 → m, T → gcd(rem(n/m),m))

and we can define Euler’s ϕ-function by

ϕ(n) = ϕ2(n, n)

13

where

ϕ2(n,m) = (m = 1 → 1, gcd(n,m) = 1 → ϕ2(n,m−)′, T → ϕ2(n,m−)).

ϕ(n) is the number of numbers less than n and relatively prime to n.
The above shows that our form of recursion is a convenient way of defin-

ing arithmetical functions. We shall see how some of the properties of the
arithmetical functions can conveniently be derived in this formalism in a later
section.

2.3 Computable Functionals

The formalism previously described enables us to define functions that have
functions as arguments. For example,

n
∑

i=m

ai

can be regarded as a function of the numbers m and n and the sequence {ai}.
If we regard the sequence as a function f we can write the recursive definition

sum(m,n, f) = (m > n → 0, T → f(m) + sum(m + 1, n, f))

or in terms of the conventional notation

n
∑

i=m

f(i) = (m > n → 0, T → f(m) +
n

∑

i=m+1

f(i)).

Functions with functions as arguments are called functionals.
Another example is the functional least(p) which gives the least integer n

such that p(n) for a predicate p. We have

least(p) = least2(p, 0)

where
least2(p, n) = (p(n) → n, T → least2(p, n + 1)).

In order to use functionals it is convenient to have a notation for naming
functions. We use Church’s [1] lambda notation. Suppose we have a func-
tion f defined by an equation f(x1, ..., xn) = e where e is some expression

14

in x1, ..., xn. The name of this function is λ((x1, ..., xn), e). For example, the
name of the function f defined by f(x, y) = x2 + y is λ((x, y), x2 + y).

Thus we have
λ((x, y), x2 + y)(3, 4) = 13,

but
λ((y, x), x2 + y)(3, 4) = 19.

The variables occurring in a λ definition are dummy or bound variables and can
be replaced by others without changing the function provided the replacement
is done consistently. For example, the expressions

λ((x, y), x2 + y),

λ((u, v), u2 + v),

and

λ((y, x), y2 + x)

all represent the same function.

In the notation
∑n

i=1 i2 is represented by sum(1, n, λ((i), i2)) and the least
integer n for which n2 > 50 is represented by

least(λ((n), n2 > 50)).

When the functions with which we are dealing are defined recursively, a
difficulty arises. For example, consider factorial defined by

factorial(n) = (n = 0 → 1, T → n · factorial(n− 1)).

The expression

λ((n), (n = 0 → 1, T → n · factorial(n− 1)))

cannot serve as a name for this function because it is not clear that the oc-
currence of “factorial” in the expression refers to the function defined by the
expression as a whole. Therefore, for recursive functions we adopt an addi-
tional convention, Namely,

15

label(f, λ((x1, ..., xn), e))

stands for the function f defined by the equation

f(x1, ..., xn) = e

where any occurrences of the function letter f within e stand for the function
being defined. The letter f is a dummy variable. The factorial function then
has the name

label(factorial, λ((n), (n = 0 → 1, T → n · factorial(n− 1)))),

and since factorial and n are dummy variables the expression

label(g, λ((r), (r = 0 → 1, T → r · g(r − 1))))

represents the same function.
If we start with a base domain for our variables, it is possible to consider

a hierarchy of functionals. At level 1 we have functions whose arguments are
in the base domain. At level 2 we have functionals taking functions of level
1 as arguments. At level 3 are functionals taking functionals of level 2 as
arguments, etc. Actually functionals of several variables can be of mixed type.

However, this hierarchy does not exhaust the possibilities, and if we allow
functions which can take themselves as arguments we can eliminate the use of
label in naming recursive functions. Suppose that we have a function f defined
by

f(x) = E(x, f)

where E(x, f) is some expression in x and the function variable f . This function
can be named

label(f, λ((x), E(x, f))).

However, suppose we define a function g by

g(x, ϕ) = E(x, λ((x), ϕ(x, ϕ)))

or
g = λ((x, ϕ), E(x, λ((x), ϕ(x, ϕ)))).

16

We then have

f(x) = g(x, g)

since g(x, g) satisfies the equation

g(x, g) = E(x, λ((x), g(x, g))).

Now we can write f as

f = λ((x), λ((y, ϕ), E(y, λ((u), ϕ(u, ϕ))))(x, λ((y, ϕ), E(y, λ((u), ϕ(u, ϕ)))))).

This eliminates label at what seems to be an excessive cost. Namely, the
expression gets quite complicated and we must admit functionals capable of
taking themselves as arguments. These escape our orderly hierarchy of func-
tionals.

2.4 Non-Computable Functions and Functionals

It might be supposed that in a mathematical theory of computation one need
only consider computable functions. However, mathematical physics is car-
ried out in terms of real valued functions which we not computable but only
approximable by computable functions.

We shall consider several successive extensions of the class C{F}. First we
adjoin the universal quantifier ∀ to the operations used to define new functions.
Suppose e is a form in a variable x and other variables associated with the
space Π of truth values. Then

∀((x), e)

is a new form in the remaining variables also associated with Π. ∀((x), e) has
the value T for given values of the remaining variables if for all values of x, e
has the value T. ∀((x), e) has the value F if for at least one value of x, e has
the value F. In the remaining case, i.e. for some values of x, e has the value T
and for all others e is undefined, ∀((x), e) is undefined.

If we allow the use of the universal quantifier to form new propositional
forms for use in conditional forms, we get a class of functions Ha{F} which
may well be called the class of functions hyper-arithmetic over F since in

17

the case where F = {successor, equality} on the integers, Ha{F} consists of
Kleene’s hyper-arithmetic functions.

Our next step is to allow the description operator ı. ı((x), p(x)) stands for
the unique x such that p(x) is true. Unless there is such an x and it is unique,
ı((x), p(x)) is undefined. In the case of the integers ı((x), p(x)) can be defined
in terms of the universal quantifier using conditional expressions, but this does
not seem to be the case in domains which are not effectively enumerable, and
one may not wish to do so in domains where enumeration is unnatural.

The next step is to allow quantification over functions. This gets us to
Kleene’s [5] analytic hierarchy and presumably allows the functions used in
analysis. Two facts are worth noting. First ∀((f), ϕ(f)) refers to all functions
on the domain and not just the computable ones. If we restrict quantifica-
tion to computable functions, we get different results. Secondly, if we allow
functions which can take themselves as arguments, it is difficult to assign a
meaning to the quantification. In fact, we are apparently confronted with the
paradoxes of naive set theory.

2.5 Ambiguous Functions

Ambiguous functions are not really functions. For each prescription of values
to the arguments the ambiguous function has a collection of possible values.
An example of an ambiguous function is less(n) defined for all positive integer
values of n. Every non-negative integer less than n is a possible value of
less(n). First we define a basic ambiguity operator amb(x, y) whose possible
values are x and y when both are defined: otherwise, whichever is defined.
Now we can define less(n) by

less(n) = amb(n− 1, less(n− 1)).

less(n) has the property that if we define

ult(n) = (n = 0 → 0, T → ult(less(n)))

then
∀((n), ult(n) = 0) = T .

There are a number of important kinds of mathematical arguments whose
convenient formalization may involve ambiguous functions. In order to give

18

an example, we need two definitions.
If f and g are two ambiguous functions, we shall say that f is a descendant

of g if for each x every possible value of f(x) is also a possible value of g(x).
Secondly, we shall say that a property of ambiguous functions is hereditary

if whenever it is possessed by a function g it is also possessed by all descendants
of g. The property that iteration of an integer valued function eventually gives
0 is hereditary, and the function less has this property. So, therefore, do all
its descendants. Therefore any integer-function g satisfying g(0) = 0 and
n > 0 ⊃ g(n) < n has the property that g∗(n) = (n = 0 → 0, T → g∗(g(n)))
is identically 0 since g is a descendant of less. Thus any function, however
complicated, which always reduces a number will if iterated sufficiently always
give 0.

This example is one of our reasons for hoping that ambiguous functions
will turn out to be useful.

With just the operation amb defined above adjoined to those used to gen-
erate C{F}, we can extend F to the class C∗{F} which may be called the
computably ambiguous functions. A wider class of ambiguous functions is
formed using the operator Am(x, π(x)) whose values are all x’s satisfying π(x).

2.6 Recursive Definitions of Sets

In the previous sections on recursive definition of functions the domains and
ranges of the basic functions were prescribed and the defined functions had
the same domains and ranges.

In this section we shall consider the definition of new sets and the basic
functions on them. First we shall consider some operations whereby new sets
can be defined.

1. The Cartesian product A × B of two sets A and B is the set of all
ordered pairs (a · b) with a ε A and b ε B. If A and B are finite sets and
n(A) and n(B) denote the numbers of members of A and B respectively then
n(A×B) = n(A) · n(B).

Associated with the pair of sets (A,B) are two canonical mappings:

πA,B : A×B → A defined by πA,B ((a · b)) = a
%A,B : A×B → B defined by %A,B ((a · b)) = b.

The word “canonical” refers to the fact that πA,B and %A,B are defined by the

19

sets A and B and do not depend on knowing anything about the members of
A and B.

The next canonical function γ is a function of two variables γA,B : A,B →
A×B defined by

γA,B (a, b) = (a · b).

For some purposes functions of two variables, x from A and y from B, can be
identified with functions of one variable defined on A×B.

2. The direct union A ⊕ B of the sets A and B is the union of two non-
intersecting sets one of which is in 1-1 correspondence with A and the other
with B. If A and B are finite, then n(A ⊕ B) = n(A) + n(B) even if A and
B intersect. The elements of A ⊕ B may be written as elements of A or B
subscripted with the set from which they come, i.e. aA or bB.

The canonical mappings associated with the direct union A⊕B are

iA,B : A → A⊕B defined by iA,B (a) = aA,
jA,B : B → A⊕B defined by jA,B (b) = bB,
pA,B : A⊕B → Π defined by pA,B (x) = T if and only if x comes from A,
qA,B : A⊕B → Π defined by qA,B (x) = T if and only if x comes from B.

There are two canonical partial functions rA,B and sA,B. rA,B : A⊕B → A
is defined only for elements coming from A and satisfies rA,B(iA,B (a)) = a.
Similarly, sA,B : A⊕B → B satisfies sA,B (jA,B (b)) = b.

3. The power set AB is the set of all mappings f : B → A. The canonical
mapping αA,B : AB ×B → A is defined by αA,B (f, b) = f(b).

Canonical mappings. We will not regard the sets A × (B × C) and (A ×
B)× C as the same, but there is a canonical 1-1 mapping between them,

gA,B,C : (A×B)× C → A× (B × C)

defined by

gA,B,C(u) = γA,B×C(πA,B(πA×B,C(u)), γB,C(%A,B(πA×B,C(u)), %A×B,C(u))).

We shall write

(A×B)× C ' A× (B × C)

20

to express the fact that these sets are canonically isomorphic.
Other canonical isomorphisms are

1. tA,B : A×B → B × A defined by t(u) = γB,A(%A,B(u), πA,B(u))

2. d1 : A× (B ⊕ C) → A×B ⊕ A× C

3. a2 : (A⊕B)⊕ C → A⊕ (B ⊕ C)

4. d2 : AC ×BC → (A×B)C

5. d3 : AB × AC → AB⊕C

6. s1 : (AB)C → AB×C

We shall denote the null set (containing no elements) by 0 and the set consist-
ing of the integers from 1 to n by n. We have

A⊕ 0 ' A

A× 0 ' 0

A× 1 ' A

A× 2 ' A⊕ A(n terms, associate to left by convention)

A0 ' 1 (by convention)

A1 ' A

An ' A× ...× A(n terms, associate to left by convention)

Suppose we write the recursive equation

S = {Λ} ⊕ A× S.

We can interpret this as defining the set of sequences of elements of A as
follows:

1. Interpret Λ as denoting the null sequence. Then the null sequence
(strictly an image of it) is an element of S.

2. Since a pair consisting of an element of A and an element of S is an
element of S, a pair (a, Λ) is an element of S. So, then, are

(a1 · (a2 · Λ)) and (a1 · (a2 · (a3 · Λ))) etc.

Thus S consists of all sequences of elements of A including the null sequence.

21

Suppose we substitute {Λ}⊕A×S for S in the right side of S = {Λ}⊕A×S.
We get

S = {Λ} ⊕ A× ({Λ} ⊕ A× S).

If we again substitute for S and expand by the distributive law expressed in
equation (2) above we get

S = {Λ} ⊕ A× {Λ} ⊕ A× A× {Λ} ⊕ ...

which, if we now denote the set {Λ} by 1, becomes

S = 1⊕ A⊕ A2 ⊕ A3 ⊕ ...

which is another way of writing the set of sequences. We shall denote the set
of sequences of elements of A by seq(A).

We can also derive this relation by writing S = 1 ⊕ A × S and solving
formally for S, getting S = 1/(1−A) which we expand in geometric series to
get S = 1⊕ A⊕ A2 ⊕ ... just as before.

Another useful recursive construction is

S = A⊕ S × S.

Its elements have the forms a or (a1 · a2) or ((a1 · a2) · a3) or (a1 · (a2 · a3)) etc.
Thus we have the set of S-expressions on the alphabet A which we may denote
by sexp(A). This set is the subject matter of Reference 7, and the following
paragraph refers to this paper.

When sets are formed by this kind of recursive definition, the canonical
mappings associated with the direct sum and Cartesian product operations
have significance. Consider, for example, sexp(A).

We can define the basic operations of Lisp, i.e. atom, eq, car, cdr and cons
by the equations

atom(x) = pA,S×S(x)

eq(x, y) = (iA,S×S(x) = iA,S×S(y))

assuming that equality is defined on the space A.

car(x) = nS,S(sA,S×S(x))

22

cdr(x) = %S,S(sA,S×S(x))

cons(x, y) = jA,S×S(γS,S(x, y))

Definition of the set of integers. Let 0 denote the null set as before. We
can define the set of integers I by

I = {0} ⊕ {0} × I.

Its elements are then

0, (0 · 0), (0 · (0 · 0)), etc.

which we shall denote by 0,1,2,3 etc. The successor and predecessor functions
are then definable in terms of the canonical operations of the defining equation.
We have

succ(n) = γ(0, n)

pred(n) = %(s(n)).

3 Properties of Computable Functions

The first part of this paper was solely concerned with presenting descriptive
formalisms. In this part we shall establish a few of the properties of the enti-
ties we previously introduced. The most important section is section 8 which
deals with recursion induction.

3.1 Formal Properties of Conditional Forms

The theory of conditional expressions corresponds to analysis by cases in math-
ematics and is only a mild generalization of propositional calculus.

We start by considering expressions called generalized Boolean forms (gbf)
formed as follows:

1. Variables are divided into propositional variables p, q, r, etc. and general
variables x, y, z, etc.

23

2. We shall write (p → x, y) for (p → x, T → y). (p → x, y) is called an
elementary conditional form (ecf) of which p, x, and y are called the premiss,

conclusion and the alternative, respectively.1

3. A variable is a gbf, and if it is a propositional variable it is called a
propositional form (pf).

4. If π is a pf and α and β are gbfs, then (π → α, β) is a gbf. If, in addition,
α and β are pfs, so is (π → α, β).

The value of a gbf α for given values (T, F or undefined) of the propositional
variables will be T or F in case α is a pf or a general variable otherwise. This
value is determined for a gbf (π → α, β) according to the table

value(π) value((π → α, β))
T value(α)
F value(β)
undefined undefined

We shall say that two gbfs are strongly equivalent if they have the same value
for all values of the propositional variables in them including the case of unde-
fined propositional variables. They are weakly equivalent if they have the same
values for all values of the propositional variables when these are restricted to
F and T.

The equivalence of gbfs can be tested by a method of truth tables identical
to that of propositional calculus. The table for ((p → q, r) → a, b) and (p →
(q → a, b), (r → a, b)) is given on the foregoing page.

11996: I adopted Alonzo Church’s spelling for the premise of an argument. It was not
adopted generally, and I later gave up.

24

p q r (p → q, r) ((p → q, r) → a, b) (q → a, b) (r → a, b) (p → (q → a, b),
(r → a, b))

T T T T a a a a
T T F T a a a a
T T u T a a u a

T F T F b b a b
T F F F b b b b
T F u F b b u b

T u T u u u a u
T u F u u u b u
T u u u u u u u

F T T T a a a a
F T F F b a b b
F T u u u a u u

F F T T a b a a
F F F F b b b b
F F u u u b u u

F u T T a u a a
F u F F b u b b
F u u u u u u u

u T T u u a a u
u T F u u a b u
u T u u u a u u

u F T u u b a u
u F F u u b a u
u F u u u b u u

u u T u u u a u
u u F u u u b u
u u u u u u u u

25

According to the table, ((p → q, r) → a, b) and (p → (q → a, b), (r → a, b))
are strongly equivalent.

For weak equivalence the u case can be left out of the table.
Consider the table,

p q (q → a, b) (q → c, d) (p → (q → a, b),
(q → c, d))

(p → a, c) (p → b, d) (q → (p → a, c),
(p → b, d))

T T a c a a b a
T F b d b a b b
F T a c c c d c
F F b d d c d d

which proves that (p → (q → a, b), (q → c, d)) and (q → (p → a, c), (p → b, d))
are weakly equivalent. They are also strongly equivalent. We shall write ≡s

and ≡w for the relations of strong and weak equivalence.
There are two rules whereby an equivalence can be used to generate other

equivalences.
1. If α ≡ β and α1 ≡ B1 is the result of substituting any gbf for any

variable in α ≡ β, then α1 ≡ β1. This is called the rule of substitution.
2. If α ≡ β and α is subexpression of γ and δ is the result of replacing an

occurrence of α in γ by an occurrence of β, then γ ≡ δ. This is called the rule
of replacement.

These rules are applicable to either strong or weak equivalence and in fact
to much more general situations.

Weak equivalence corresponds more closely to equivalence of truth func-
tions in propositional calculus than does strong equivalence.

Consider the equations

1) (p → a, a) ≡w a

2) (T → a, b) ≡s a

3) (F → a, b) ≡s b

4) (p → T, F) ≡s p

5) (p → (p → a, b), c) ≡s (p → a, c)

6) (p → a, (p → b, c) ≡s (p → a, c)

7) ((p → q, r) → a, b) ≡s (p → (q → a, b), (r → a, b))

8) ((p → (q → a, b), (q → c, d)) ≡s (q → (p → a, c), (p → b, d))

26

All are strong equivalence except the first, and all can be proved by truth
tables.

These eight equations can be used as axioms to transform any gbf into any
weakly equivalent one using substitution and replacement.
In fact, they can be used to transform any gbf into a canonical form. This
canonical form is the following. Let p1, ..., pn be the variables of the gbf a
taken in an arbitrary order. Then a can be transformed into the form

(p1 → a0, a1)

where each ai has the form

ai = (p2 → ai0, ai1)

and in general for each k = 1, ..., n− 1

ai1...ik = (pk+1 → ai1...ik0, ai1...ik1)

and each ai1...in is a truth value or a general variable.
For example, the canonical form of

((p → q, r) → a, b)

with the variables taken in the order r, q, p is

(r → (q → (p → a, a), (p → b, a)), (q → (p → a, b), (p → b, b))).

In this canonical form, the 2n cases of the truth or falsity of p1, ..., pn are
explicitly exhibited.

An expression may be transformed into canonical form as follows:
1) Axiom 7 is used repeatedly until in every subexpression the π in (π →

α, β) consists of a single propositional variable.
2) The variable p1 is moved to the front by repeated application of axiom

8. There are three cases: (q → (p1 → a, b), p1 → c, d)) to which axiom 8 is
directly applicable; (q → a, (p1 → c, d)) where axiom 8 becomes applicable
after axiom 1 is used to make it (q → (p1 → a, a), (p1 → c, b)); the case
(q → (p1 → a, b), c) which is handled in a manner similar to that of case 2.

Once the main expression has the form (p1 → α, β) we move any p1’s which
occur in α and β to the front and eliminate them using axioms 5 and 6. We

27

then bring p2 to the front of α and β using axiom 1 if necessary to guarantee
at least one occurrence of p2 in each of α and β. The process is continued until
the canonical form is achieved.

There is also a canonical form for strong equivalence. Any gbf a is strongly
equivalent to one of the form (p1 → α, β), where α and β do not contain p1 and
are themselves in canonical form. However, the variable p1 may not be chosen
arbitrarily but must be an inevitable propositional variable of the original gbf
and can be chosen to be any inevitable variable. An inevitable variable of a
gbf (π → α, β) is defined to be either the first propositional variable or else an
inevitable variable of both α and β. Thus p and q are the inevitable variables
of

(p → (r → (q → a, b), (q → c, d)), (q → e, f)).

A gbf a may be put in strong canonical form as follows:
1) Use axiom 7 to get all premisses as propositional variables.
2) Choose any inevitable variable, say p1, and put a in the form (p1 → α, β)

by using axiom 8.
3) The next step is to eliminate occurrences of p1 in α and β. This can

be done by the general rule that in any ecf occurrences of the premiss in the
conclusion can be replaced by T and occurrences in the alternative by F. How-
ever, if we wish to use substitution and replacement on formulas we need the
additional axioms

(9) (p → (q → a, b), c) ≡s (p → (q → (p → a, a), (p → b, b)), c)

and

(10) (p → a, (q → b, c)) ≡s (p → a, (q → (p → b, b), (p → c, c))).

Suppose there is an occurrence of p1 in the conclusion; we want to replace it by
T. To do this, we use axioms 9 and 10 to move in a p1 until the objectionable
p1 occurs as the inner p1 of one of the forms

p1 → (p1 → a, b), c)

28

or
p1 → a, (p1 → b, c)).

In either case, the objectionable p1 can be removed by axiom 5 or 6, and the
p1’s that were moved in can be moved out again.

Thus we have (p1 → α, β) with p1 missing from α and β.
4) Inevitable variables are then brought to the front of α and β and so

forth.
Two gbfs are equivalent (weakly or strongly) if and only if they have the

same (weak or strong) canonical form. One way this is easy to prove; if two gbfs
have the same canonical form they can be transformed into each other via the
canonical form. Suppose two gbfs have different weak canonical forms when
the variables are taken in the same order. Then values can be chosen for the
p’s giving different values for the form proving non-equivalence. In the strong
case, suppose that two gbfs do not have the same inevitable propositional
variables. Let p be inevitable in a but not in b. Then if the other variables are
assigned suitable values b will be defined with p undefined. However, a will be
undefined since p is inevitable in a which proves non-equivalence. Therefore,
strongly equivalent gbfs have the same inevitable variables, so let one of them
be put in front of both gbfs. The process is then repeated in the conclusion
and alternative etc.

The general conditional form

(p1 → e1, ..., pn → en)

can be regarded as having the form

(p1 → e1, (p2 → e2, ..., (pn → en, u), ...))

where u is a special undefined variable and their properties can be derived
from those of gbf’s.

The relation of functions to conditional forms is given by the distributive
law

f(x1, ..., xi−1, (p1 → e1, ..., pn → en), xi+1, ..., xk) =

(p1 → f(x1, ..., xi−1, e1, xi+1, ..., xk), ..., pn → f(x1, ..., xi−1, en, xi+1, ..., xk)).

The rule of replacement can be extended in the case of conditional ex-
pressions. Suppose α is an occurrence of a subexpression of an expression β.

29

We define a certain propositional expression π called the premiss of α in β as
follows:

1) The premiss of α in α is T
2) The premiss of α in f(x1, ..., xi, ..., xn) where α is part of xi is the premiss

of α in xi.
3) If α occurs in e1 and the premiss of α in ei is π, then the premiss of α

in (p1 → e1, ..., pi → ei, ..., pn → en) is (∼ p1 ∧ ...∧ ∼ pi−1) ∧ pi ∧ π.
4) If α occurs in pi and the premiss of α in pi is π, then the premiss of α

in (p1 → e1, ..., pi → ei, ..., pn → en) is ∼ p1 ∧ ...∧ ∼ pi−1 ∧ π.
The extension of the rule of replacement is that an occurrence of α in β

may be replaced by α′ if (π → α) ≡s (π → α′) where π is the premiss of α in
β. Thus in a subcase one needs only prove equivalence under the premiss of
the subcase.

3.2 Recursion Induction

Suppose a function f is defined recursively by

(1) f(x1, ..., xn) = E {x1, ..., xn, f}

where E is an expression that in general contains f . Suppose that A is the set
of n-tuples (x1, ..., xn) for which f is defined. Now let g and h be two other
functions with the same domain as f and which are defined for all n-tuples
in A. Suppose further that g and h satisfy the equation which defined f . We
assert that

g(x1, ..., xn) = h(x1, ..., xn)

for all (x1, ..., xn) in A. This is so, simply because equation (1) uniquely
determines the value that any function satisfying it has for arguments in A
which in turn follows from the fact that (1) can be used to compute f(x1, ..., xn)
for (x1, ..., xn) in A.

We shall call this method of proving two functions equivalent by the name
of recursion induction.

We shall develop some of the properties of the elementary functions of
integers in order to illustrate proof by recursion induction. We recall the
definitions

30

m + n = (n = 0 → m, T → m′ + n−)

mn = (n = 0 → 0, T → m + mn−)

Th. 1. m + 0 = m

Proof m + 0 = (0 = 0 → m, T → m′ + 0−)

= m.

Only the definition of addition and the properties of conditional expressions
were used in this proof.

Th. 2. (m + n)′ = m′ + n

Proof Define f(m,n) = (n = 0 → m′, T → f(m,n−)). It is easily seen that
f(m,n) converges for all m and n and hence is completely defined by the above
equation and is computable from it. Now

(m + n)′ = (n = 0 → m, T → (m′ + n−)′)

= (n = 0 → m′, T → (m′ + n−)′), while

m′ + n = (n = 0 → m′, T → (m′)′ + n−).

It is easily seen that the functions g and h defined by the equations g(m,n) =
(m + n)′ and h(m,n) = m′ + n both satisfy the equation f . For example, it
is clear that g(m′, n) = (m′ + n−)′ and h(m′, n−) = (m′)′ + n−. Therefore, by
the principle of recursion induction h and g are equivalent functions on the
domain of where f is defined, but this is the set of all pairs of integers.

The fact that the above defined f(m,n) converges for all m and n is a case
of the more general fact that all functions defined by equations of the form

f(n, x, ..., z) = (n = 0 → g(x, ..., z), T → h(n, x, ..., z,

f(n−, r(x, ..., z), ..., t(x, ..., z)),

f(n−, u(x, ..., z), ..., w(x, ..., z)), etc.))

converge. We are not yet able to discuss formal proofs of convergence.

31

In presenting further proofs we shall be more terse.

Th. 3. (m + n) + p = (m + p) + n.
Proof Let f(m,n, p) = (p = 0 → m + n, T → f(m′, n, p−)). Again f converges
for all m,n, p. We have

(m + n) + p = (p = 0 → m + n, T → (m + n)′ + p−)

= (p = 0 → m + n, T → (m′ + n) + p−) using Th. 2.

(m + p) + n = (p = 0 → m, T → m′ + p−) + n

= (p = 0 → m + n, T → (m′ + p−) + n).

Each of these forms satisfies the equation for f(m,n, p).
Setting m = 0 in Theorem 3 gives

(0 + n) + p = (0 + p) + n

so that if we had 0 + m = m we would have commutativity of addition.
In fact, we cannot prove 0 + m = m without making some assumptions

that take into account that we are dealing with the integers. For suppose our
space consisted of the vertices of the binary tree in figure 2, where

S
S

S
S

S
S

S
S

S
S

S
S

S
SS

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�� \

\
\

\\

�
�

@@ �� @
@

b a

0

Fig. 2

m′ is the vertex just above and to the left, and m− is the vertex just below,
and 0 is the bottom of the tree. m + n can be defined as above and of course

32

satisfies Theorems 1, 2, and 3 but does not satisfy 0 + m = m. For example,
in the diagram 0 + a = b although a + 0 = a.

We shall make the following assumptions:
1. m′ 6= 0
2. (m′)− = m
3. (m 6= 0) ⊃ ((m−)′ = m)

which embody all of Peano’s axioms except the induction axiom.

Th. 4. 0 + n = n.

Proof Let f(n) = (n = 0 → 0, T → f(n−)′)

0 + n = (n = 0 → 0, T → 0′ + n−)

= (n = 0 → 0, T → (0 + n−)′)

n = (n = 0 → n, T → n)

= (n = 0 → 0, T → (n−)′) axiom 3

Th. 5. m + n = n + m.
Proof By 3 and 4 as remarked above.
Th. 6. (m + n) + p = m + (n + p)

Proof (m + n) + p = (m + p) + n Th. 3.

= (p + m) + n Th. 5.

= (p + n) + m Th. 3.

= m + (n + p) Th. 5. twice.

Th. 7. m · 0 = 0.

Proof m · 0 = (0 = 0 + 0, T → m + n · 0−)

= 0

Th. 8. 0 · n = 0.

Proof Letf(n) = (n = 0 → 0, T → f(n−))

0 · n = (n = 0 → 0, T → 0 + 0 · n) = (n = 0 → 0, T → 0 · n)

0 = (n = 0 → 0, T → 0)

Th. 9. mn′ = m + mn.

Proof mn′ = (n′ = 0 → 0, T → m + m · (n′)−)

= m + mn axioms 1 and 2.

33

Th. 10. m(n + p) = mn + mp.

Proof Letf(m,n, p) = (p = 0 → mn, T → f(m,n′, p−))

m(n + p) = m(p = 0 → n, T → n′ + p−))

= (p = 0 → mn, T → m(n′ + p−))

mn + mp = mn + (p = 0 → 0, T → m + mp−)

= (p = 0 → mn + 0, T → mn + (m + mp−))

= (p = 0 → mn, T → (mn + m) + mp−)

= (p = 0 → mn, T → mn′ + mp−)

Now we shall give some examples of the application of recursion induction
to proving theorems about functions of symbolic expressions. The rest of these
proofs depend on an acquaintance with the Lisp formalism.

We start with the basic identities.

car[cons[x; y]] = x
cdr[cons[x; y]] = y
∼ atom[x] ⊃ cons[car[x]; cdr[x] = x
atom[cons[x; y]] = F
null[x] = eq[x; NIL]

Let us define the concatenation x∗y of two lists x and y by the formula

x∗y = [null[x] → y; T → cons[car[x]; cdr[x]∗y]]

Our first objective is to show that concatenation is associative.

Th. 11. [x∗y]∗z = x∗[y∗z].
Proof

We shall show that [x∗y]∗z and x∗[y∗z] satisfy the functional equation

f [x; y; z] = [null[x] → y∗z; T → cons[car[x]; f [cdr[x]; y; z]]]

First we establish an auxiliary result:

cons[a; u]∗v = [null[cons[a; u]] → v; T → cons[car[cons[a; u]]; cdr[cons[a; u]]∗v]] = cons[a; u∗v]

34

Now we write

[x∗y]∗z = [null[x] → y; T → cons[car[x]; cdr[x]∗y]]∗z

= [null[x] → y∗z; T → cons[car[x]; cdr[x]∗y]∗z]

= [null[x] → y∗z; T → cons[car[x]; cdr[x]∗y]∗z]]

and
x∗[y∗z] = [null[x] → y∗z; T → cons[car[x]; cdr[x]∗[y∗z]]].

From these results it is obvious that both [x∗y]∗z and [x∗[y∗z] satisfy the
functional equation.

Th. 12. NIL∗x = x

x∗NIL = x.

Proof NIL∗x = [null[NIL] → x; T → cons[car[NIL]; cdr[NIL]∗x]]

= x

x∗NIL = [null[x] → NIL; T → cons[car[x]; cdr[x]∗NIL]].

Let f [x] = [null[x] → NIL; T → cons[car[x]; f [cdr[x]]]]. x∗NIL satisfies this
equation. We can also write for any list x

x = [null[x] → x; T → x]

= [null[x] → NIL; T → cons[car[x]; cdr[x]]]

which also satisfies the equation.
Next we consider the function reverse[x] defined by

reverse[x] = [null[x] → NIL; T → reverse[cdr[x]]∗cons[car[x]; NIL].

It is not difficult to prove by recursion induction that

reverse[x∗y] = reverse[y]∗reverse[x]

and
reverse[reverse[x]] = x.

Many other elementary results in the elementary theory of numbers and
in the elementary theory of symbolic expressions are provable in the same
straightforward way as the above. In number theory one gets as far as the

35

theorem that if a prime p divides ab, then it divides either a or b. However, to
formulate the unique factorization theorem requires a notation for dealing with
sets of integers. Wilson’s theorem, a moderately deep result, can be expressed
in this formalism but apparently cannot be proved by recursion induction.

One of the most immediate problems in extending this theory is to develop
better techniques for proving that a recursively defined function converges. We
hope to find some based on ambiguous functions. However, Godel’s theorem
disallows any hope that a complete set of such rules can be formed.

The relevance to a theory of computation of this excursion into number
theory is that the theory illustrates in a simple form mathematical prob-
lems involved in developing rules for proving the equivalence of algorithms.
Recursion induction, which was discovered by considering number theoretic
problems, turns out to be applicable without change to functions of symbolic
expressions.

4 Relation to Other Formalisms

4.1 Recursive function theory

Our characterization of C{F} as the set of functions computable in terms of
the base functions in F cannot be independently verified in general since there
is no other concept with which it can be compared. However, it is not hard
to show that all partial recursive functions in the sense of Church and Kleene
are in C{succ, eg}. In order to prove this we shall use the definition of partial
recursive functions given by Davis [3]. If we modify definition 1.1 of page 41
of Davis [3] to omit reference to oracles we have the following: A function is
partial recursive if it can be obtained by a finite number of applications of
composition and minimalization beginning with the functions on the following
list:

1) x′

2) Uin(x1, ..., xn) = xi, 1 ≤ i ≤ n

3) x + y

4) x− y = (x− y > 0 → x− y, T → 0)

5) xy

36

All the above functions are in C{succ, eq}. Any C{F} is closed under
composition so all that remains is to show that C{succ, eq} is closed under
the minimalization operation. This operation is defined as follows: The op-
eration of minimalization associates with each total function f(y, x1, ..., xn)
the function h(x1, ..., xn) whose value for given x1, ..., xn is the least y for
whichf(y, x1, ..., xn) = 0, and which is undefined if no such y exists. We have
to show that if f is in C{succ, eq} so is h. But h may be defined by

h(x1, ..., xn) = h2(0, x1, ..., xn)

where

h2(y, x1, ..., xn) = (f(, y, x1, ..., xn) = 0 → y, T → h2(y
′, x1, ..., xn)).

The converse statement that all functions in C{succ, eq} are partial recur-
sive is presumably also true but not quite so easy to prove.

It is our opinion that the recursive function formalism based on condi-
tional expressions presented in this paper is better than the formalisms which
have heretofore been used in recursive function theory both for practical and
theoretical purposes. First of all, particular functions in which one may be in-
terested are more easily written down and the resulting expressions are briefer
and more understandable. This has been observed in the cases we have looked
at, and there seems to be a fundamental reason why this is so. This is that both
the original Church-Kleene formalism and the formalism using the minimaliza-
tion operation use integer calculations to control the flow of the calculations.
That this can be done is noteworthy, but controlling the flow in this way is
less natural than using conditional expressions which control the flow directly.

A similar objection applies to basing the theory of computation on Turing
machines. Turing machines are not conceptually different from the automatic
computers in general use, but they are very poor in their control structure.
Any programmer who has also had to write down Turing machines to com-
pute functions will observe that one has to invent a few artifices and that
constructing Turing machines is like programming. Of course, most of the
theory of computability deals with questions which are not concerned with
the particular ways computations are represented. It is sufficient that com-
putable functions be represented somehow by symbolic expressions, e.g. num-
bers, and that functions computable in terms of given functions be somehow

37

represented by expressions computable in terms of the expressions represent-
ing the original functions. However, a practical theory of computation must
be applicable to particular algorithms. The same objection applies to basing a
theory of computation on Markov’s [9] normal algorithms as applies to basing
it on properties of the integers; namely flow of control is described awkwardly.

The first attempt to give a formalism for describing computations that
allows computations with entities from arbitrary spaces was made by A. P.
Ershov [4]. However, his formalism uses computations with the symbolic ex-
pressions representing program steps, and this seems to be an unnecessary
complication.

We now discuss the relation between our formalism and computer pro-
gramming languages. The formalism has been used as the basis for the Lisp
programming system for computing with symbolic expressions and has turned
out to be quite practical for this kind of calculation. A particular advantage
has been that it is easy to write recursive functions that transform programs,
and this makes compilers and other program generators easy to write.

The relation between recursive functions and the description of flow con-
trol by flow charts is described in Reference 7. An ALGOL program can be
described by a recursive function provided we lump all the variables into a
single state vector having all the variables as components. If the number of
components is large and most of the operations performed involve only a few
of them, it is necessary to have separate names for the components. This
means that a programming language should include both recursive function
definitions and ALGOL-like statements. However, a theory of computation
certainly must have techniques for proving algorithms equivalent, and so far
it has seemed easier to develop proof techniques like recursion induction for
recursive functions than for ALGOL-like programs.

4.2 On the Relations between Computation and Math-

ematical Logic

In what follows computation and mathematical logic will each be taken in a
wide sense. The subject of computation is essentially that of artificial intel-
ligence since the development of computation is in the direction of making
machines carry out ever more complex and sophisticated processes, i.e. to
behave as intelligently as possible. Mathematical logic is concerned with for-

38

mal languages, with the representation of information of various mathematical
and non-mathematical kinds in formal systems, with relations of logical de-
pendence, and with the process of deduction.

In discussions of relations between logic and computation there has been
a tendency to make confused statements, e.g. to say that aspect A of logic is
identical with aspect B of computation, when actually there is a relation but
not an identity. We shall try to be precise.

There is no single relationship between logic and computation which dom-
inates the others. Here is a list of some of the more important relationships.

1. Morphological parallels
The formal command languages in which procedures are described, e.g.

ALGOL; the formal languages of mathematical logic, e.g. first order predicate
calculus; and natural languages to some extent: all may be described morpho-
logically (i.e., one can describe what a Grammatical sentence is) using similar
syntactical terms. In my opinion, the importance of this relationship has been
exaggerated, because as soon as one goes into what the sentences mean the
parallelism disappears.

2. Equivalent classes of problems
Certain classes of problems about computations are equivalent to certain

classes of problems about formal systems. For example, let

E1 be the class of Turing machines with initial tapes,
E2 be the class of formulas of the first order predicate calculus,
E3 be the class of general recursive functions,
E4 be the class of formulas in a universal Post canonical system,
E5 b̄e a class of each element which is a Lisp S-function f together with a
suitable set of arguments a1, ..., ak,
E6 be a program for a stored program digital computer.

About E1 we ask: Will the machine ever stop?
About E2 we ask: Is the formula valid?
About E3 we ask: Is f(0) defined?
About E4 we ask: Is the formula a theorem?
About E5 we ask: Is f [a1; ...; ak] defined?
About E6 we ask: Will the program ever stop?

39

For any pair (Ei,Ej) we can define a computable map that takes any one
of the problems about elements of Ei into a corresponding problem about an
element of Ei and which is such that the problems have the same answer.
Thus, for any Turing machine and initial tape we can find a corresponding
formula of the first order predicate calculus such that the Turing machine will
eventually stop if and only if the formula is valid.

In the case of E6 if we want strict equivalence the computer must be pro-
vided with an infinite memory of some kind. Practically, any present computer

has so many states, e.g. 23615
2

, that we cannot reason from finiteness that a
computation will terminate or repeat before the solar system comes to an
end and one is forced to consider problems concerning actual computers by
methods appropriate to machines with an infinite number of states.

These results owe much of their importance to the fact that each of the
problem classes is unsolvable in the sense that for each class there is no ma-
chine which will solve all the problems in the class. This result can most
easily be proved for certain classes (traditionally Turing machine), and then
the equivalence permits its extension to other classes. These results have been
generalized in various ways. There is the world of Post, Myhill, and others, on
creative sets and the work of Kleene on hierarchies of unsolvability. Some of
this world is of potential interest for computation even though the generation
of new unsolvable classes of problems does not in itself seem to be of great
interest for computation.

3. Proof procedures and proof checking procedures
The next relation stems from the fact that computers can be used to carry

out the algorithms that are being devised to generate proofs of sentences in
various formal systems. These formal systems may have any subject matter of
interest in mathematics, in science, or concerning the relation of an intelligent
computer program to its environment. The formal system on which the most
work has been done is the first order predicate calculus which is particularly
important for several reasons. First, many subjects of interest can be axiom-
atized within this calculus. Second, it is complete, i.e. every valid formula
has a proof. Third, although it seems unlikely that the general methods for
the first order predicate calculus will be able to produce proofs of significant
results in the part of arithmetic axiomatizable in this calculus (or in any other
important domain of mathematics), the development of these general meth-
ods will provide a measure of what must be left to subject-matter-dependent

40

heuristics. It should be understood by the reader that the first order predicate
calculus is undecidable; hence there is no possibility of a program that will
decide whether a formula is valid. All that can be done is to construct pro-
grams that will decide some cases and will eventually prove any valid formula
but which will run on indefinitely in the case of certain invalid formulas.

Proof-checking by computer may be as important as proof generation. It
is part of the definition of formal system that proofs be machine checkable.
In my forthcoming paper [9], I explore the possibilities and applications of
machine checked proofs. Because a machine can be asked to do much more
work in checking a proof than can a human, proofs can be made much easier
to write in such systems. In particular, proofs can contain a request for the
machine to explore a tree of possibilities for a conventional proof. The potential
applications for computer-checked proofs are very large. For example, instead
of trying out computer programs on test cases until they are debugged, one
should prove that they have the desired properties.

Incidentally, it is desirable in this work to use a mildly more general concept
of formal system. Namely, a formal system consists of a computable predicate

check[statement; proof]

of the symbolic expressions statement and Proof. We say that Proof is a proof
of statement provided

check[statement; proof]

has the value T.
The usefulness of computer checked proofs depends both on the develop-

ment of types of formal systems in which proofs are easy to write and on the
formalization of interesting subject domains. It should be remembered that
the formal systems so far developed by logicians have heretofore quite prop-
erly had as their objective that it should be convenient to prove metatheorems
about the systems rather than that it be convenient to prove theorems in the
systems.

4. Use of formal systems by computer programs
When one instructs a computer to perform a task one uses a sequence of

imperative sentences. On the other hand, when one instructs a human being to
perform a task one uses mainly declarative sentences describing the situation
in which he is to act. A single imperative sentence is then frequently sufficient.

41

The ability to instruct a person in this way depends on his possession of
common-sense which we shall define as the fact that we can count on his
having available any sufficiently immediate consequence of what we tell him
and what we can presume he already knows. In my paper [10] I proposed a
computer program called the Advice Taker that would have these capabilities
and discussed its advantages. The main problem in realizing the Advice Taker

has been devising suitable formal languages covering the subject matter about
which we want the program to think.

This experience and others has led me to the conclusion that mathematical
linguists are making a serious mistake in their almost exclusive concentration
on the syntax and, even more specially, the grammar of natural languages.
It is even more important to develop a mathematical understanding and a
formalization of the kinds of information conveyed in natural language.

5 Conclusion: Mathematical Theory of Com-

putation

In the earlier sections of this paper I have tried to lay a basis for a theory of
how computations are built up from elementary operations and also of how
data spaces are built up. The formalism differs from those heretofore used
in the theory of computability in its emphasis on cases of proving statements
within the system rather than metatheorems about it. This seems to be a very
fruitful field for further work by logicians.

It is reasonable to hope that the relationship between computation and
mathematical logic will be as fruitful in the next century as that between
analysis and physics in the last. The development of this relationship demands
a concern for both applications and for mathematical elegance.

42

6 REFERENCES

[1] CHURCH, A., The Calculi of Lambda-Conversion, Annals of Mathematics
Studies, no. 6, Princeton, 1941, Princeton University Press.

[2] –, Introduction to Mathematical Logic, Princeton, 1952, Princeton University
Press.

[3] DAVIS, M., Computability and Unsolvability, New York, 1958, McGraw-Hill.
[4] ERSHOV, A. P., On Operator Algorithms (Russian), Doklady Akademii

Nauk, vol 122, no. 6, pp. 967-970.
[5] KLEENE, S.C., Recursive Predicates and Quantifiers, Transactions of the

American Mathematical Society, vol. 53, 1953, p. 41.
[6] MCCARTHY, J., letter to the editor, Communications of the Association

for Computing Machinery, vol. 2, August, 1959, p. 2.
[7] –, Recursive Functions of Symbolic Expressions and Their Computation by

Machine, Part I, Communications Of the ACM, vol. 3, April, 1960, pp. 184-195.
[8] –, The LISP Programmer’s Manual, M.I.T. Computation Center, 1960.
[9] –, Computer Programs for Checking Mathematical Proofs, to be published in

the Proceedings of the American Mathematical Society’s Symposium
on Recursive Function Theory, held in New York, April, 1961.

[10] –, Programs With Common Sense, Proceedings of the Teddington
Conference on the Mechanization of Thought Processes,
H. M. Stationery Office, 1960.

[11] MARKOV, A.A., Theory of Algorithms (Russian), Moscow, 1954,
USSR Academy of Sciences, Steklov Mathematical Institute.

[12] NAUR, P., et al., Report on the Algorithmic Language ALGOL 60,
Communications of the ACM, vol. 3, May 1960.

[13] TURING, A.M., On Computable Numbers with an Application to the

Entscheidungs Problem, Proceedings of the London Mathematical Society,
ser. 2, vol. 43, 1937, p. 230; correction, ibid, vol. 43, 1937, p. 544.

[14] YANOV, Y.I., The Logical Schemes of Algorithms, from Problems of
Cybernetics I, translated from the Russian by Nadler, Griffiths, Kiss,
and Muir, New York, 1960, Pergamon Press Ltd., pp. 82-140.

43

