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1. Introduction. It has been shown by E. Witt1 [4] that there is

an isomorphism between free Lie rings2 and the higher commutator

groups of free groups. In terms of this isomorphism, the problem of

finding a basis is the same in both instances. It is shown here that

the commutators which arise in Philip Hall's collecting process [2]

will serve as a basis. These are called standard commutators here,

and the corresponding terms in the Lie ring are called standard

monomials.

Standard monomials in a free Lie ring are defined in §2. In §3 a

canonical process is given for reducing an arbitrary element of a Lie

ring to a standard form, this being a linear combination of standard

monomials. It is then proved that the standard monomials form a

basis for the Lie ring. §4 restates the results of §3 in the appropriate

form for higher commutators in free groups.

2. The standard form for Lie products. We shall write the product

of x and y in a Lie ring as [x, y]. The laws satisfied by the Lie product

are

(2.1.1) [*, *] = 0,

(2.1.2) [x, y] + [y, x] = 0,

(2.1.3) [[*, y], z] + [[y, z], x] + [[z, x], y] = 0.

For simpler notation we write [x, y, z] for [[x, y], z] and more gen-

erally [«1, • • ■ , w„] for [[«!, • • • , Mn-i], u„]. We also write

[x, y; z, w] for [[x, y], [z, w]]. This is in accord with the notation

used by Philip Hall [2] for higher commutators in groups.

Given an associative ring with product xy of * and y, we may put

(2.2) [x, y] = xy - yx

to define a Lie ring on the same elements. It has been shown con-

versely by Garrett Birkhoff [l] and by E. Witt [4] that every Lie

Presented to the Society, November 26, 1949; received by the editors August 16,

1949.
1 Numbers in brackets refer to the bibliography at the end of the paper.

2 In a strict sense the "coefficients" in a free Lie ring are the integers whose mean-

ing is derived from a+a + • • ■ +a=na and a + (—a)=0. The treatment here is also

valid for coefficients from any field or even from various commutative rings.
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ring has a faithful representation by an associative ring using the

rule (2.2). In particular [l, Theorem 3], the free Lie ring generated

by xi, ■ • ■ , xq is faithfully represented by the free associative ring

generated by In the free associative ring a monomial is

determined by the order of its factors, since all possible ways of in-

serting parentheses yield the same element. In this sense distinct

monomials are distinct elements, and in fact form a basis for the ring.

In the free Lie ring, every element may be written as a linear com-

bination of the "left normed" elements [wi, • • • , un] [cf. 3] but these

are not independent. Thus [x, y, x, y] = — [x, y; x, y]— [y; x, y; x]

= [x, y, y, x].

Let L be the free Lie ring generated by Xi, • • • , xq. Then

the monomials of degree one. If u is a monomial of

degree r and v is a monomial of degree s, then [u, v] is a monomial of

degree r + s. Any linear combination of monomials of degree n will

be said to be homogeneous of degree n. Every element of L may be

written as a linear combination of monomials. If we put x — u-\-v, then

(2.1.1) follows from [w, m]=0, [v, u]-\- [u, v] = 0, and [v, v]=0. Also

(2.1.2) and (2.1.3) follow from the corresponding relations with x re-

placed by u and v. Repeating this argument as often as necessary, we

see that every relation in L is a consequence of the distributive laws

and the rules (2.1) for monomials. In particular if

(2.3) w = Wx-r- ■ ■ ■ + Wn = 0,

with each Wi homogeneous of degree i, then

(2.4) Wi = • • • = Wn = 0.

There are only a finite number of monomials of given degree n. Thus

we shall have a basis for L if we can exhibit for each n a number of

monomials Uni, • • • , Unr of degree n such that:

(1) Every homogeneous expression of degree n may be written as a

linear combination of Un\, • • • , U„r.

(2) Un\, • • ■ , Unr are linearly independent.

We shall define the standard monomials recursively, and prove in

the next section that they have the desired properties (1) and (2).

Definition, the standard monomials of degree one.

If we have defined standard monomials of degrees 1, • • • , n — 1, they

are simply ordered in some way so that u<v if degree u<degree v.

If degree u = r, degree v = s, and r+s = «, then [u, v] is a standard

monomial if both of the following conditions hold:

(51) u and v are standard monomials and u>v.

(52) If u—[x, y] is the form of the standard monomial u, then
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v = y.

An element of L will be said to be in standard form if it is a linear

combination of standard monomials.

3. The main theorem.

Theorem 3.1. The standard monomials form a basis for the free Lie

ring L generated by xi, ■ ■ • , xq.

Proof. The homogeneous expressions3 of degree one are linear com-

binations q£ Xu • • • , xg and these are the standard monomials of

degree one. Thus property (1) holds for degree n = \. Now suppose

property (1) to hold for all degrees 1, • • • , n — 1. We shall reduce

X= zZ^tk [yk, zk], sl homogeneous expression of degree n, to standard

form by a canonical process which will be seen to leave X unchanged if

X is in standard form.

First step: Let yk = X]>a«*M<*> zk — zZjbjkVjk be the standard forms

of yk and zk where the m's and v's are standard monomials. Put

(3.1) zZtk[yh,Zk] = zZ tk<iikbjk[uik,
k i,]',k

Second step: If u and v are standard monomials, put

(3.2.1) [u, v] = 0 if u = v,

(3.2.2) [u, v] = — [v, u] if u < v,

(3.2.3) [u, v] = [u, v] if u > v.

Third step: If u>v are standard monomials and u= [z, w] is the

standard form of u, put

(3.3.1) [u, v] — [z, w, v] if v = w,

(3.3.2) [u, v] = — [w, v, z] + [z, v, w] if v < w.

Fourth step: Return to the first step and repeat the processes until

nothing but linear combinations of standard monomials of degree n

remain.

3 Throughout this section we may, with Witt, regard the free Lie ring £ as a resi-

due class ring of a free distributive, non-associative ring D. An element of L is a resi-

due class of an ideal I in D. An "expression" is any representative of a residue class

and the canonical process given here is a recursive method for finding a standard rep-

resentative for each residue class. The first part of the proof consists in showing that

there is a linear combination of standard monomials in every residue class, and the

second part shows that there is only one. As an analogue, if we define the elements

of a free group as classes of equivalent words, we must show that each class contains

one and only one reduced word.
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It will be necessary for us to show that the above process ter-

minates. From the definition of the standard monomials it is clear that

expressions in standard form are left unaltered by the canonical

process, and that expressions left unaltered are in standard form.

If min (degree y, degree z)>n/3, then the process for [y, 2] will

terminate with the second step. For we obtain monomials [u, v] with

u>v and degree v>n/3, degree u<2n/3. And if u = [z, w], then z>w

whence degree w=l/2 (degree u) <n/3. Hence from their degrees

alone v>w and (3.3.1) applies and [u, v] is in standard form.

When the process does not terminate at the second step, then we

go from a monomial [u, v], u>v, where «= [2, w] and z>w>v to the

monomials [w, v, z] and [z, v, w]. Here w and 2 are standard mono-

mials and z>w>v, while deg [w, v]>deg v, and deg [2, z;]>deg v.

Hence in applying the first step to [w, v, z] and [z, v, w] we get new

expressions [u't z], [u", w] with u', u", z, and w all later than v in

the ordering. Hence if the process continues long enough, we shall

eventually reach monomials [u', v'] with min (deg u', deg v')>n/3,

and as shown above the process will then terminate at the second

step. Thus in all cases the canonical process ultimately terminates

and yields an expression in standard form. Thus we have proved that

the standard monomials have the first property required for a basis.

It is to be emphasized that the canonical process puts every expres-

sion in L into canonical form in a unique way. It will be necessary in

proving the second property to show that different expressions for

the same element of L lead to the same standard form. It has already

been noted that the canonical process leaves unaltered any expression

in standard form.

Since the relations (2.1) are of degree at least two, they cannot

lead to any linear relation on xi, • • • , xq, whence the second property

for a basis holds for the standard monomials of degree one.

We shall complete the proof of the linear independence of the stand-

ard monomials by showing that any expression equal to zero in L has

zero as its standard form. From the remarks of §2 we may confine our

attention to homogeneous expressions. Now suppose the standard

monomials of degrees 1, • • • , n — 1 linearly independent and pro-

ceed by induction.

If h is any expression in L, let us write h* for the standard form

given for h by the canonical process. By our induction if h = k are ex-

pressions of degree at most n — 1 for the same element, then h* = k*.

For expressions of degree n it is easy to verify from the process that

(-&)*= -h*, that (h+k)* = h*+k*, and that if [h, k] is of degree n,
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then [h, k]* = [h*, k*]*. Thus if h = 0 with h of degree less than n, and

[h, k] is of degree », then [h, k]* = [0, £*]* = 0.

If h is any expression of degree n which has the value 0 in L, then

h is of the form y]+Z[7?, 22]+£([S, r]+[7\ S])
+ 5> C]+[73, C, 4]+[C, 4, 73]), where in £k y], * or y
has the value zero. As noted above, the canonical process will yield

zero for these terms. Hence we must show

(3.4.1) [R,R]* = 0,

(3.4.2) [S, T]* + [T,S]* = 0,

(3.4.3) [A, B, C]* + [B, C, A]* + [C, A, B]* = 0.

From step 2 of the process, [u, u]* and [u, »]* + [v, u]* are zero if

u and v are standard monomials. This leads to immediate verification

of (3.4.1) and (3.4.2).
The verification of (3.4.3) is more difficult. Suppose A = A\-\-A2.

Then [A, B, C]*=[[A, 73]*, C]*=[[Alt 73]*+ [At, 73]*, C*]*

= [[Alt 73]*, C*]*+[[A2, 73]*, C*\*=[AU 73, C]*+[A2, 73, C]*.
Similarly [A, 73, C]* is linear in its other two components. Thus we

may reduce the verification of (3.4.3) to the case in which each of

A, 73, C is a standard monomial. If any two of A, 73, C are equal, then

(3.4.3) is trivial. From the cyclical symmetry of (3.4.3) suppose the

notation such that A>B, A>C in the ordering of the monomials.

If necessary change the sign and interchange 73 and C so that 73 > C.

Hence we need only verify (3.4.3) with standard monomials A>B

>C.
If [A, 73] is a standard monomial, clearly [A, 73] >C and in the

process for [A, 73, C] no alteration is involved in steps 1 or 2. In step

3, since 73>C we put [A, 73, C] = - [73, C, A]+ [A, C, 73]. Hence

[A, 73, C]*+[73, C, A]*+[C, A, B]*=[A, C, 73]*+[C, A, 73]*
= [0, 73]*=0. Note that if deg 73>l/2 deg A, then [A, 73] will be a
standard monomial and the above argument will apply. As A >73 > C,

this will surely hold if deg On/4. We shall now use induction, as-

suming the validity of (3.4.3) for degree n for standard commutators

A'>B'>C whenever OC, and for C' = C whenever 73'>73. Hence

from the linearity of (3.4.3) in each of A, 73, and C, our induction

allows us to assume the validity of (3.4.3) for A", 73", C" when each

of these is the sum of monomials all later than C, or with C" = C

and A", 73" the sum of monomials all later than 73.

It remains to prove (3.4.3) with A>B>C when [A, 73] is not a

standard monomial. From (S2) this implies A = [D, E] with D>E

>B. Here, omitting the stars:
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[A, B, C] = [D, E, B,C]= - [E, B, D, C] + [D, B, E, C]
= [D, C; E, B] - [E, B, C, D]

- [E, C; D, B] + [D, B, C, E]

(3.5.1) - [D,C;E,B]+ [B,C,E,D] - [E,C,B,D]

+ [D, B; E, C] - [B, C, D, E] + [D, C, B, E]

= [D, C; E, B] + [B, C, E, D] - [E, C, B, D]

+ [D,B; E, C] + [D, E; B, C] - [B, C, E, D]

+ [D, C, B, £].

Here since deg [E, B] >deg B and D>B we have applied the induc-

tion to replace [E, B, D, C] by - [D, C; E, B]+[E, B, C, D]. Similar

considerations apply elsewhere.

(3.5.2) [B, C,A]= [B, C; D, E] = - [D, E; B, C],

[C, A,B]= - [A, C, B] - - [D, E, C, B]
= [E, C, D, B] - [D, C, E, B]

= - [D, B; E, C] + [E, C, B, D] - [D, C; E, B\
- [D, C, B, E].

Adding together (3.5.1), (2), and (3) we have

(3.5.4)         [A, B, C]* + [B, C,A]*+ [C, A, B]* = 0,

completing the proof of the theorem.

4. The theorem for higher commutators in groups. In the free

group F with free generators xu ■ ■ ■ , xq, if we write arlb~lab — (a, b)

to define a commutator, there is a correspondence with elements in

the free Lie ring L if we put (a, b) in correspondence with [a, b]. If

Fn is the group generated by commutators of weight n and higher in

F, then this, correspondence, as Witt has shown, yields an iso-

morphism between the additive group of the homogeneous elements

of degree n in L and the multiplicative group Fn/Fn+i. Thus we may

apply the main theorem to F merely by translating our terms.

Definition. In F the generators the standard com-

mutators of weight one. Suppose that standard commutators of

weights 1, • • • , n — 1 have been defined and simply ordered so that

u<v if weight w<weight v. Then (u, v) of weight n is a standard

commutator if both the following conditions hold:

(51) m, v are standard commutators and u>v,

(52) If u is the commutator (z, w), then v^w.
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From Theorem 3.1 and the isomorphism established by Witt, we

find immediately:

Theorem 4.1. The standard commutators of weight n are a basis of

Fn/ Fn+1.

It will not be difficult for the reader to verify that the standard

commutators are precisely those which arise in Philip Hall's collect-

ing process given in [2]. Note that if (a, b) and c are commutators

which arise in the collecting process, then it is clearly necessary for

the existence of (a, b, c) in the collecting process that: (1) c is col-

lected before (a, b); and (2) for (a, b) to exist when c is collected,

either c = b or c is collected after b.
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