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ABSTRACT

In the standard electroweak model, with three families, a
one-to—one correspoudence between certain determinants
involving quark mass matrices (m and m' for charge 2/3 and
—-1/3 quarks respectively) and the presence/absence of CP
viclation is given. In an arbitrary basis for mass
mattrices, the quantity Im det[nmﬁ} m'm'+] appropriately
normalized is introduced as a measure of CP violation. By
this measure, CP is not maximally violated in any
transition in Nature. Finally, constraints on quark mass
matrices are derived from experiment. Any model of mass
matrices, with the ambition to explain Nature, must

satisfy these conditions.
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1. INTRODUCTION

Recent investigatjonsl'z)

of the systematics of the quark mass matrices,
in the framework of the Standard Electroweak Modela) with three families,
have revealed some intriguing and as yet badly understood features. The
derivation of these results, which are also discussed below, depended
crucially on the assumption that the quark mass matrices are hermitian.

), by a suitable

Indeed, in the Standard Model it is always possible2
redefinition of the right-handed quark fields to go to a hermitian basis
for the mass matrices. Nevertheless, one is left with a somewhat uneasy
feeling. Surely, the derived systematics cannot just be an artifact of
hermiticity? Therefore, it is essential to find the counterparts of these

results in an arbitrary basis.

The purpose of this paper is just to examine the systematics of the quark
mass matrices and the connection with CP-violation in a basis independent
fashion. The organization of this paper is as follows. In Section 2 the
commutaters of functions of quark mass matrices and their . intinmate
connection with CP-violation are discussed in the hermitian basis. In
Section 3, it is shown that such an intimate connection exists in any

basis provided appropriate commutators are considered. Basis independent
constraints on mass matrices are derived, from experiment, in Section 4

and in Section 5, CP-asymmetry parameters are introduced and the guestion

of maximal CP-viclation is discussed. Finally, the conclusions are presented

in Section 6.

2. THE COMMUTATOR OF THE QUARK MASS MATRICES AND CP-VIOLATION
Let m and m' denote the three by three quark mass matrices for the

charge 2/3 and -1/3 quarks respectively. In the hermitian basis, m=m"

+
and m'=m' , we have

[m,m’]-_-_iC (1)



when C is hermitian and traceless. In Ref. 1 it was shown that the
»igenvalues of C are measurable quantities and that its determinant

i.. given by

dtC =-27T7.8.7, (2)

where
T = (m-my)(m, -m )(m -m,), )

B = (M, - my)ymp-mg(mg_my). (4)

Here mj refers to the mass of the guark j and the guantity J is a
function of the elements of the quark mixing matrix V (the Kobayashi-
Maskawa matrix4)). J is obtained as follows. Cross out an arbitrary
row r and column s of the matrix V and denote the remaining two by two

submatrix by
Vy Vi
Ve, Ve

Then J is given byl)

r+S * *
J= ¢ Im(\/,-J' Ve Vi ng) (5)

J=Im(\/,.\/n\/€ V:)=Im(V22V33V23 \/3; )=

The essential point is that J is uniquel), in the Standard Model, as the
measure of CP-violation. It is phase convention independent, i.e., it is

invariant under the transformations

Vs diag (e 6 dB)V dag (6% & J%y)

' r

where ¢ and ¥ denote arbitrary phases. In the Kobayashi-Maskawa



parametrization one hasl)

J""szsz S3C1C2C3 51‘"S/ (6)

S¢ 2 SmB,, C,zCo58,

a quantity which is familiar to anyone who has performed explicit cal-
culations of CP-violation effectss) in the Standard Model. Every such
effect is proportional to J. Note that J vanishes if any of the angles in

(6) assumes its maximum or minimum value, i.e., Gizo or 1t/2; &=0 or n.

From Egs. (2)-(5) follows that the determinant of C vanishes if and only
if there is no CP-violation. Therefore, in Ref. 1, it was suggested that
the det{m, m'] appropriately normalized may be used to define a measure
of CP-violation in the Standard Model. This point is further developed

in Section 5 of this paper.

Before going to an arbitrary basis we make the following observation.
In the hermitian basis, we may form the commutator of functions of mass

matrices,

o) oD
fomy=3" a,m , gm)=>" b, m " (7)
n=t

n=i

where the coefficients a, and bn are arbitrary real numbers. Then the

commutator

[?(\m) ) gtm’)] =1 C (§em), 3(m)) (8)

again defines a hermitian traceless matrix, C(f,g). The important point
is that the eigenvalues of this commutator are calculable functions of the
quark masses and the elements of the gquark mixing matrix V. The determinant

of C(f,g) is particularly simple and is given by

det C(£,9)= -2 T'(Fom). B (a0m)-J, (©)

where



(10)

T'(fm) = [F(me) -chu)][f'(""{) "g(mc)] B:(mc) 'F("’“’J ,

B (4emh) =] 30m) -aCmp][ 36m)-9mo)][40my -9¢mp)]  can

and J is as defined before, see Eq. (5).

One interesting consequence of the above resuit is that it clarifies a
mystery in connection with Eqs. (2)-{4). We know that the sign of the
mass in the Lagrangian is irrelevant. However in the quantities T and B

the first power of the masses appears and thus makes the sign of the mass

relevant when we discuss the presence or absence of CP-violation!

Eq. 9 provides an answer to this dilemma. Instead of taking the commutator

(m,m'] we should take
I m?, m? Y =7 Cmtm'?y. (12)
From Egs. (9)-(11) then follows that
dot COm s m'? = -2 Tem® Bm'®).J, (13)
T(m2)=(m{.?—mf)(m;—mf)(mf—mj ),

2
3[101'2) :(mﬁ —mj)(mbz“msz)(msz"md )E

Indeed the determinant of C(mz,m'z) vanishes irrespectively of the
sign of the mass, if the magnitudes of the masses of two quarks with

the same charge are the same.

To conciude this Section we have found that in the hermitian basis the
det[mz,m’z] provides a measure of CP-violation because it vanishes
iff there is no CP-violation. It is also not sensitive to the sign of

the mass.



The results (8)-(11} of this section provide a method for a basis inde-
pendent analysis of the connection between the commutators and CP-viola-

tion, as is discussed immediately below.

3. COMMUTATORS:: IN ;AN ARBITRARY BASIS

In an arbitrary basis the quark mass matrices m and m' are not necessarily
hermitian and as usual one needs two different unitary matrices for the

diagonalization of each of them,
+ ! ANE / {14)
ULmUR = d_, ) ULmUR :d/

ol = daa (M, me ), df”'d"aj(m Mg, M) - (15)
I 8

T
Here Ux and Ux . X=L, R, are unitary matrices. Although m is not
hermitian, one can form from it two hermitian matrices, namely o

and m m. They are, as usual, diagonalized by UL and UR respectively,

7

' - + + 2 + + 2
o Upmm U] = d Ug m mU&si (16)
and similarly for the primed guantities. The quark mixing matrices are then

/4 ‘+
VL: U}_UL ) VR:UR UR; {17)

where Vf is just the measurable quark mixing matrix V while VR is
not measureable in the Standard Model. It is however measurable in
the left-right symmetric models.
Next we construct the commutators
‘ + /It .
et mm ]’*1KL, (18)

(19}

it

{m+m , mj+m’] v Rg



where Kx' x=L, R are hermitian and traceless matrices. They are related

to measurable guantities by
- + 2 2t '
1Ky = Uy [Ol,\/xol \/XJUx, X=LR. (20

Comparing Egs. (20) and (12) yields that the eigenvalues of KL are
identical to those of C(ma,m'z}. Thus in a general basis mm”* plays

the role played by m2 in the hermitian basis. We have
—~7 /2
dt Ky=-2 Tty Bm'® . Jx | x=LR, - {21)

where T(ma) and B(m'a) are as given in Eq. (13) and

* *
‘Jk = :Enﬂ(\41VG2 Vﬂg véd )
V= Vi (22)

For the general construction of JX see Eq. (5).

Thus our previous result, in the hermitian basis, that in the Standard
Model with three families, the determinant of {ma.m'a] vanishes iff
there is no CP-violation is now replaced by the basis independent
statement that the determinant of [mm+,m'm‘+] vanishes iff there

is no CP-violation.

The analogy with the hermitian case can be carried out further if
we compute the commutator of functions f(mmf) and g(m'm'+), see

Eqs. (7) and (8). The relation (8) is then replaced by

[fcmm", gamim™®] =< C (£,9), (29)

~
where the determinant of C is simply obtained from Egs. (9)-(11) by

just replacing everywhere mj by m?. This result establishes the

correspondence between the two bases, viz.



hermitian basis nonhermitian basis
2 +
m- i min
(24)
llllz - m|mr+

In the Standard Model there are no right-handed currents and therefore VR
is not measurable. In the_left—right symmetric models, however, VR is

just as fundamental and measurable as V. Then the eigenvalues of the matrix
KR are also measurable quantities, see Egs. (19)-(21). As an application

of the above results we consider the sc-called pseudo-manifest left-right

8) where the mass matrices are symmetric but not neces-

symmetric models
sarily hermitian. Then putting m=S and m'=S', where S(S'), denotes
the appropriate three-by-three symmetric matrix, we have, from Eqs. (18)

and (19)

K =—K*
R L - (25)
Here we have used that

S =S S =S, (26)
Thus

dek KR*:-——M KL (27)

where we have used the fact that K. is hermitian and thus its determinant

is real. Hence the vanishing of dei K, would imply that also det K
vanishes. This result shows that the one~to-one correspondence between the
vanishing of the determinant of the commutator and the absence of CP-viola-
tion is a special feature of the Standard Model; the vanishing of the de-
terminant is, of course, a necessary condition for the absence of CP-viola-
tion in the left-right symmetric models also. But this condition is not a

sufficient condition.



4. BASIS INDEPENDENT CONSTRAINTS ON QUARK MASS MATRICES FROM EXPERIMENT

In the hermitian basis it is convenient to normalize the mass matrices by

2)

defining

M- I ) M= m {28)

such that the largest eigenvalue equals unity. Then the difference matrix

A-m-t’ (=)
is given by |

A= U+(D—VD/V+) U, (30)
where

D = deag (Mufmy , Mefmy , 1), (31)

D'- diag (Ma/my, , Msfm, 1) : (32)

Furthermore V is the quark mixing matrix and U is a unitary matrix.
Eq. (30) shows that the eigenvalues of the difference matrix A are
observable quantities. In order to compute them it is convenient to use

a parametrization of V due to'Wquensteinv},

2
- % 2 AN(p-in)
_ _ _ 2 2 4§ (33}
V= A 1 }i' A T30,



2 < (0.6)2

We shall also use the empirical information that ms/mb. in Eq. (32),

where V _v &= 'kﬂso 23. A, J) and m are real, A%1, o +'n
is of order xa and mc/mt is at most of the same order.

In Ref. 2 it was shown that the order A term in A vanishes and that A
is at most of order xz. It was subsequently shown, in Ref. 1, that the
order ‘)«.2 term in A canpot vanish due to A%1. Thus we obtain the

empiricai‘relation;,
‘ ‘ / 2 -
B M = M -+ Q(A .)} ‘ (34)

which all models with hermitian mass matrices must satisfy in order to
agree with data. The question is then what is the counterpart of relation
(34) for nonhermitian mass‘matrices? From the analysis presented in Section
3 it ié.evident that'the‘relevant experimentally accessible quantities in
the Standard Model are MM' and MM, see Eq. (24), which can be related

to each other in any arbitrary basis. In general we have

?(MW 4enm*y= U, [F(b) \/3(1) 4yt ]y, e

where f(x) Z Gn X , g(x) _.2:'_ bn x" with a_ and b, being

arbitrary coeff101ents Taking f{x)“x and g(x)=x gives

0! +
- - 0F RUL, @9

where
2 /72
Rjk-"DJ' Bj ~2 V. (37)
L
All the elements of the matrix R are measurable quantities. Hence,
the eigenvalues of the matrix MM+—M‘M'+ are observables. Using
Egs. (31)-(33) we find that the three eigenvalues of this matrix

are given by
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rg = £ AN+ () (BeY 000,

b
s = BOF).

Thus the relation (34) has as its basis independent counterpart the

constraint

MMT-MMT s Bl (39)

Furthermore, from Eq. (38) follows that the 0(12) term on the RHS of -
Eq. (39) is nonzero, because the eigenvalues of R, to this order are 0
and * AAZ and thus cannot all three vanish, if Am1.

In the left-right symmetric models one could have got constraints from

the relation
fotmy -30imY= g [ FO - Ve 90T U, 4@

if VR had been known from data.

In Ref. 2 a couple of applications of the relation (34) were given for

models with hermitian mass matrices. As an application of the result (39)

8)

consider, for example, a model by Ellis et al. where the mass matrices

are given by

9.293 e; eﬁ 6,0, €660, €60, &€
/
M=1{ 8, 95 6: 8, |, M=[&00, 6,0, ¢, (41)

Note that M' is manifestly nonhermitian. The constraint relation (39) then

immediately gives that 92= 82+0(12).

To conclude this section, we have found basis independent restrictions,
Egs. (35)-{39), on mass matrices which all successful mass matrices must
satisfy. The restrictions in Eqs. (30) and (34) valid in the hermitian

basis are special cases of the general results.
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As constructing successful mass matrices for quarks is a central issue in
particle physics pursued by many peopleg) the results obtained in this
section should be useful for at least quickly checking if specific models

have a chance of being empirically successful or not.

5. CP-VIOLATION ASYMMETRIES IN THE STANDARD MODEL

Before discussing CP-violation it is instructive to recapitulate the situa-
tion concerning parity violation in the Standard Model. The lesson learned
from parity may then be used to define CP-violation asymmetries in the
Standard Model.

In the Standard Model the origin of all parity violation lies in the
fundamental subprocesses W + f?' and Z - ff, where f and f' denote
appropriate quark or lepton pairs. The measure of parity violation

in these processes is given by the asymmetry parameter ap defined by

X
We(va™) 1<ay, <, (42)

Ao =

' 7
|2+ 1al?
where v and a denote respectively the vector and axial vector coupling
constants in the fermion current (viz, 7x(v+a75)). For W we have
v=-a=1 i.e., a,=-1 for all pairs but for processes Z - ff the

coupling constants depend on the quantum numbers of the fermion £,

v=2Ty -4Qsiw,
(43)
a = -—21'3;_.}

where Q, and-ISL denote the electric charge and the third component of

the weak isospin. Hence parity is maximally violated in W - f%' sub-
processes but in Z + ff there are four fundamental asymmetry parameters,
i.e., two for quarks {(with Q=2/3 and Q--1/3) and two for leptons {Q=-1 and
Q=0). The asymmetry is given by

-1 Igz_ (I_g]_ - 2@ 5"129141) (44)
2
(Is':.)?+ (I -2 st'n?ew)

AplZ) =
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Thus parity is maximally violated only for neutrinos. In the remaining
three cases there is a deviation from maximality due to unification with
electromagnetism, sanQﬁE 0 and the nonvanishing of the electric
charge,(]#(L As far as parity is concerned I believe that there is a
consensus of opinion that one should define the measure for parity
violation a la Eq. (42).

Recently, a number of authorslo) have asked the guestion what is meant by
maximal violation of CP and .is CP maximally violated? In order to answer
.-this guestion. one must first provide a measure for CP-violation. For
example, it has been arguedlo) that a phase convention independent phase
¢ in the matrix V provides such a measure, i.e., | sin® i=1 corresponds

to maximal CP-violation.

In Ref. 1 a new definition of a measure for CP-violation was given. Indeed
if one follows the lesson learned from parity violation there is not much
choice in introducing the CP-asymmetry parameter aCP' One must then, just
like the case of parity, isolate the simplest subprocesses which exhibit

- €P-violation in the Standard Model and introduce an appropriate set of
parameters acp’ -1 = 8sp < 1, for these processes. Then all CP~violation
in Nature would, in principle, be expressible in terms of the fundamental
acp-parameters. CP is maximally violated in a fundamental process iff

a *1. If so one would actuaily measure maximal CP-violatien in that

cp .
process if the experiment could be done. This definition is very different
from those previously given in the literature. For example | sind =1

does not correspond to maximal CP-violation in any physical transition.

In the Standard Model, as we have seen in Section 3 all CP-violation

is related to Im det[mmf,m'm'+], i.e., to the quantity J in Eq.(5).
Evidentily the simplest subprocesses which exhibit CP-violation involve four
different quarks two (i and k) with charges 2/3 and two (j and £) with
charges -1/3. Thus the quantity J, appropriately normalized is the measure
we are looking for. Actually, there are three ways of normalizing this
quantity. These lead to three classes of CP-violation parameters, which I

shall refer to as diagonal, horizontal and vertical CP-asymmetries:
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..a), . Diagenal CP asymmetry parameters.
_..Consider the quark mixing mdtrix with one row and one column crossed

out, i.e., the matrix

i ! i (45)

The, diagonal CP-asymmetry, parameters .are defined by

PLoteeetmmet d Mewnial T Clieo g e SR P o
o Qg = ﬂ’:(dﬁf 1 €pet (a6
TR E e .
where . R U= :
e, e VgV |

(47)

Note that the numerator in Eq.(45) is Just the quantity J, up to a sign

{see Eq. 5). There are 9 such diagonal CP-asymmetry parameters as there are
bine: diffenent ways.of:erossing out one row and one column in. the three~by-
three, matrix, V.. These:parameters enter in 4 quark transitions involving two
W bosons. They.are the ;simplest analogs of the parity violating asymmetries,
Eq.(42), when .instead.of one W and two quarks for CP .we take two W bosons
and_g,guargah,In,Ref;hluonly-this class of CP viclating parameters was
Jdntroduced.; .. .. ¢ 4

b} Horizontal CP-asymmetry parameters.

. ;;Consider the.matrix:{45) again. Clearly one may also define the:

.CPrasymmetry as in.Eg.(46) but where

N RN B * . " , ‘

L R Y ATU WAL R £ L I p NS - o AR

‘ ' ci:’\ﬂj \/{ﬂr } (3, V&d \AKL ] (48)
1 I L O T I - A : . :

-.¢) .. Vertical CP-asymmetniy parameters.

-+ Hepe - again the parameters are defined as in Eg.(46) but where

RIS T ?&ﬂ!f"*‘ s : oL % ’ :
X = Vij Vuj , B=V1‘2 Vkﬂ; : " (49)

The -horizontal and vertical. asymmetry parameters enter in four quark "
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transitions involving one virtual W boson. These are the parameters which
enter when one, for example, comparesla) the rates of conjugate charged

B-meson or D-meson decays.

In conclusien there are 27 simplest subprocesses and thus 27 CP-asymmetry
parameters in the hadronic sector of the Standard Model. There are 9
diagonal, 9 horizontal and 9 vertical asymmetry parameters. In the case

of parity, in the hadronic sector, there are, of course, 9 fundamental W
transitions and 6 Z transitions. However, exactly as in the case of parity
the different CP-asymmetries are not independent. They are all functions of
X 93 and &.
Furthermore the CP-asymmetry in a subprocess is maximal if and only if in
Eq.(46)

four parameters, e.g. the Kobayashi-Maskawa parameters 91, e

()(-:.ﬂ:{ﬁ} (50)

for that process. This relation puts a very strong constraint on the para-
meters, just like requiring maximal parity violation in Z - ff would

give constraints on I and Q sinaqu, see Eg.{(44). In general only 2

31.
of the 27 acp—parameters can be simultaneocusly maximal because each
maximality requirement gives two constraints and we have onliy 4 para-
meters. Using the Wolfenstein parametrization, Eq.{33). we find that in

Nature none of the fundamental subprocesses viclates CP maximally.

This result is perhaps not so surprising. After all we are not bothered by
nonmaximality of parity violation, in all fundamental transitions Z - fT,
witich is due to unification of weak interactions with electromagnetism.
The CP-asymmetry parameters, Eqs.(46)-(49), are function of the quantities
ij which are intimately related to quark mass matrices. This sector of
the Standard Model, in contradistinction to its gauge sector, is very
poorly understood. What is worse is that we cannot even exclude the possi-
bility that the quark mixing matrix V is real. Then all the CP-asymmetry
parameters defined in this paper would vanish and one must go beyond the

Standard Model to explain CP-violation.

The moral of the above analysis is nevertheless that given a model of
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CP-violation one could introduce a set of CP-asymmetry parameters, for
the simplest subprogcesses which exhibit CP-violation. In general then
all CP-violation in Nature would be due to these subprocesses. Another
important point is that the asymmetry parametérs should be normalized,
-1 = acp =<1 such that acpwil corresponds to maximal CP-violation.
Then, if CP is maximal in a transition the experiment (perhaps a gedanken
one) would actually measure maximal violation in the sense that it will
find that the CP-image of the process in question is a completely forbidden

process.

6. CONCLUSIONS
In this paper two issues have been studied:

1. It has been shown that in the Standard Model, with three families there
is a one-to-one correspondence between the determinant of certain commu-
tators involving mass matrices (m and m' for charge 2/3 and -1/3 quarks
respectively) and the presence/absence of CP-violation. In an arbitrary
nonhermitian basis the simplest such quantity is Im(det[mm+,m'm'+]) which
vanishes if and only if there is no CP-violation. Thus one may use this
quantity, appropriately normalized, to define a measure of CP-violation

in the Standard Model. By this measure CP is not maximally violated

in any fundamental transition in Nature. Furthermore the definition

of CP-asymmetries is independent of the particular choice made, i.e.,
Im(det{f(mm+),g(m'm'+)], with arbitrary functions f and g as

defined in Section 3 would lead to the same definition of asymmetry

parameters.

2. Restrictions on mass matrices are obtained without assuming that mass
matrices are hermitian. It is shown that experiments impose severe condi-
tions, see Egs. (34)-(39), which any model of mass matrices with the ambi-
tion to agree with data must satisfy. Earlier resultsl’z). valid in the
hermitian basis are special cases of the general results presented in

this paper. Extension of some of the results of this paper to left-right

symmetric models was also briefly discussed.
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Finally, it is hoped that the results obtained in this paper may provide
a hint for further work and eventually a better understanding of the mass

problem.
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