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Abstract The symplectic group branching algebra, B, is a graded algebra whose
components encode the multiplicities of irreducible representations of Sp2n−2(C) in
each finite-dimensional irreducible representation of Sp2n(C). By describing on B an
ASL structure, we construct an explicit standard monomial basis of B consisting of
Sp2n−2(C) highest weight vectors. Moreover, B is known to carry a canonical ac-
tion of the n-fold product SL2 × · · · × SL2, and we show that the standard monomial
basis is the unique (up to scalar) weight basis associated to this representation. Fi-
nally, using the theory of Hibi algebras we describe a deformation of Spec(B) into an
explicitly described toric variety.

Keywords Symplectic groups · Branching rules · Hibi algebra · Algebra with
straightening law

1 Introduction

Let us consider a pair of complex reductive algebraic groups G and H with embed-
ding H ⊂ G, and irreducible representations VG and VH of G and H , respectively.
A description of the multiplicity of VH in VG regarded as a representation of H by
restriction is called a branching rule for (G,H). By Schur’s lemma, the (branching)
multiplicity space, HomH (VH ,VG), encodes the branching rule.
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In this paper, we study the branching multiplicity spaces for the symplectic group
Sp2n(C) of rank n down to the symplectic group Sp2n−2(C) of rank n − 1 by investi-
gating the associated branching algebra. The branching algebra is a subalgebra of the
ring of regular functions over Sp2n(C). Moreover, it is graded, having the branching
multiplicity spaces as its graded components:

B ∼=
⊕

(D,F )∈Λn−1,n

HomSpn−1

(
τD
n−1, τ

F
n

)
.

Here D and F run over highest weights for Sp2n−2(C) and Sp2n(C), respectively,
and τD

2n−2 and τF
n are the associated finite-dimensional irreducible representations.

Branching rules for (Sp2n(C),Sp2n−2(C)), especially their combinatorial aspects,
are well known (see, e.g., [8, 9, 11–13, 18]). The main goal of this paper is to investi-
gate the branching algebra B which governs the branching of symplectic groups. Our
main results are several-fold. Firstly, we describe on B an algebra with straightening
law (ASL) structure which presents B simply in terms of generators and relations.
Secondly, we show that this ASL structure is compatible with a canonical weight
basis of B coming from a “hidden symmetry” of B, namely an action of the n-fold
product of SL2 which acts irreducibly on the graded components of B. Finally, we
unify these algebraic results with previously known combinatorial rules governing
the branching of symplectic groups via a toric degeneration of B into an explicitly
described toric variety.

In Sect. 2, we construct the branching algebra B and review branching rules for
(Sp2n(C),Sp2n−2(C)). Then in Sect. 3, we study B from the perspective of an ASL
over a distributive lattice. Our first result shows that B has a natural standard mono-
mial basis which satisfies simple straightening relations. As a corollary we obtain a
finite presentation of B in terms of generators and relations.

Then, in Sect. 4, we recall a theorem from [21] which shows that the natural SL2

action on B can be canonically extended to an action of

L = SL2 × · · · × SL2 (n copies)

in such a way that each multiplicity space HomSp2n−2(C)(τ
D
n−1, τ

F
n ) is an irreducible

L-module. In particular, this theorem describes a canonical decomposition of B into
one-dimensional spaces. Our second result shows this decomposition is compatible
with the ASL structure on B. In other words, the standard monomial basis is the
unique (up to scalar) weight basis for the action of L on B.

In Sect. 5, we show that B can be flatly deformed into a Hibi algebra, and, as
a corollary, that Spec(B) is a deformation of an explicitly described toric variety.
In particular, this connects our enumeration of standard monomials with the more
common description of branching rules using diagrams of interlacing weights.

In future work we will apply these results to study properties of the canonical
weight basis for irreducible representations of the symplectic group arising from this
work.
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2 Branching algebra for (Sp2n(C),Sp2n−2(C))

In this section we introduce our main object of study, the branching algebra for the
pair (Sp2n(C),Sp2n−2(C)).

2.1 Symplectic groups

Let Qn = (qa,b) be the n×n matrix with qa,n+1−a = 1 for 1 ≤ a ≤ n and 0 otherwise.
Then we define the symplectic group

Gn = Sp
(
C

2n,Qn

)

of rank n as the subgroup of the general linear group GL(2n,C) preserving the skew
symmetric bilinear form on C

2n induced by

[
0 Qn

−Qn 0

]
.

Let {ea} be the elementary basis of C
2n, and denote by {ea, ea} the isotropic pairs,

where ea = e2n+1−a for 1 ≤ a ≤ n. With respect to this bilinear form, we can take the
subgroup Un of Gn consisting of upper triangular matrices with 1’s on the diagonal
as a maximal unipotent subgroup of Gn. We let U−

n denote the subgroup of lower
triangular matrices with 1’s on the diagonal.

Let us identify Gn−1 with the subgroup of Gn which acts as identity on the
isotropic space spanned by {en, en }. Then Gn−1 can be embedded in Gn via

[
A B

C D

]
�→
⎡

⎢⎣
A 0 B

0 I 0

C 0 D

⎤

⎥⎦ (2.1)

where A,B,C,D are (n − 1) × (n − 1) matrices, I is the 2 × 2 identity matrix, and
0’s are the zero matrices of proper sizes.

A Young diagram is a finite left-justified array of boxes with weakly decreasing
row lengths, such as

We shall identify a Young diagram F with its sequence of row lengths (f1, f2, . . .).
By reading column lengths of F , we obtain its associated Young diagram F t called
the transpose of F . We write �(F ) for the number of non-zero entries in F and
call it the length of F . The Young diagram in the above example is (6,4,2,1) or
equivalently (6,4,2,1,0, . . .) and �(F ) = 4. Its transpose F t is (4,3,2,2,1,1).
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Recall that every finite-dimensional irreducible representation of Gn can be
uniquely labeled by a Young diagram with less than or equal to n rows by identi-
fying its highest weight μF with Young diagram F = (f1, . . . , fn):

μF (t) = t
f1
1 · · · tfn

n .

Here t is an element of the maximal torus Tn of Gn

Tn = {diag
(
t1, . . . , tn, t

−1
n , . . . , t−1

1

)}

and F ∈ Zn with f1 ≥ · · · ≥ fn ≥ 0. See [5, Sect. 3.2.1] for details. We let τF
n denote

the irreducible representation of Gn labeled by Young diagram F .
To encode the branching multiplicities of τD

n−1 in τF
n for all pairs of Young dia-

grams (D,F ), we will use the semigroup

Λn−1,n = {(D,F ) ∈ Z
n−1
≥0 × Z

n
≥0 : �(D) ≤ n − 1, �(F ) ≤ n

}

and construct an algebra graded by Λn−1,n. The semigroup structure of Λn−1,n is
induced by the natural embedding of Λn−1,n in Z

n−1
≥0 × Z

n
≥0 with addition.

2.2 Branching algebra B

On the ring R(Gn) of regular functions over Gn, we have the natural action of Gn ×
Gn given by

(
(g1, g2) · f )(x) = f

(
g−1

1 xg2
)

(2.2)

for f ∈ R(Gn) and (g1, g2) ∈ Gn × Gn. With respect to this action, let us consider
the affine quotient of Gn by U−

n × 1.

Lemma 2.1 [5, Theorem 12.1.5] As a Gn-module under right translation the
(U−

n × 1)-invariant subalgebra of R(Gn) contains every irreducible rational rep-
resentation of Gn with multiplicity one:

R(Gn)
U−

n ×1 =
⊕

F∈Λn

τF
n . (2.3)

The algebra R(Gn)
U−

n ×1 is graded by the semigroup of dominant weights for Gn or
equivalently the set Λn of Young diagrams of length less than or equal to n.

In this setting, the irreducible representation τF
n is the weight space of R(Gn)

U−
n ×1

under the left action of the maximal torus Tn with weight μ(−F), i.e.,

t · f =
(
t
−f1
1 · · · t−fn

n

)
f

for f ∈ τF
n and t ∈ Tn. See [5, Sect. 12.1.3] for further details.

By highest weight theory (e.g., [5, Sect. 3.2.1]) the subspace of τF
n invariant under

the maximal unipotent subgroup of Gn−1 is spanned by highest weight vectors of
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Gn−1-irreducible representations in τF
n . Therefore, the Un−1-invariant subalgebra of

R(Gn)
U−

n ×1 contains the information of the branching multiplicities for (Gn,Gn−1).
That is,

Proposition 2.2 The (U−
n × Un−1)-invariant subalgebra of the ring R(Gn) decom-

poses as

R(Gn)
U−

n ×Un−1 =
⊕

(D,F )∈Λn−1,n

HomGn−1

(
τD
n−1, τ

F
n

)⊗ (τD
n−1

)Un−1 .

Note that by Schur’s lemma the dimension of HomGn−1(τ
D
n−1, τ

F
n ) is equal to the

multiplicity of τD
n−1 in τF

n .

Definition 2.3 We call R(Gn)
U−

n ×Un−1 the branching algebra for (Gn,Gn−1) and
denote it by

B = R(Gn)
U−

n ×Un−1 .

The algebra B has an action of Tn × Tn−1, and the weight space corresponding to the
Tn weight (−F) and Tn−1 weight D is precisely the component

B(D,F ) := HomGn−1

(
τD
n−1, τ

F
n

)⊗ (τD
n−1

)Un−1

appearing in Proposition 2.2. Since the dimension of (τD
n−1)

Un−1 is one, we can con-
sider B(D,F ) as the branching multiplicity space for (Gn,Gn−1):

B(D,F ) ∼= HomGn−1

(
τD
n−1, τ

F
n

)
. (2.4)

Therefore the dimension of B(D,F ) is exactly the multiplicity of the irreducible rep-
resentation τD

n−1 appearing in τF
n . Moreover, by keeping track of Tn × Tn−1 weights,

it is straightforward to check that this defines a Λn−1,n-graded algebra structure on B:

B =
⊕

(D,F )∈Λn−1,n

B(D,F ).

The dimensions of the graded components of B are given by the following com-
binatorial rule. For two Young diagrams F = (f1, f2, . . .) and D = (d1, d2, . . .), we
say D interlaces F and write D 
 F , if fi ≥ di ≥ fi+1 for all i.

Lemma 2.4 (1) (See, e.g., [5, Theorem 8.1.5]) For Young diagrams D and F with
(D,F ) ∈ Λn−1,n, the multiplicity of τD

n−1 in τF
n as a Gn−1 representation is non-zero

if and only if

fj ≥ dj ≥ fj+2

for j = 1,2, . . . , n − 1. Here we assume fn+1 = 0.
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(2) (See, e.g., [18, Proposition 10.2]) The multiplicity of τD
n−1 in τF

n as a Gn−1
representation is equal to the number of Young diagrams E = (e1, . . . , en) satisfying
the conditions D 
 E and E 
 F , i.e.,

e1 ≥ d1 ≥ e2 ≥ · · · ≥ en−1 ≥ dn−1 ≥ en;
f1 ≥ e1 ≥ f2 ≥ e2 ≥ · · · ≥ en−1 ≥ fn ≥ en.

If D 
 E and E 
 F for some E then, we say that the pair (D,F ) (or the triple
(D,E,F ), if E should be specified) satisfies the doubly interlacing condition. Note
that the branching for (Gn,Gn−1) is not multiplicity free, and D 
 E 
 F does
not imply D 
 F . We also note that the conditions in the second statement can be
visualized as, by using the convention of Gelfand–Tsetlin patterns,

f1 f2 · · · fn fn

e1 e2 · · · en−1 en

d1 · · · dn−1 dn

where the entries are weakly decreasing from left to right along the diagonals.

3 A standard monomial theory for B

In this section we show that B carries a standard monomial theory, in the sense that
it has a natural basis which satisfies a straightening algorithm. For the concept of
standard monomial theory and its development, we refer to [15] and [14, 17].

3.1 Distributive lattice for B

Let M2n = M2n(C) be the space of 2n × 2n complex matrices. For a subset C of
{1,2, . . . ,2n} of cardinality r , let

δC : M2n → C

denote the map assigning a matrix X ∈ M2n the determinant of the r ×r minor formed
by taking rows {1,2, . . . , r} and columns {c1, c2, . . . , cr}:

δC(X) = det

⎡

⎢⎢⎢⎢⎣

x1,c1 x1,c2 · · · x1,cr

x2,c1 x2,c2 · · · x2,cr

...
...

. . .
...

xr,c1 xr,c2 · · · xr,cr

⎤

⎥⎥⎥⎥⎦
(3.1)

for c1 < c2 < · · · < cr . We note that δC is a weight vector under the left and right
multiplication of the diagonal subgroup of GL2n(C), i.e.,

(t, s) · δC = (t−1
1 · · · t−1

r

)
(sc1 · · · scr )δC. (3.2)
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In particular, the weight under the left and right actions encode the size of C and the
entries of C, respectively.

For the branching algebra B, we shall use the following subsets of {1,2, . . . , n,

n + 1} for column indexing sets C:

Ii = {1,2, . . . , i}
Jj = {1,2, . . . , j, n}
J ′

j = {1,2, . . . , j, n + 1}
Kk = {1,2, . . . , k, n,n + 1}

for 1 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ n − 2, with the convention of J0 = {n},
J ′

0 = {n + 1}, and K0 = {n,n + 1}.
Definition 3.1 The distributive lattice L for (Gn,Gn−1) is the poset consisting of

{
Ii, Jj , J

′
j ,Kk : 1 ≤ i ≤ n − 1,0 ≤ j ≤ n − 1,0 ≤ k ≤ n − 2

}

with the following partial order �:

J ′
i−1

Ji−1

Ii Ki−1

J ′
i

Ji

for 1 ≤ i ≤ n − 1.

Note that the join and meet of incomparable elements can be easily found as

Ii ∧ Ki−1 = J ′
i

Ii ∨ Ki−1 = Ji−1

for each i. This poset structure is very useful to organize the relations among δC

for C ∈ L. The following can be shown by a simple computation, or see [1, Lemma
7.2.3].
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Proposition 3.2 For 1 ≤ i ≤ n − 1, the following identities hold

δIi
δKi−1 = δJ ′

i
δJi−1 − δJi

δJ ′
i−1

over the space M2n and therefore over Gn.

Note that in the above proposition, on the left hand side, Ii and Ki−1 are incom-
parable, while on the right hand side J ′

i � Ji−1 and Ji � J ′
i−1. In other words, by

applying these relations, we can express any quadratic monomial in {δC : C ∈ L} as
a linear combination of quadratic monomials whose indices are linearly ordered with
respect to �. In this sense, we call these relations straightening relations, and we
can study the branching algebra B in the context of an algebra with straightening law
(ASL) (cf. [1, 3, 4]).

Definition 3.3 [4] Let R be a ring, A an R-algebra, H a finite partially ordered
set contained in A which generates A as an R-algebra. Then A is an algebra with
straightening law on H over R, if

(1) The algebra A is a free R-module whose basis is the set of monomials of the
form α1 · · ·αk where α1 ≤ · · · ≤ αk in H .

(2) If α and β in H are incomparable, then

αβ =
∑

i

ciγ
(i)
1 . . . γ

(i)
ki

where γ
(i)
1 ≤ · · · ≤ γ

(i)
ki

, and, for i such that ci �= 0, r
(i)
1 ≤ α,β .

In the following section we show the branching algebra B is an ASL on {δC :
C ∈ L} over C.

3.2 Standard monomials for B

Let us recall that a Young tableau is a filling of a Young diagram with positive inte-
gers. A Young tableau is called a semistandard Young tableau, if its entries in each
row are weakly increasing from left to right, and its entries in each column are strictly
increasing from top to bottom.

Young tableaux with entries from {1, . . . ,m} may be identified with a product of
determinants of minors over the space Mm as follows. If the ith column of a Young
tableau T contains the entries

t1,i < t2,i < · · · < tri ,i

for 1 ≤ i ≤ s, then the corresponding polynomial in C[Mm] is

δT =
∏

1≤i≤s

δ{t1,i ,...,tri ,i } (3.3)

where δ{t1,i ,...,tri ,i } is as defined in (3.1). See Example 3.10 below. This type of corre-
spondence between the set of Young tableaux and the set of products of determinants
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plays an important role in standard monomial theory of Grassmann and flag varieties.
For this direction, we refer to, e.g., [10, 15, 16].

Coming back to our setting, we will be considering monomials of the form∏s
i=1 δCi

where Ci ∈ L (cf. Definition 3.1). These are considered as regular functions
on Gn. From (3.2), it is straightforward to see that every such monomial is a weight
vector under the left and right actions of the maximal tori of Gn and Gn−1, respec-
tively. Moreover, by definition of the U−

n ×Un−1 action on R(Gn), the functions δC ,
and hence their products

∏s
i=1 δCi

, are invariant under U−
n × Un−1. In other words,∏s

i=1 δCi
∈ B. Let B′ ⊂ B be the subalgebra generated by δC for C ∈ L. Clearly, B′ is

spanned by monomials
∏s

i=1 δCi
.

Now, we can form a Young tableau T by concatenating finitely many elements
C1, . . . ,Cs chosen from L allowing repetition. We further assume that the size of
Ci is not smaller than that of Ci+1 for all i. We note that the weakly increasing
condition on the elements along the rows of T can be replaced by the chain condition
on L with respect to the partial order �. In other words, the elements C1, . . . ,Cs of
L are columns of a semistandard tableau T if and only if they are linearly ordered
with respect to �. This is true in a more general setting (cf. [10, Remark 3.3]). With
this observation, we define standard monomials for (Gn,Gn−1) as follows.

Definition 3.4 A monomial
∏

δCi
in {δC : C ∈ L} is called a standard monomial for

(Gn,Gn−1) if the column indices Ci form a multiple chain Δ

Δ = (C1 � · · · � Cr)

in the poset L. We write δΔ for
∏

δCi
.

The observation right after Proposition 3.2 now can be generalized in terms of
standard monomials.

Proposition 3.5 The set of standard monomials for (Gn,Gn−1) spans the subalgebra
B′ of B generated by {δC : C ∈ L}.

Proof We want to show that every monomial can be expressed as a linear combina-
tion of standard monomials. Observe that any monomial δ =∏ δCi

can be expressed
as

δ = (δI1δK0)
a1 · · · (δIn−1δKn−2)

an−1δΔ

where δΔ is not divisible by IiKi−1 for i = 1, . . . , n−1. In particular, δΔ is a standard
monomial. We prove the claim by induction on a =∑ai .

If a = 0 then δ = δΔ is standard, and there is nothing to show. Suppose a > 0, and
hence some ai > 0. Then by Proposition 3.2,

δ = (δI1δK0)
a1 · · · (δIi

δKi−1)
ai−1 · · · (δIn−1δKn−2)

an−1(δJ ′
i
δJi−1 − δJi

δJ ′
i−1

)δΔ.

Since (δJ ′
i
δJi−1 − δJi

δJ ′
i−1

)δΔ is a linear combination of two standard monomials,
each of which is not divisible by IiKi−1 for i = 1, . . . , n − 1, the result follows by
induction. �
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Remark 3.6 For a quadratic monomial δCδC′ , we can simply apply Proposition 3.2
to express it as a linear combination of quadratic standard monomials

δCδC′ =
∑

h

rhδDh
δD′

h
. (3.4)

Note that for all h, the numbers of entries equal to i in the disjoint union C∪̇C′ and
in the disjoint union Dh∪̇D′

h are equal for 1 ≤ i ≤ n + 1. Therefore, as tableaux,
(Dh,D

′
h) is obtained from (C,C′) just by rearranging the entries of C and C′. In fact

the only difference between the tableaux (Dh,D
′
h) is the position of the entries n and

n + 1.
In general, once we have a linear combination of standard monomials for

∏
i δCi

∏

i

δCi
=
∑

k

sk

(∏

i

δHk,i

)

then for each k, we have the semistandard tableau Hk formed by Hk,i ’s. Because of
the reason explained above, for all k, the Young diagrams of the Hk’s are the same,
and as tableaux, their only difference is the position of the entries n and n + 1.

Definition 3.7 The shape of a standard monomial δΔ =∏ δCi
is F/D with

F = (f1, . . . , fn)

D = (d1, . . . , dn−1)

where F is the transpose of the Young diagram (|C1|, . . . , |Cr |) and dk in D is the
number of k’s in the disjoint union

⋃̇r

i=1Ci for 1 ≤ k ≤ n − 1. We write sh(δΔ) =
F/D.

The following lemma is an immediate application of (3.2):

Lemma 3.8 Standard monomials δΔ of shape F/D are weight vectors under the
action of Tn × Tn−1, i.e.,

(t, s) · δΔ = (t−f1
1 · · · t−fn

n

)(
s
d1
1 · · · sdn−1

n−1

)
δΔ

where t = diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ) and s = diag(s1, . . . , sn−1,1,1, s−1
n−1,

. . . , s−1
1 ). In particular, δΔ ∈ B(D,F ).

Now let us count the number of standard monomials in B(D,F ).

Proposition 3.9 There is a bijection

{δΔ : sh(δΔ) = F/D} ↔ {E : D 
 E 
 F }.
In particular, dim B(D,F ) = #{δΔ : sh(δΔ) = F/D}.
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Proof The bijection is a variation on the conversion procedure between semistandard
Young tableaux and Gelfand–Tsetlin patterns (cf. [5, Sect. 8.1.2]). Let us be more
specific about the procedure in our case.

By the definition of sh(δΔ), if we erase all the boxes with n and n + 1 in the
semistandard tableau Δ, then the remaining tableau gives the Young diagram D. As
an intermediate step, if we erase only the boxes with (n + 1), then it gives a Young
diagram E such that D 
 E and E 
 F .

Conversely, given E such that D 
 E 
 F , define a semistandard Young tableau
of shape F as follows: label the boxes of F/E by n + 1, the boxes of E/D by
n, and the remaining empty boxes by their row coordinate. The standard monomial
corresponding to E is then constructed from this semistandard tableau.

The last statement follows by (2.4) and Lemma 2.4(2). �

Example 3.10 In studying branching multiplicity spaces for (G4,G3), the following
monomial δΔ

δΔ = δ{1234}δ{1245}δ{125}δ{14}δ{5}

as a regular function on G4 is a standard monomial. By concatenating its column
indices to make the semistandard Young tableau

we see the shape of δΔ is F/D = (5,4,3,2)/(4,3,1). By erasing all the boxes with
5’s, we obtain Young diagram E = (4,4,2,1):

Note that the triple (D,E,F ) satisfies the doubly interlacing condition.

5 4 3 2

4 4 2 1

4 3 1

Theorem 3.11 The branching algebra B is an ASL on {δC : C ∈ L} over C. In par-
ticular, standard monomials form a C-basis of the algebra B, and

B(D,F ) = span
{
δΔ : sh(δΔ) = F/D

}
.

Proof Let us check the first condition in Definition 3.3. Recall that B′ is the sub-
algebra of B generated by {δC : C ∈ L}, and that by Proposition 3.5, B′ is spanned
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by standard monomials. Now consider the space B′ ∩ B(D,F ). By Lemma 3.8, this
space contains all the standard monomials of shape F/D, and therefore, it is spanned
by standard monomials of shape F/D. By Proposition 3.9, the number of standard
monomials of shape F/D is equal to the dimension of the space B(D,F ). This shows
that, for all doubly interlacing pairs (D,F ) ∈∧n−1,n, the standard monomials of
shape F/D are a basis of B(D,F ). Since B = ⊕(D,F )B(D,F ) and the dimension of
B(D,F ) is zero unless (D,F ) satisfies the doubly interlacing condition (Lemma 2.4),
standard monomials form a C-basis of B. With Proposition 3.2, which shows that B
satisfies the second condition in Definition 3.3, this shows that the branching algebra
B for (Gn,Gn−1) is an ASL on {δC : C ∈ L} over C. �

Definition 3.12 The basis {δΔ} from Theorem 3.11 is called the standard monomial
basis of B.

4 The standard monomial basis as a canonical weight basis

In this section we give an interpretation of the standard monomial basis of the previ-
ous section as a canonical weight basis. In Sect. 4.1 we recall a theorem in [21] which
shows that the natural SL2 action on B can be canonically extended to an action of
an n-fold product of SL2’s in such a way that the multiplicity spaces B(D,F ) are
irreducible. As a corollary of this theorem we obtain a canonical decomposition of B
into one-dimensional spaces. We then show in Sect. 4.2 that these one-dimensional
spaces are exactly the spans of standard monomial basis elements.

4.1 An irreducible action on the multiplicity spaces

The branching algebra B carries a natural algebraic representation of SL2. Indeed,
there is a copy of SL2 in Gn that commutes with Gn−1 ⊂ Gn (cf. (2.1)). This copy
of SL2 acts on the branching multiplicity spaces B(D,F ), i.e. on the graded compo-
nents of B. This action is described as follows: an element b ∈ B(D,F ) is a Gn−1

equivariant map from τD
n−1 to τF

n , and given x ∈ SL2, x.b is another such morphism
defined by (x.b)(v) = x.b(v) for any v ∈ τD

n−1. Therefore B is a graded SL2-algebra.
We refer to this action as the “natural” SL2 action on B.

The branching multiplicity spaces are not irreducible SL2-modules. Indeed, they
are an n-fold tensor product of irreducible SL2-modules (see Theorem 4.3 below).
Nevertheless, the natural SL2 action can be uniquely extended to an irreducible action
of a product of SL2’s. In this section we explain how this is done.

Let L = SL2 × · · · × SL2 be the n-fold product of SL2. We want to construct
an irreducible action of L on B(D,F ), in such a way that the diagonally embedded
SL2 ⊂ L recovers the natural action. Notice that in this formulation L is not the
product of SL2’s that lives in Gn. Indeed, the latter product of SL2’s does not act
on the multiplicity spaces. The existence of this L-action is more subtle, and can
only be “seen” by considering all multiplicity spaces together, i.e. by considering the
branching algebra.
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For two Young diagrams F = (f1, f2, . . .) and D = (d1, d2, . . .), the inequalities
in doubly interlacing condition for (D,F ) given in Lemma 2.4, i.e.

fi ≥ di ≥ fi+2

do not constrain the relation between di and fi+1. In other words, we can have either
di ≥ fi+1, or di ≤ fi+1, or both. This motivates the following:

Definition 4.1 An order type σ is a word in the alphabet {≥,≤} of length n − 1.

Suppose (D,F ) ∈ Λn−1,n and σ = (σ1 · · ·σn−1) is an order type. Then we say
(D,F ) is of order type σ if for i = 1, . . . , n − 1,

{
σi = “ ≥ ” =⇒ di ≥ fi+1

σi = “ ≤ ” =⇒ di ≤ fi+1.

For example, consider the pair (D,F ), where F = (3,2,1) and D = (3,0). Since
d1 ≥ f2 and d2 ≤ f3, the pair (D,F ) is of order type σ = (≥≤).

It will also be useful to introduce the notion of a generalized order type: if di =
fi+1 then we place an “=” in the ith position to denote that (D,F ) satisfies order
types with both ≥ and ≤ in the ith position. For example, if F is as above and
D = (2,0) then we say (D,F ) is of generalized order type (=≤), since in this case
(D,F ) satisfies both types (≥≤) and (≤≤).

Let Σ be the set of order types, and for each σ ∈ Σ set

Λn−1,n(σ ) = {(D,F ) ∈ Λn−1,n : (D,F ) is of order type σ
}
.

Lemma 4.2 For σ ∈ Σ , Λn−1,n(σ ) is a subsemigroup of Λn−1,n.

Proof Suppose (D,F ), (D′,F ′) ∈ Λn−1,n(σ ), and suppose σi = “ ≥ ”. Then di ≥
fi+1 and d ′

i ≥ f ′
i+1, which of course implies that di + d ′

i ≥ fi+1 + f ′
i+1, and hence

(D +D′,F +F ′) ∈ Λn−1,n(σ ). The argument for σi = “ ≤ ” is entirely analogous. �

Since B is Λn−1,n-graded,

B(D,F )B
(
D′,F ′)⊂ B

(
D + D′,F + F ′)

for (D,F ), (D′,F ′) ∈ Λn−1,n. Therefore, by the above lemma,

B(σ ) =
⊕

(D,F )∈Λn−1,n(σ )

B(D,F )

is a subalgebra of B. Note that B(σ ) has the trivial function on Gn, which is an
element of the (0,0)-component.

To each (D,F ) ∈ Λn−1,n we associate an irreducible L-module as follows. Let
Vk be the irreducible SL2-module of dimension k + 1. Set D = (d1, . . . , dn−1) and
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F = (f1, . . . , fn), and let (x1 ≥ y1 ≥ · · · ≥ xn ≥ yn) be the non-increasing rear-
rangement of the elements {d1, . . . , dn−1, f1, . . . , fn}. Define ri(D,F ) = xi − yi for
i = 1, . . . , n, and let A(D,F ) be the irreducible L-module

A(D,F ) =
n⊗

i=1

Vri(D,F ).

Theorem 4.3 [21, Theorem 3.5] There is a unique representation (Φ, B) of L satis-
fying the following two properties:

(1) For all (D,F ) ∈ Λn−1,n, B(D,F ) is an irreducible L-invariant subspace of B.
If B(D,F ) is non-zero, then B(D,F ) is isomorphic to A(D,F ).

(2) For all σ ∈ Σ , L acts as algebra automorphisms on B(σ ).

Moreover, ResL
SL2

(Φ) recovers the natural action of SL2 on B.

Let TSL2 be the torus of SL2 consisting of diagonal matrices. Let TL = TSL2 ×
· · · × TSL2 be the diagonal torus of L. The action of TL on B(D,F ) decomposes it
uniquely into weight spaces, which, by the above theorem, are one-dimensional.

Remark 4.4 The TL weight spaces of B(D,F ) are also weight spaces for the natural
SL2-action, via the diagonal embedding TSL2 ⊂ L. Moreover, TL is the unique max-
imal torus of L containing TSL2 . Therefore, the decomposition we obtain in this way
is the unique decomposition of B(D,F ) into spaces which are simultaneously weight
spaces for a torus of L and weight spaces for TSL2 . Moreover, the choice of the torus
TSL2 is induced by our choice of torus of Gn. In other words, the decomposition of
B(D,F ) into one-dimensional spaces depends only the choice of torus of Gn.

We now make this decomposition precise. Suppose (D,F ) ∈ Λn−1,n and (D,F )

satisfies the doubly interlacing condition (so that B(D,F ) is non-zero). Then the
weight spaces of TL on A(D,F ), and hence B(D,F ), are indexed by Young dia-
grams E satisfying the condition D 
 E 
 F . Indeed, the diagram E = (e1, e2, . . .)

corresponds to the weight

(t1, . . . , tn) ∈ TL �→
n∏

i=1

t
2ei−xi−yi

i (4.1)

(cf. Lemma 7.1, [21]). Let B(D,E,F ) denote the one-dimensional weight space of
B(D,F ) parameterized by E.

Corollary 4.5 There is a canonical decomposition of B into one-dimensional TL

weight spaces

B =
⊕

D
E
F

B(D,E,F ).

In particular, B has a TL weight basis which is unique up to scalar.
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4.2 The standard monomial basis is the canonical weight basis

We now show that the standard monomial basis defined in Theorem 3.11 is compati-
ble with the canonical decomposition appearing in Corollary 4.5. In other words, the
standard monomial basis is the unique (up to scalar) TL weight basis of B.

Suppose Δ ⊂ L is a chain, and the corresponding standard monomial δΔ has shape
F/D. We say Δ is of order type σ ∈ Σ if the pair (D,F ) is of type σ . The following
lemma shows that order types are intimately connected to the distributive lattice L.

Lemma 4.6 A set of column indices {Ci : i = 1, . . . , r} form a chain Δ = (C1 �
· · · � Cr) if, and only if, they satisfy a common order type σ ∈ Σ .

Proof First we note that

Ii is of generalized type (= · · · ≥ · · · =)

Jj is of generalized type (= · · · =)

J ′
j is of generalized type (= · · · =)

Kk is of generalized type (= · · · ≤ · · · =)

where in the first line the “≥” sign appears in the ith position, and in the last line the
“≤” sign appears in the k + 1th position.

Now suppose a set of column indices {Ci : i = 1, . . . , r} form a chain in L. Then
for all i ≥ 1 we know that

{Ii,Ki−1} � {C1, . . . ,Cr}.
Define a generalized order type σ = (σ1 · · ·σn−1) by

σi =

⎧
⎪⎨

⎪⎩

≥ if Ii ∈ {C1, . . . ,Cr}
≤ if Ki−1 ∈ {C1, . . . ,Cr}
= otherwise.

Clearly the set {C1, . . . ,Cr} satisfies the type σ .
Conversely, suppose the elements of Δ = {C1, . . . ,Cr} satisfy a common order

type σ = (σ1 · · ·σn−1). Then

σi = “ ≥ ” =⇒ Ii ∈ Δ, Ki−1 �∈ Δ

σi = “ ≤ ” =⇒ Ii �∈ Δ, Ki−1 ∈ Δ

σi = “ = ” =⇒ Ii �∈ Δ, Ki−1 �∈ Δ.

Therefore {Ii,Ki−1} � Δ for all i, i.e. Δ is a chain in L. �

Theorem 4.7 The standard monomial basis is the unique (up to scalar) TL weight
basis of the representation (Φ, B) of L.
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Proof First we prove that if C ∈ L then δC is a weight vector for the action of TL

on B. Suppose F/D is the shape of δC . Since D and F are both columns, by Theo-
rem 4.3(1) B(D,F) is isomorphic either to a trivial L-module, or to

V0 ⊗ · · · ⊗ V1 ⊗ · · · ⊗ V0

where the term V1 occurs, say, in the ith position.
In the first case, δC is clearly a weight vector since it is invariant under L. Consider

now the second case, and let �t = (t1, . . . , tn) ∈ TL. Then

Φ(�t)(δC) = Φ
(
(ti , . . . , ti )

)
(δC)

= ti .δC

where the second equality follows since ResL
SL2

(Φ) is the natural action of SL2 on B
(by Theorem 4.3). So now it suffices to see that δC is a weight vector under the natural
torus action of TSL2 on B. Indeed, for t ∈ TSL2 we have

t.δIi
= δIi

t.δJj
= tδJj

t.δJ ′
j
= t−1δJ ′

j

t.δKk
= δKk

where 1 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ n − 2.
We have shown so far that for any C ∈ L, δC is a weight vector for the action of TL

on B. We now show this is true for any standard monomial δΔ = δC1 · · · δCr . Indeed,
by Lemma 4.6, the column indices {C1, . . . ,Cr} satisfy a common order type. Then
by Theorem 4.3(2), for any l ∈ L

Φ(l)(δΔ) = Φ(l)(δC1) · · ·Φ(l)(δCr ).

Since each δCi
is a weight vector for the action of TL, it follows that δΔ is also. By

Theorem 3.11 and Corollary 4.5 we conclude that the standard monomials are the
unique (up to scalar) weight basis of the representation (Φ, B) of L. �

We remark that our labeling of standard monomials is compatible with the decom-
position of B appearing in Corollary 4.5. Indeed, suppose δΔ is a standard monomial.
In Sect. 3.1 we showed how to associate a triple of doubly interlacing Young diagrams
DΔ 
 EΔ 
 FΔ to δΔ. Then we have

δΔ ∈ B(DΔ,EΔ,FΔ). (4.2)

Example 4.8 Consider δΔ as in Example 3.10. Let �t = (t1, . . . , t4) ∈ TL. By the same
reasoning as in the proof of Theorem 4.7 we compute that

Φ(�t)(δΔ) = t−1
1 t2t

−1
3 t4δΔ.
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On the other hand, using (4.1), it is easy to see that B(DΔ,EΔ,FΔ) is a weight space
of TL corresponding to the character �t �→ t−1

1 t2t
−1
3 t4.

5 Toric degeneration and Hibi algebra for (Gn,Gn−1)

In this section, we show that B can be flatly deformed into an affine semigroup ring.
This will provide another combinatorial description of branching multiplicity spaces.

5.1 Flat deformation

From Theorem 3.11, we can realize the branching algebra B as an ASL, i.e., the
quotient algebra

B ∼= C[zC : C ∈ L]/I

whose defining ideal I is generated by
{
zIi

zKi−1 − zJ ′
i
zJi−1 + zJi

zJ ′
i−1

: 1 ≤ i ≤ n − 1
}
. (5.1)

On the other hand, we can define a semigroup ring whose multiplicative structure
is compatible with the lattice structure of L (cf. [6]).

Definition 5.1 The Hibi algebra H over L is the quotient of the polynomial ring
C[zC : C ∈ L] by the ideal I0 generated by

{
zIi

zKi−1 − zJ ′
i
zJi−1 : 1 ≤ i ≤ n − 1

}
.

We note that each generator of I0 can be written as zIi
zKi−1 − zIi∧Ki−1zIi∨Ki−1

by (3.3), and also it is the first two terms of the longer relation (5.1) for B. In what
follows, by using an analog of the SAGBI degeneration [2, Theorem 1.2], we show
that B is a flat deformation of H.

Theorem 5.2 The branching algebra B can be flatly deformed into the Hibi algebra
H over L.

Proof Our goal is to construct a flat C[t] module R whose general fiber is isomorphic
to B and special fiber is isomorphic to the Hibi algebra H. Let us impose a filtration
on B by giving the following weight on each monomial. Fix a large integer N greater
than 2n, and for C = {c1 < · · · < ca} ∈ L we define its weight as

wt(C) =
∑

r≥1

crN
n−r .

Also, we define the weight of δC as the weight wt(C) of its indexing set C, and the
weight of a product

∏
δCi

as the sum
∑

wt(Ci) of the weights of its factors.
Recall that from Theorem 3.11, every element in B can be expressed uniquely as

a linear combination of standard monomials δΔ =∏ δCi
with multiple chains Δ =
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(C1, . . . ,Ck). Set Fwt
d (B) to be the space spanned by standard monomials whose

weights are not less than d : {
δΔ : wt(δΔ) ≥ d

}
.

This filtration Fwt = {Fwt
d } is well defined from the following observation: every

product
∏

δCi
can be expressed as a linear combination of standard monomials with

bigger weights, because in the straightening laws (5.1) we have

wt(Ii) + wt(Ki−1) = wt
(
J ′

i

)+ wt(Ji−1)

=
∑

1≤r≤i−1

rNn−r + (n + i)Nn−i + (n + 1)Nn−i−1

wt(Ji) + wt
(
J ′

i−1

) =
∑

1≤r≤i−1

rNn−r + (n + i + 1)Nn−i + nNn−i−1

and therefore for each i,

wt(Ii) + wt(Ki−1) = wt
(
J ′

i

)+ wt(Ji−1)

< wt(Ji) + wt(J ′
i−1).

Then we can construct the Rees algebra R of B with respect to Fwt :

R =
⊕

d≥0

Fwt
d (B)td

and by the general property of the Rees algebras, it is flat over C[t] with its general
fiber isomorphic to B and special fiber isomorphic to the associated graded ring.

For all incomparable pairs (A,B) = (Ii,Ki−1) ∈ L, since wt(A) + wt(B) =
wt(A ∧ B) + wt(A ∨ B), δAδB and δA∧BδA∨B belong to the same associated graded
component of R. Therefore, we have yA ·gr yB = yA∧B ·gr yA∨B where yC are ele-
ments corresponding to δC in the associated graded ring of R. Then it follows that
the associated graded ring of R is isomorphic to the Hibi algebra H over L. �

5.2 Affine semigroup

Now we want to realize the Hibi algebra H over L as an affine semigroup ring, i.e.,
a ring generated by a finitely generated semigroup isomorphic to a subsemigroup
of Z

N containing 0 for some N (cf. [1, Sect. 6]). Since B is a flat deformation of
H, we expect that combinatorial properties of branching rules give rise to the affine
semigroup structure of H.

Let us define the poset Γ consisting of t
(i)
j for n − 1 ≤ i ≤ n + 1 and 1 ≤ j ≤

min(i, n) which we shall arrange as

Γ =

⎧
⎪⎪⎨

⎪⎪⎩

t
(n+1)
1 t

(n+1)
2 · · · t

(n+1)
n

t
(n)
1 t

(n)
2 · · · t

(n)
n

t
(n−1)
1 · · · t

(n−1)
n−1

⎫
⎪⎪⎬

⎪⎪⎭

with t
(i+1)
j ≥ t

(i)
j ≥ t

(i+1)
j+1 for all i and j .
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The set P (Γ ) of all order preserving maps from Γ to non-negative integers forms
a monoid generated by the characteristic functions χS on S = Γ/S′ for order decreas-
ing subsets S′ of Γ

χS(t
(i)
j ) =

{
1 if t

(i)
j ∈ S

0 if t
(i)
j /∈ S.

Furthermore, by imposing the following partial order on the set of order decreasing
subsets of Γ , we can identify the Hibi algebra H with the semigroup ring C[P ] of
P = P (Γ ): for two order decreasing subsets S′

1 and S′
2 of Γ , we say S′

1 is bigger than
S′

2, if S′
2 ⊆ S′

1 as sets.

Lemma 5.3 There is an order isomorphism between L and the set of order decreas-
ing subsets of Γ .

This is an easy computation similar to [10, Theorem 3.8]. Let us specify this iso-
morphism. For each C ∈ L, we define the complement SC of the corresponding order
decreasing subset S′

C of Γ as the union of

S
(k)
C = {t (k)

1 , t
(k)
2 , . . . , t

(k)
m(k)

}

for n − 1 ≤ k ≤ n + 1 where m(k) is the number of entries in C less than or equal to
k. It is straightforward to check that this correspondence gives an order isomorphism.
This, in fact, is an example of Birkhoff’s representation theorem or the fundamental
theorem for finite distributive lattices ([19, Theorem 3.4.1]). See also the example
below.

Example 5.4 Let us consider the following elements from the distributive lattice L
for (G4,G3): A = [1,2,4,5], B = [1,2,5], and C = [1,4]. Then the corresponding
character functions can be visualized as, by identifying them with their values at
t
(b)
a ∈ Γ ,

χSA
=

⎧
⎪⎨

⎪⎩

1 1 1 1

1 1 1 0

1 1 0

⎫
⎪⎬

⎪⎭

χSB
=

⎧
⎪⎨

⎪⎩

1 1 1 0

1 1 0 0

1 1 0

⎫
⎪⎬

⎪⎭

χSC
=

⎧
⎪⎨

⎪⎩

1 1 0 0

1 1 0 0

1 0 0

⎫
⎪⎬

⎪⎭
.
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Note that for T = A,B,C, the number of 1’s in the first, second, and third row of
χT is the number of entries less than or equal to 5, 4, and 3 in T , respectively. The
order A � B � C can be related to the inclusion order on order decreasing subsets
S′

T = χ−1
ST

(0) of Γ :

χ−1
SA

(0) ⊆ χ−1
SB

(0) ⊆ χ−1
SC

(0).

Proposition 5.5 There is a bijection between the set of multiple chains in L and the
set of order preserving maps from Γ to non-negative integers.

Proof The bijection in the above lemma provides the bijection between L and the set
of characteristic functions on the complements of order increasing subsets of Γ . This
map can be extended to the multiple chains in L as follows. Let Δ = (C1 � · · · � Cc)

be a multiple chain in L and for each i, let χi be the characteristic function on SCi

corresponding to Ci given in the above lemma. Then we can consider the following
correspondence:

Δ = (C1 � · · · � Cc) �→ p(Δ) =
c∑

r=1

χi. (5.2)

Recall that starting from Δ, by considering Young diagrams containing entries
less than or equal to n − 1, n, and n + 1 we obtain Young diagrams D, E, and
F, respectively, with D 
 E 
 F . Now let us consider the order preserving map
p : Γ → Z≥0

p
(
t
(n+1)
i

) = fi

p
(
t
(n)
i

) = ei

p
(
t
(n−1)
k

) = dk

for 1 ≤ i ≤ n,1 ≤ k ≤ n − 1. Then from the construction of χi corresponding to Ci ,
one can check that p = p(Δ) and this correspondence gives a bijection. For further
details, see [7, 10]. See also the example below. �

Example 5.6 Let us consider the chain A � B � C given by the elements in Exam-
ple 5.4. By concatenating them we have the semistandard tableau Δ of the shape
F/D = (3,3,2,1)/(3,2):
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Then the corresponding order preserving map given in the above proof is χSA
+χSB

+
χSC

:

p(Δ) =

⎧
⎪⎨

⎪⎩

3 3 2 1

3 3 1 0

3 2 0

⎫
⎪⎬

⎪⎭
.

Note that the first row (3,3,2,1) corresponds to the Young diagram F of the
tableau Δ. By erasing the boxes with 5 in the tableau, we obtain the Young diagram
corresponding to the second row E = (3,3,1,0), and finally by erasing the boxes
with 4, we obtain the Young diagram D corresponding to the third row (3,2,0).

In fact, from the multiplicative structure given in (5.2), this bijection is a semi-
group isomorphism. Therefore, we have

Corollary 5.7 The Hibi algebra H over L is isomorphic to the semigroup ring C[P ]
generated by P = P (Γ ).

Consequently, Spec(H) is an affine toric variety in the sense of [16, 20], and The-
orem 5.2 shows that Spec(B) is a toric deformation of Spec(H).
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