
The Scientific World Journal
Volume 2012, Article ID 418946, 15 pages
doi:10.1100/2012/418946

The cientificWorldJOURNAL

Research Article

A Bat Algorithm with Mutation for UCAV Path Planning

Gaige Wang,1, 2 Lihong Guo,1 Hong Duan,3 Luo Liu,1, 2 and Heqi Wang1

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 Graduate School of Chinese Academy of Sciences, Beijing 100039, China
3 School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China

Correspondence should be addressed to Lihong Guo, guolh@ciomp.ac.cn

Received 9 October 2012; Accepted 20 November 2012

Academic Editors: E. Acar and I.-S. Jeung

Copyright © 2012 Gaige Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly
centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments.
Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation
(BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the
process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates
while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while
preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic
approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA
and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows
that the proposed approach is more effective and feasible in UCAV path planning than the other models.

1. Introduction

Uninhabited combat aerial vehicle (UCAV) is one of inevita-
ble trends of the modern aerial weapon equipment which
develop in the direction of unmanned attendance and intelli-
gence. Research on UCAV directly affects battle effectiveness
of the air force and is fatal and fundamental research
related to safeness of a nation. Path planning and trajectory
generation is one of the key technologies in coordinated
UCAV combatting. The flight path planning in a large
mission area is a typical large scale optimization problem; a
series of algorithms have been proposed to solve this com-
plicated multiconstrained optimization problem, such as
differential evolution [1], biogeography-based optimization
[2, 3], genetic algorithm [4], ant colony algorithm [5] and
its variant [6, 7], cuckoo search [8, 9], chaotic artificial bee
colony [10], firefly algorithm [11, 12], and intelligent water
drops optimization [13]. However, those methods can hardly
solve the contradiction between the global optimization and
excessive information.

In 1995, Storn and Price firstly proposed a novel evo-
lutionary algorithm (EA): differential evolution (DE) [14],
which is a new heuristic approach for minimizing possibly
nonlinear and nondifferentiable continuous space functions.
It converges faster and with more certainty than many other
acclaimed global population-based optimization methods.
This new method requires few control variables, which
makes DE more robust and easy to use and lend itself very
well to parallel computation.

First presented in [15], the bat-inspired algorithm or bat
algorithm (BA) is a metaheuristic search algorithm, inspired
by the echolocation behavior of bats with varying pulse rates
of emission and loudness. The primary purpose of a bat’s
echolocation is to act as a signal system to sense distance.

However, in the field of path planning for UCAV, no
application of BA algorithm exists yet. In this paper, we use
an original BA and an improved modified BA algorithm to
solve UCAV path planning problem. Here, we add mutation
operation in DE between bats to propose a new metaheuristic
algorithm according to the principle of BA, and then
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an improved BA algorithm is used to search the optimal
or suboptimal route with complicated multiconstraints. To
investigate the feasibility and effectiveness of our proposed
approach, it is compared with BA and other population-
based optimization methods, such as ACO, BBO, DE, ES,
GA, PBIL, PSO, and SGA under complicated combating
environments. The simulation experiments indicate that our
hybrid metaheuristic method can generate a feasible optimal
route for UCAV more effectively than other population-
based optimization methods.

The remainder of this paper is structured as follows.
Section 2 describes the mathematical model in UCAV path
planning problem. Subsequently, the principle of the basic
BA is explained in Section 3, and then an improved BA with
mutation for UCAV path planning is presented in Section 4
and the detailed implementation procedure is also described
in this section. The simulation experiment is conducted
in Section 5. Finally, Section 6 concludes the paper and
discusses the future path of our work.

2. Mathematical Model in UCAV Path Planning

Path planning for UCAV is a new low altitude penetration
technology to achieve the purpose of terrain following and
terrain avoidance and flight with evading threat, which is a
key component of mission planning system [16]. The goal for
path planning is to calculate the optimal or suboptimal flight
route for UCAV within the appropriate time, which enables
the UCAV to break through the enemy threat environments,
and self-survive with the perfect completion of mission. In
our work, we use the mathematical model in UCAV path
planning in [1], which is described as follows.

2.1. Problem Description. Path planning for UCAV is the
design of optimal flight route to meet certain performance
requirements according to the special mission objective and
is modeled by the constraints of the terrain, data, threat
information, fuel, and time. In this paper, firstly the route
planning problem is transformed into a D-dimensional
function optimization problem (Figure 1).

In Figure 1, we transform the original coordinate system
into new coordinate whose horizontal axis is the connec-
tion line from starting point to target point according to
transform expressions shown as (1), where the point (x, y)
is coordinate in the original ground coordinate system OXY ;
the point (x′, y′) is coordinate in the new rotating coordinate
system OX′Y ′ ; θ is the rotation angle of the coordinate system.
One has
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y2 − y1
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Then, we divide the horizontal axis X ′ into D equal
partitions and then optimize vertical coordinate Y ′ on the
vertical line for each node to get a group of points composed
by vertical coordinate of D points. Obviously, it is easy
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Figure 1: Coordinates transformation relation.

to get the horizontal abscissas of these points. We can get
a path from start point to end point through connecting
these points together, so that the route planning problem
is transformed into a D-dimensional function optimization
problem.

2.2. Performance Indicator. A performance indicator of path
planning for UCAV mainly contains the completion of
the mandate of the safety performance indicator and fuel
performance indicator, that is, indicators with the least threat
and the least fuel.

Minimum of performance indicator for threat

min J f =

∫ L

0
wtdl, L is the length of the path. (2)

Minimum of performance indicator for fuel

min J f =

∫ L

0
w f dl, L is the length of the path. (3)

Then the total performance indicators for UCAV route

min J = kJt + (1− k)J f , (4)

where wt is the threat cost for each point on the route;
w f is fuel cost for each point on the path which depends
on path length (in this paper, w f ≡ 1); k ∈ [0, 1] is
balanced coefficient between safety performance and fuel
performance, whose value is determined by the special task
UCAV performing; that is, if flight safety is of highly vital
importance to the task, then we choose a larger k, while if the
speed is critical to the aircraft task, then we select a smaller k.

2.3. Threat Cost. When the UCAV is flying along the path
Li j , the total threat cost generated by Nt threats is calculated
as follows:

wt,Li j =

∫ Li j

0

Nt
∑

k=1

tk
[

(x − xk)2 +
(

y − yk
)2
]2 dl. (5)

To simplify the calculations (as shown in Figure 2), each
path segment is discretized into five subsegments and the
threat cost is calculated on the end of each subsegment. If the
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Figure 2: Modeling of the UCAV threat cost [6].

distance from the threat point to the end of each subsegment
is within threat radius, we can calculate the responding threat
cost according to

wt,Li j =
L5

i j

5
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tk

(
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(6)

where Li j is the length of the subsegment connecting node i
and node j; d0.1,k is the distance from the 1/10 point on the
subsegment Li j to the kth threat; tk is threat level of the kth
threat.

As fuel cost related to flight length, we can consider w f =

L, for simplicity, and fuel cost of each edge can be expressed
by w f ,Li j = Li j .

3. Bat Algorithm (BA)

The bat algorithm is a new swarm intelligence optimization
method, in which the search algorithm is inspired by social
behavior of bats and the phenomenon of echolocation to
sense distance.

3.1. Mainframe of BA. In [17], for simplicity, bat algorithm is
based on idealizing some of the echolocation characteristics
of bats, which are following approximate or idealized rules.

(1) All bats apply echolocation to sense distance, and
they always “know” the surroundings in some magi-
cal way.

(2) Bats fly randomly with velocity vi and a fixed fre-
quency fmin at position xi, varying wavelength λ, and
loudness A0 to hunt for prey. They can spontaneously
accommodate the wavelength (or frequency) of their
emitted pulses and adjust the rate of pulse emission
r ∈ [0, 1], depending on the proximity of their target.

(3) Although the loudness can change in different ways, it
is supposed that the loudness varies from a minimum
constant (positive) Amin to a large A0.

Based on these approximations and idealization, the
basic steps of the bat algorithm (BA) can be described as
shown in Algorithm 1. In BA, each bat is defined by its

position xti , velocity vti , frequency fi, loudness At
i , and the

emission pulse rate rti in a d-dimensional search space. The
new solutions xti and velocities vti at time step t are given by

fi = fmin +
(

fmax − fmin

)

β,

vt
i = vt−1

i +
(

xt
i − x∗

)

fi,

xt
i = xt−1

i + vt
i ,

(7)

where β ∈ [0, 1] is a random vector drawn from a uniform
distribution. Here x∗ is the current global best location
(solution) which is located after comparing all the solutions
among all the n bats. Generally speaking, depending on
the domain size of the problem of interest, the frequency
f is assigned to fmin = 0 and fmax = 100 in practical
implementation. Initially, each bat is randomly given a
frequency which is drawn uniformly from [ fmin, fmax].

For the local search part, once a solution is selected
among the current best solutions, a new solution for each
bat is generated locally using random walk

xnew = xold + εAt, (8)

where ε ∈ [−1, 1] is a scaling factor which is a random
number, while At = 〈At

i〉 is the average loudness of all the
bats at time step t.

The updates of the velocities and positions of bats have
some similarity to the procedure in the standard particle
swarm optimization [18] as fi in essence controls the pace
and range of the movement of the swarming particles.
To some degree, BA can be considered as a balanced
combination of the standard particle swarm optimization
and the intensive local search controlled by the loudness and
pulse rate.

Furthermore, the loudness Ai and the rate ri of pulse
emission update accordingly as the iterations proceed as
shown in

At+1
i = αAt

i , rt+1
i = r0

i

[

1− exp
(

−γt
)]

, (9)

where α and γ are constants. In essence, α is similar to
the cooling factor of a cooling schedule in the simulated
annealing [19]. For simplicity, we set α = γ = 0.9 in this
work.

3.2. Algorithm BA for UCAV Path Planning. In BA, the
standard ordinates are inconvenient to solve UCAV path
planning directly. In order to apply BA to UCAV path
planning, one of the key issues is to transform the original
ordinate into rotation ordinate by (1).

Fitness of bat i at position xi is determined by the threat
cost by (4), and the smaller the threat cost, the smaller the
fitness of bat i at position xi. Each bat is encoded by D-
dimensional deciding variables. And then, we use BA to
optimize the path planning to get the best solution that is
optimal flight route for UCAV. At last, the best solution
is inversely converted to the original ordinates and output.
The algorithm BA for UCAV path planning is shown as
Algorithm 2.
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Begin
Step 1: Initialization. Set the generation counter t = 1; Initialize the population of NP bats P

randomly and each bat corresponding to a potential solution to the given problem;
define loudness Ai, pulse frequency Qi and the initial velocities vi (i = 1, 2, . . . ,NP); set
pulse rate ri.

Step 2: While the termination criteria is not satisfied or t < MaxGeneration do
Generate new solutions by adjusting frequency, and updating velocities
and locations/solutions [(7)]
if (rand > ri) then

Select a solution among the best solutions;
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly
Generate a new solution by flying randomly
if (rand < Ai and f (xi) < f (x∗)) then

Accept the new solutions
Increase ri and reduce Ai

end if
Rank the bats and find the current best x∗
t = t + 1;

Step 3: end while
Step 4: Post-processing the results and visualization.

End.

Algorithm 1: Bat Algorithm.

Begin
Step 1: Initialization. Set the generation counter t = 1; Initialize the population of NP bats

P randomly and each bat corresponding to a potential solution to the given
problem; define loudness Ai, pulse rate ri, pulse frequency Qi and the initial
velocities vi (i = 1, 2, . . . ,NP).

Step 2: Generating rotation coordinate system. Transform the original coordinate system
into new rotation coordinate whose horizontal axis is the connection line from
starting point to target point according to (1); convert
battlefield threat information to the rotation coordinate system and divide the axis
X ′ into D equal partitions. Each feasible solution, denoted by
P = {p1, p2, . . . , pD}, is an array indicated by the composition of D coordinates
which are the floating-point numbers

Step 3: Evaluate the threat cost J for each bat in P by (4)
Step 4: while The halting criteria is not satisfied or t < MaxGeneration do

Generate new solutions by adjusting frequency, and updating velocities
and locations/solutions [(7)]
if (rand > ri) then

Select a solution among the best solutions;
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < Ai and Ji < J∗) then

Accept the new solutions
Increase ri and reduce Ai

end if
Rank the bats and find the current best x∗
t = t + 1

Step 5: end while
Step 6: Inversely transform the coordinates in final optimal path into the original

coordinate, and output
End.

Algorithm 2: Algorithm of BA for UCAV path planning.
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4. Bat Algorithm with Mutation (BAM)

The differential evolution (DE) algorithm, proposed by Storn
and Price [14], is a simple evolutionary algorithm (EA)
which generates new candidate solutions by combining the
parent individual and a few other individuals of the same
population. A candidate substitutes the parent only if it has
better fitness. This is a rather greedy selection scheme which
often overtakes traditional EAs. Advantages of DE are easy
implementation, simple structure, speed, and robustness.

In general, the standard DE algorithm is adept at
exploring the search space and locating the region of global
optimal value, but it is not relatively good at exploiting
solution. On the other hand, standard BA algorithm is
usually quick at the exploitation of the solution though its
exploration ability is relatively poor. Therefore, in this paper,
a hybrid metaheuristic algorithm by inducing mutation
in differential evolution into bat algorithm, so-called bat
algorithm with mutation (BAM), is used to solve the path
planning for UCAV. The difference between BAM and DE is
that the mutation operator is used to improve the original
BA generating new solution for each bat with a probability
1− r originally using random walk. In this way, this method
can explore the new search space by the mutation of the DE
algorithm and exploit the population information with BA
and therefore can overcome the lack of the exploitation of the
DE algorithm. In the following, we will show the algorithm
BAM which is a variety of DE and BA. Firstly, we describe a
mainframe of BAM, and then an algorithm BAM for UCAV
path planning is shown.

4.1. Mainframe of BAM. The critical operator of BAM is
the hybrid differential evolution mutation operator, which
composes the mutation operation in differential evolution
with the BA. The core idea of the proposed hybrid mutation
operator is based on two considerations. First, poor solutions
can take in many new used features from good solutions.
Second, the mutation operator of DE can improve the
exploration of the new search space. In this way, we
composed mutation operation into BAM which modifies the
solutions with poor fitness in order to add diversity of the
population to improve the search efficiency.

For bat algorithm, as the search relies entirely on random
walks, a fast convergence cannot be guaranteed. Described
here for the first time, a main modification of adding
mutation operator is made to the BA, including two minor
modifications, which are made with the aim of speeding up
convergence, thus making the method more practical for a
wider range of applications but without losing the attractive
features of the original method.

The first modification is that we use fixed frequency
f and loudness A instead of various frequency fi and At

i .
Similar to BA, in BAM, each bat is defined by its position xti ,
velocity vti , the emission pulse rate rti , the fixed frequency f ,
and loudness A in a d-dimensional search space. The new
solutions xti and velocities vti at time step t are given by

vt
i = vt−1

i +
(

xt
i − x∗

)

f ,

xt
i = xt−1

i + vt
i ,

(10)

where x∗ is the current global best location (solution) which
is located after comparing all the solutions among all the n
bats. In our experiments, we make f = 0.5. Through a series
of simulation experiments on path planning for UCAV in
Section 5.2, it was found that setting the parameter of pulse
rate r to 0.6 and the loudness A to 0.95 produced the best
results.

The second modification is to add mutation operator in
an attempt to increase diversity of the population to improve
the search efficiency and speed up the convergence to optima.
For the local search part, once a solution is selected among
the current best solutions, a new solution for each bat is
generated locally using random walk by (8) when ξ is larger
than pulse rate r, that is, ξ > r, where ξ ∈ [0, 1] is a random
real number drawn from a uniform distribution; while when
ξ ≤ r, we use mutation operator in DE updating the new
solution to increase diversity of the population to improve
the search efficiency by

xnew = xtr1
+ F
(

xtr2
− xtr3

)

, (11)

where F is the mutation weighting factor, while r1, r2, and r3

are uniformly distributed random integer numbers between
1 and NP. Through testing on path planning for UCAV
in Section 5.2, it was found that setting the parameter of
mutation weighting factor F to 0.5 in (11) and scaling factor
ε to 0.1 in (4) produced the best results.

Based on above-mentioned analyses, the mainframe of
the bat algorithm with mutation (BAM) can be described as
shown in Algorithm 3.

4.2. Algorithm BAM for UCAV Path Planning. BAM can
adapt to the needs of UCAV path planning, while optimiza-
tion algorithms can improve the BA fast search capabilities
and increase the search to the global possible optimum
solution. Fitness for bat i at position xi is represented by
the objective function shown as (4) in UCAV path planning
model, the smaller the threat value, the lower the fitness for
bat i at position xi.

Based on the above analysis, the pseudo code of improved
BA-BAM for UCAV path planning is described as shown in
Algorithm 4.

5. Simulation Experiments

In this section, we look at the performance of BAM
as compared with other population-based optimization
methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO,
and SGA. Firstly, we compare performances between BAM
and other population-based optimization methods on the
different parameters the maximum generation Maxgen and
the dimension of converted optimization function D, and
then we compare performances between BAM and BA on
the different parameters loudness A, pulse rate r, weighting
factor F, and scaling factor ε (where F and ε only for BAM).

To allow a fair comparison of running times, all the
experiments were performed on a PC with an AMD
Athlon(tm) 64 X2 Dual Core Processor 4200+ running at
2.20 GHz, 1024 MB of RAM, and a hard drive of 160 GB.
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Begin
Step 1: Initialization. Set the generation counter t = 1; Initialize the population of NP

bats P randomly and each bat corresponding to a potential solution to the
given problem; define loudness A; set frequency Q and the initial velocities v;
set pulse rate r and weighting factor F.

Step 2: Evaluate the quality f for each bat in P determined by f (x).
Step 3: While the termination criteria is not satisfied or t < MaxGeneration do

Sort the population of bats P from best to worst by order of quality f for each bat;
for i = 1 : NP (all bats) do

Select uniform randomly r1 /= r2 /= r3 /= i
r4 = ⌈NP ∗ rand⌉
vti = vt−1

i + (vti − x∗)×Q
xti = xt−1

i + vti
if (rand > r) then

xtu = x∗ + αεt

else
xtu = xtr1

+ F(xtr2
− xtr3

)
end if
Evaluate the fitness for the offspring xtu, xti , x

t
r4

Select the offspring xtk with the best fitness among the offsprings
xtu, xti , x

t
r4

if (rand < A) then
xtr4
= xtk ;

end if
end for i
t = t + 1;

Step 4: end while
Step 5: Post-processing the results and visualization;

End.

Algorithm 3: Bat algorithm with mutation.

Table 1: Information about known threats.

No. Location (km) Threat radius (km) Threat grade

1 (45,50) 10 2

2 (12,40) 10 10

3 (32,68) 8 1

4 (36,26) 12 2

5 (55,80) 9 3

Our implementation was compiled using MATLAB R2011b
(7.13) running under Windows XP SP3. No commercial BBO
tools or other population-based optimization tools were used
in the following experiments.

5.1. General Performance of BAM. In this subsection, firstly
we will present the supposed problem we use to test the
performance of BAM. We use the parameters of battle field
environments described as [1]. Supposed that there exists
the following map information, UCAV flight from start point
(10, 10) to end point (55, 100). In the flight course, there exist
five threat areas. Their coordinates and corresponding threat
radii are shown as in Table 1. Also, we set balanced coefficient
between safety performance and fuel performance k = 0.5.

In order to explore the benefits of BAM, in this
subsection we compared its performance on UCAV path

planning problem with BA and eight other population-based
optimization methods, which are ACO, BBO, DE, ES, GA,
PBIL, PSO, and SGA. ACO (ant colony optimization) [20]
is a swarm intelligence algorithm for solving computational
problems which is based on the pheromone deposition of
ants. Biogeography-based optimization (BBO) [21–23] is
a new evolutionary algorithm (EA) developed for global
optimization which is a generalization of biogeography
to EA. DE (differential evolution) [14] is a simple but
excellent optimization method that uses the difference
between two solutions to probabilistically adapt a third
solution. An ES (evolutionary strategy) [24] is an algorithm
that generally distributes equal importance to mutation
and recombination, and that allows two or more parents
to reproduce an offspring. A GA (genetic algorithm) [25]
is a search heuristic that mimics the process of natural
evolution. PBIL (probability-based incremental learning)
[26] is a type of genetic algorithm where the genotype of an
entire population (probability vector) is evolved rather than
individual members. PSO (particle swarm optimization) [18,
27] is also a swarm intelligence algorithm which is based on
the swarm behavior of fish, and bird schooling in nature. A
stud genetic algorithm (SGA) [28] is a GA that uses the best
individual at each generation for crossover.

Except an ad hoc explain, in the following experiments,
we use the same MATLAB code and parameters settings for
other population-based optimization methods in [21, 29].
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Begin
Step 1: Initialization. Set the generation counter t = 1; Initialize the population of NP bats

P randomly and each bat corresponding to a potential solution to the given
problem; define pulse frequency Q; set loudness Ai, the initial velocities vi and
pulse rate ri (i = 1, 2, . . . ,NP); set weighting factor F.

Step 2: Generating rotation coordinate system. Transform the original coordinate
system into new rotation coordinate whose horizontal axis is the connection
line from starting point to target point according to (1);
convert battlefield threat information to the rotation coordinate system and
divide the axis X ′ into D equal partitions. Each feasible solution, denoted
by P = {p1, p2, . . . , pD}, is an array indicated by the composition of D
coordinates which are the floating-point numbers

Step 3: Evaluate the threat cost J for each bat in P by (4)
Step 4: while The halting criteria is not satisfied or t < MaxGeneration do

Sort the population of bats P from best to worst by order of threat cost J
for each bat;
for i = 1 : NP (all bats) do

Select uniform randomly r1 /= r2 /= r3 /= i
r4 = ⌈NP ∗ rand⌉
vti = vt−1

i + (vti − x∗)×Q
xti = xt−1

i + vti
if (rand > r) then

xtu = x∗ + αεt

else
xtu = xtr1

+ F(xtr2
− xtr3

)
end if
Evaluate the fitness for the offsprings xtu, xti , x

t
r4

Select the offspring xtk with the best fitness among the offsprings
xtu, xti , x

t
r4

if (rand < A) then
xtr4
= xtk ;

end if
end for i

Evaluate the threat cost for each bat in P by (4).
Sort the population of bats P from best to worst by order of threat cost J
for each bat;
t = t + 1;

Step 5: end while
Step 6: Inversely transform the coordinates in final optimal path into the original

coordinate, and output
End.

Algorithm 4: Algorithm of BAM for UCAV path planning.

To compare the different effects among the parameters
Maxgen and D, we ran 100 Monte Carlo simulations of each
algorithm on the above UCAV path planning problem to
get representative performances. For simplicity, we subtract
50 from the actual value; that is, if a value is 0.4419 in the
following table, then its corresponding value 50.4419 is its
true value. We must point out that we mark the best value
with italic and bold font for each algorithm in Tables 2–5.

5.1.1. Effect of Maximum Generation: Maxgen. The choice
of the best maximum generation of metaheuristic algorithm
is always critical for specific problems. Increasing the max-
imum generation will increase the possibility of reaching
optimal solution, promoting the exploitation of the search
space. Moreover, the probability to find the correct search

direction increases considerably. The influence of maximum
generation is investigated in this sub-subsection. For all the
population-based optimization methods, all the parameter
settings are the same as above mentioned, only except for
maximum generation Maxgen = 50, Maxgen = 100, Maxgen
= 150, Maxgen = 200, and Maxgen = 250. The results are
recorded in Tables 2, 3, 4, and 5 after 100 Monte Carlo
runs. Table 2 shows the best minima found by each algorithm
over 100 Monte Carlo runs. Table 3 shows the worst minima
found by each algorithm over 100 Monte Carlo runs. Table 4
shows the average minima found by each algorithm, averaged
over 100 Monte Carlo runs. Table 5 shows the average CPU
time consumed by each algorithm, averaged over 100 Monte
Carlo runs. In other words, Tables 2, 3, and 4 show the
best, worst, and average performance of each algorithm,
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Table 2: Best normalized optimization results on UCAV path planning problem on different Maxgen. The numbers shown are the best
results found after 100 Monte Carlo simulations of each algorithm.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 50 20 10.7202 4.0662 0.6208 7.0272 2.4179 9.6276 1.2604 100.0527 2.7827 1.7370

30 100 20 10.8912 4.7582 0.4900 4.7484 0.8503 10.6318 1.5073 98.3640 2.3469 1.3218

30 150 20 9.9096 4.1112 0.4724 4.2311 0.5319 11.1469 1.0991 71.2093 2.3738 1.1559

30 200 20 12.3080 3.1463 0.4590 2.7765 0.5047 11.2403 1.0792 72.8244 3.4276 0.7595

30 250 20 7.1358 4.4072 0.4636 2.6109 0.4792 12.3745 1.0640 74.9071 2.5221 1.0166

Table 3: Worst normalized optimization results on UCAV path planning problem on different Maxgen. The numbers shown are the worst
results found after 100 Monte Carlo simulations of each algorithm.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 50 20 18.7099 39.0832 11.7494 30.2785 25.3999 41.9676 10.2501 464.2014 28.6115 13.0102

30 100 20 18.4316 29.9962 9.7666 32.1868 18.6288 38.5875 8.2047 339.5171 25.7065 11.0529

30 150 20 17.4223 31.1293 7.6952 29.5695 13.8150 46.0828 10.5257 457.5577 29.6341 13.3517

30 200 20 17.2147 24.9732 6.7334 41.5292 10.4226 31.3944 6.7466 308.6347 33.0709 7.5385

30 250 20 16.9896 24.7175 3.3564 19.5894 8.9560 34.8908 8.9162 201.3705 27.3858 13.5830

respectively, while Table 5 shows the average CPU time
consumed by each algorithm.

From Table 2, we see that BAM performed the best on
all the groups, while DE performed the second best on the 5
groups especially when Maxgen = 150, 200, and 250. Table 3
shows that PBIL was the worst at finding objective function
minima on all the five groups when multiple runs are made,
while the BAM was the best on all the groups in the worst
values. Table 4 shows that BAM was the most effective at
finding objective function minima when multiple runs are
made, while DE and SGA performed the second best on
the 5 groups, and GA and SGA similarly performed the
third best on the 5 groups. Table 5 shows that PBIL was the
most effective at finding objective function minima when
multiple runs are made, performing the best on all the 5
groups. By carefully looking at the results in Tables 2, 3,
and 4, we can recognize that the values for each algorithm
are obviously decreasing with the increasing Maxgen, while
the performance of BAM increases little with the Maxgen
increasing from 200 to 250, so we set Maxgen = 200 in other
experiments. In sum, from Tables 2, 3, 4, and 5 we can draw
the conclusion that the more the generations are, the smaller
the objective function value we can reach, while the CPU
time consumes more. Moreover, BAM performs better than
other population-based optimization methods for the UCAV
path planning problem with different maximum generation.

5.1.2. Effect of Dimensionality: D. In order to investigate
the influence of the dimension on the performance of
BAM, we carry out a scalability study comparing with other
population-based optimization methods for the UCAV path
planning problem with the dimensionality D = 5, D = 10,
D = 15, D = 20, D = 25, D = 30, D = 35, and D = 40.
The results are recorded in Tables 6, 7, 8, and 9 after 100

Monte Carlo runs. Table 6 shows the best minima found by
each algorithm over 100 Monte Carlo runs. Table 7 shows
the worst minima found by each algorithm over 100 Monte
Carlo runs. Table 8 shows the average minima found by
each algorithm, averaged over 100 Monte Carlo runs. Table 9
shows the average CPU time consumed by each algorithm,
averaged over 100 Monte Carlo runs. In other words, Tables
6, 7, and 8 show the best, worst, and average performance of
each algorithm, respectively, while Table 9 shows the average
CPU time consumed by each algorithm.

From Table 6, we see that DE performed the best when
D = 10, while BAM performed the best on the other
groups when multiple runs are made. Table 7 shows that
BA and ES were the worst when D = 5 and D = 10,
respectively, and PBIL was the worst at finding objective
function minima on all the other groups when multiple
runs are made, while the DE, SGA, and GA were the best
when D = 5, 10, and 15, respectively, and BAM was the
best on the other groups in the worst values. Table 8 shows
that DE and SGA were the most effective when D = 5 and
10, respectively, and BAM was the best on the other groups
at finding objective function minima when multiple runs
are made. Table 9 shows that PBIL was the most effective
at finding objective function minima on all the groups.
So, from the experimental results of this sub-subsection,
we can conclude that the mutation operation between bats
with a probability 1 − r during the process of generating
new solutions has the ability to accelerate BA in general;
especially the improvements are more significant at higher
dimensionality. With the higher dimension, we are not
always getting the better results with consuming more time;
furthermore, the result is good enough when D = 20. In
sum, in other experiments we should make D = 20 under
the comprehensive consideration.
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Table 4: Mean normalized optimization results on UCAV path planning problem on different Maxgen. The numbers shown are the
minimum objective function values found by each algorithm, averaged over 100 Monte Carlo simulations.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 50 20 16.3819 16.6782 1.4842 14.1072 12.3797 20.5653 4.2541 219.9368 10.0760 4.5491

30 100 20 16.2884 14.9048 0.9337 13.5705 6.0887 20.6706 3.5523 166.4567 9.1725 3.4353

30 150 20 16.1408 14.4874 0.9123 11.7978 3.7267 20.1996 3.4269 142.1862 9.5459 3.1636

30 200 20 16.3976 12.4323 0.8000 11.8224 2.6358 20.8610 3.0080 131.1306 8.9917 2.6434

30 250 20 16.1958 11.4213 0.7422 10.0553 1.9715 20.7600 2.9160 119.6745 7.8005 3.1409

Table 5: Average CPU time on UCAV path planning problem on different Maxgen. The numbers shown are the minimum average CPU
time (sec) consumed by each algorithm.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 50 20 1.1477 1.2389 2.5415 0.7540 1.0830 1.1045 1.0068 0.5610 0.9389 0.9733

30 100 20 2.2752 2.5180 5.0720 1.5041 2.1782 2.2028 1.9875 1.0793 1.8632 1.9253

30 150 20 3.4043 3.7411 7.3826 2.2564 3.2397 3.2778 2.9604 1.5839 2.7619 2.8612

30 200 20 4.5337 4.9930 9.7353 3.0201 4.3053 4.3581 3.9755 2.0459 3.6100 3.7132

30 250 20 5.6563 6.1668 12.2422 3.6952 5.4137 5.3999 4.9278 2.6083 4.6532 4.7580

5.2. Influence of Control Parameter. In [15], Yang concluded
that if we adjust the parameters properly so that BA
can outperform GA, HS (harmony search), and PSO. The
choice of the control parameters is of vital importance for
different problems. To compare the different effects among
the parameters A, r, F, and ε (F and ε only for BAM), we ran
100 Monte Carlo simulations of BA and BAM algorithm on
the above problem to get representative performances.

5.2.1. Loudness: A. To investigate the influence of the
loudness on the performance of BAM, we carry out this
experiment comparing BA for the UCAV path planning
problem with the loudness A = 0, 0.1, 0.2, . . . , 0.9, 1.0 and
fixed pulse rate r = 0.6. All other parameter settings are
kept unchanged. The results are recorded in Tables 10, 11, 12,
and 13 after 100 Monte Carlo runs. Table 10 shows the best
minima found by BA and BAM algorithms over 100 Monte
Carlo runs. Table 11 shows the worst minima found by BA
and BAM algorithms over 100 Monte Carlo runs. Table 12
shows the average minima found by BA and BAM algorithms
averaged over 100 Monte Carlo runs. Table 13 shows the
average CPU time consumed by BA and BAM algorithms,
averaged over 100 Monte Carlo runs. In other words, Tables
10, 11, and 12 show the best, worst, and average performance
of BA and BAM algorithm, respectively, while Table 13 shows
the average CPU time consumed by BA and BAM algorithms.

From Table 10, we obviously see that BAM performed
better (on average) than BA on all the groups, and BA and
BAM reach the worst values 9.6473 and 11.9280 when A = 0,
respectively, while BA and BAM reach the best values 4.0888
and 0.7774 when A = 1.0, respectively, among the optima
when multiple runs are made. Table 11 shows evidently that
BAM performed better (on average) than BA on all the
groups (except A = 0), and BA as well as BAM reach the
worst values 39.0584 and 38.6449 when A = 0.1 and A = 0,

respectively, while BA and BAM reach the best values 24.4673
and 8.8555 when A = 0.1 and A = 1.0, respectively, among
the worst values when multiple runs are made. Table 12
shows that BAM performed better (on average) than BA
on all the groups, and BA and BAM reach the worst values
20.3072 and 20.2230 when A = 0, respectively, while BA and
BAM reach the best values 11.1174 and 2.7086 when A = 1.0,
respectively, among the mean values when multiple runs are
made. Table 13 shows that BA was more effective at finding
objective function minima when multiple runs are made,
performing the best on all the groups. By carefully looking
at the results in Tables 10, 11, and 12, we can recognize
that the threat value for BA and BAM is decreasing with
the increasing A, and BA and BAM reach optima/minimum
when A is equal or very close to 1.0, while BA and BAM
reach maximum when A is equal or very close to 0. So, we
set A = 0.95 which is very close to 1.0 in other experiments.
In sum, from Tables 10, 11, 12, and 13, we can conclude that
the mutation operation between bats during the process of
the new solutions updating has the ability to accelerate BA in
general.

5.2.2. Pulse Rate: r. To investigate the influence of the
pulse rate on the performance of BAM, we carry out this
experiment comparing with BA for the UCAV path planning
problem with the pulse rate r = 0, 0.1, 0.2, . . . , 0.9, 1.0 and
fixed loudness A = 0.95. All other parameter settings are
kept unchanged. The results are recorded in Tables 14, 15,
16, and 17 after 100 Monte Carlo runs. Table 14 shows the
best minima found by BA and BAM algorithms over 100
Monte Carlo runs. Table 15 shows the worst minima found
by BA and BAM algorithms over 100 Monte Carlo runs.
Table 16 shows the average minima found by BA and BAM
algorithms, averaged over 100 Monte Carlo runs. Table 17
shows the average CPU time consumed by BA and BAM
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Table 6: Best normalized optimization results on UCAV path planning problem on different D. The numbers shown are the best results
found after 100 Monte Carlo simulations of each algorithm.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 200 5 10.1164 10.6909 4.3575 10.2341 4.3568 12.3746 5.2471 8.5576 5.6082 9.9596

30 200 10 7.4746 2.3600 1.3953 2.6157 1.3952 8.0656 1.5716 25.6821 2.1101 1.5498

30 200 15 9.8297 3.0757 0.6094 2.0896 0.6204 7.7408 0.8299 61.4656 3.2257 0.9700

30 200 20 10.0836 2.3950 0.4679 2.7765 0.4913 9.6276 0.8600 72.2897 2.3738 0.8426

30 200 25 11.5490 5.0173 0.4484 4.8474 0.6265 12.3169 1.5243 113.7537 2.3740 1.3743

30 200 30 13.8615 7.2470 0.4671 10.9403 1.1301 18.0090 1.7026 152.0173 3.6751 1.5147

30 200 35 16.9476 7.4484 0.4795 10.4147 1.2849 16.8613 2.1602 254.0060 5.4765 1.5319

30 200 40 17.6142 8.6500 0.6028 14.4997 3.9617 19.8244 2.4178 315.4459 5.5384 1.9406

Table 7: Worst normalized optimization results on UCAV path planning problem on different D. The numbers shown are the worst results
found after 100 Monte Carlo simulations of each algorithm.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 200 5 12.6928 295.2557 10.2403 119.9434 9.7959 62.1765 20.1888 22.9251 13.3267 22.6326

30 200 10 18.2565 58.7386 10.7242 42.1924 12.4821 74.6665 6.3799 64.0778 23.2604 5.7899

30 200 15 10.9917 35.7454 10.1928 34.8307 12.5250 50.3214 8.1499 119.2700 28.0228 9.9385

30 200 20 17.0266 33.7068 3.7420 32.1908 18.8897 38.7234 9.4820 254.0913 34.7133 11.6024

30 200 25 12.2373 24.9265 3.5192 30.9943 17.1415 33.4598 12.7971 593.9572 31.6741 16.0736

30 200 30 14.4647 30.0844 10.2851 61.7204 29.6529 37.4566 22.1291 2011 35.6656 14.0512

30 200 35 18.7271 32.7374 8.8193 37.9424 39.4435 46.6475 24.4790 8424.28 38.0578 15.6693

30 200 40 27.0641 33.2634 8.4273 49.5461 45.4130 44.3624 19.2098 8856.06 35.5090 22.5022

Table 8: Mean normalized optimization results on UCAV path planning problem on different D. The numbers shown are the minimum
objective function values found by each algorithm, averaged over 100 Monte Carlo simulations.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 200 5 11.4856 56.4830 9.0542 23.4238 8.0557 31.8202 10.5709 15.5053 10.0765 10.8836

30 200 10 12.5333 19.4251 2.7075 8.7776 3.1206 27.2252 2.3722 51.2935 7.2212 2.2813

30 200 15 10.2484 13.6018 1.2318 8.9120 2.3737 22.0792 2.1136 78.4948 7.7362 1.8973

30 200 20 16.3303 13.6305 0.7609 12.2883 3.0044 20.4717 2.9612 127.5765 9.9091 2.8621

30 200 25 11.5842 14.9017 0.7093 15.3698 4.6029 22.7244 3.7244 214.0821 10.3315 3.7238

30 200 30 13.9422 16.6162 1.1067 18.6997 11.4103 25.4016 5.3097 335.0904 12.7964 4.3798

30 200 35 18.3452 17.7033 1.4617 20.7753 19.1074 27.2172 6.0765 661.1281 13.8799 5.4943

30 200 40 24.7642 19.9737 1.8769 25.9148 28.7062 30.0177 7.6989 1174.90 15.1555 7.4237

Table 9: Average CPU time on UCAV path planning problem on different D. The numbers shown are the minimum average CPU time (sec)
consumed by each algorithm.

Parameter Algorithm

Popsize Maxgen D ACO BA BAM BBO DE ES GA PBIL PSO SGA

30 200 5 1.93 1.87 3.58 1.26 2.03 2.13 2.21 1.19 2.27 2.12

30 200 10 2.86 3.08 5.28 1.86 2.64 2.88 2.83 1.46 2.79 2.81

30 200 15 3.61 3.92 7.61 2.31 3.47 3.60 3.43 1.76 3.31 3.34

30 200 20 4.50 4.95 9.83 3.02 4.24 4.33 3.93 2.10 3.73 3.84

30 200 25 5.57 5.83 12.06 3.37 5.00 4.96 4.43 2.43 4.22 4.39

30 200 30 6.44 7.30 14.40 3.86 5.58 5.84 4.91 2.75 4.70 4.90

30 200 35 7.30 8.39 16.84 4.46 6.23 6.63 5.65 3.14 5.16 5.39

30 200 40 8.34 9.60 19.34 4.97 6.71 7.34 6.06 3.38 5.68 5.96
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Table 10: Best normalized optimization results on UCAV path
planning problem on different A. The numbers shown are the best
results found after 100 Monte Carlo simulations of BA and BAM
algorithms.

Parameter Algorithm

A r BA BAM

0 0.6 9.6473 11.9280

0.1 0.6 6.6352 2.3678

0.2 0.6 6.9462 1.9257

0.3 0.6 5.6720 1.2626

0.4 0.6 8.5845 1.0167

0.5 0.6 4.3351 1.1764

0.6 0.6 5.8639 0.9442

0.7 0.6 5.5337 0.9305

0.8 0.6 5.2613 0.9942

0.9 0.6 5.3534 1.0012

1.0 0.6 4.0888 0.7774

Table 11: Worst normalized optimization results on UCAV path
planning problem on different A. The numbers shown are the worst
results found after 100 Monte Carlo simulations of BA and BAM
algorithms.

Parameter Algorithm

A r BA BAM

0 0.6 33.4435 38.6449

0.1 0.6 39.0584 20.9711

0.2 0.6 38.7234 14.8265

0.3 0.6 29.4638 12.6085

0.4 0.6 36.3300 12.8931

0.5 0.6 26.0305 8.9874

0.6 0.6 28.7598 13.6922

0.7 0.6 26.2501 11.0757

0.8 0.6 24.4673 12.6789

0.9 0.6 29.4221 9.1986

1.0 0.6 25.7065 8.8555

algorithm, averaged over 100 Monte Carlo runs. In other
words, Tables 14, 15, and 16 shows the best, worst, and
average performance of BA and BAM algorithm respectively,
while Table 17 shows the average CPU time consumed by BA
and BAM algorithms.

From Table 14, we obviously see that BAM performed
better (on average) than BA on all the groups, and BA and
BAM reach the worst values 5.1353 and 0.8536 when r =
1.0, respectively, while BA and BAM reach the best values
1.3626 and 0.4591 when r = 0.1 and r = 0.2, respectively,
among the optima when multiple runs are made. Table 15
shows evidently that BAM performed better (on average)
than BA on all the groups, and BA and BAM reach the worst
value 30.9979 and 12.3230 when r = 1.0 and r = 0.1,
respectively, while BA and BAM reach the best values 17.8310
and 6.4524 when r = 0.2 and r = 0.7, respectively, among the
worst values when multiple runs are made. Table 16 shows
that BAM performed better (on average) than BA on all

Table 12: Mean normalized optimization results on UCAV path
planning problem on different A. The numbers shown are the
minimum objective function values found by BA and BAM
algorithms, averaged over 100 Monte Carlo simulations.

Parameter Algorithm

A r BA BAM

0 0.6 20.3072 20.2230

0.1 0.6 18.3087 9.5999

0.2 0.6 16.7149 5.8455

0.3 0.6 14.5081 4.5573

0.4 0.6 15.2639 4.1528

0.5 0.6 13.3459 3.5631

0.6 0.6 12.6488 3.5585

0.7 0.6 12.6416 3.2400

0.8 0.6 11.9422 3.2585

0.9 0.6 12.5489 2.7930

1.0 0.6 11.1174 2.7086

Table 13: Average CPU time on UCAV path planning problem on
different A. The numbers shown are the minimum average CPU
time (Sec) consumed by BA and BAM algorithms.

Parameter Algorithm

A r BA BAM

0 0.6 4.81 9.77

0.1 0.6 4.85 8.75

0.2 0.6 4.82 8.87

0.3 0.6 4.85 9.01

0.4 0.6 4.88 9.18

0.5 0.6 4.88 9.37

0.6 0.6 4.84 9.19

0.7 0.6 4.81 9.39

0.8 0.6 4.85 9.43

0.9 0.6 4.86 9.52

1.0 0.6 4.88 9.47

the groups, and BA and BAM reach the worst mean values
11.1155 and 2.9290 when r = 1.0, respectively, while BA
and BAM reach the best mean values 6.8803 and 0.7729
when r = 0.6, respectively, among the mean values when
multiple runs are made. Table 13 shows that BA was more
effective at finding objective function minima when multiple
runs are made, performing the best on all the groups. By
carefully looking at the results in Tables 14, 15, and 16, we
can recognize that the threat value for BA and BAM varies
little with the increasing A, and BA and BAM reach mean
optima/minima when r is equal or very close to 0.6, while
BA and BAM reach maximum when r is equal or very close
to 1.0. So, we set r = 0.6 in other experiments. In sum, from
Tables 14, 15, 16, and 17 we can conclude that the mutation
operation between bats during the process of generating new
solutions has the ability to accelerate BA in general.

5.2.3. Weighting Factor: F. For the sake of investigating the
influence of the weighting factor F on the performance
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Table 14: Best normalized optimization results on UCAV path
planning problem on different r. The numbers shown are the best
results found after 100 Monte Carlo simulations of BA and BAM
algorithms.

Parameter Algorithm

A r BA BAM

0.5 0 1.9003 0.4709

0.5 0.1 1.3626 0.4598

0.5 0.2 2.4637 0.4591

0.5 0.3 1.7444 0.4669

0.5 0.4 1.7388 0.4633

0.5 0.5 2.6682 0.4600

0.5 0.6 2.4835 0.4614

0.5 0.7 1.8795 0.4702

0.5 0.8 2.2624 0.4711

0.5 0.9 3.5876 0.5019

0.5 1.0 5.1353 0.8536

Table 15: Worst normalized optimization results on UCAV path
planning problem on different r. The numbers shown are the worst
results found after 100 Monte Carlo simulations of BA and BAM
algorithms.

Parameter Algorithm

A r BA BAM

0.95 0 29.4969 7.5532

0.95 0.1 25.5864 12.3230

0.95 0.2 17.8310 9.2830

0.95 0.3 30.4250 10.7164

0.95 0.4 21.2176 10.1811

0.95 0.5 20.8479 9.0701

0.95 0.6 17.8944 7.0315

0.95 0.7 28.7659 6.4524

0.95 0.8 28.7659 9.3845

0.95 0.9 21.9160 7.4771

0.95 1.0 30.9979 9.3678

of BAM, we carry out this experiment for the UCAV
path planning problem with the weighting factor F =

0, 0.1, 0.2, . . . , 1.5 and fixed scaling factor ε = 0.1. All
other parameter settings are kept unchanged. The results are
recorded in Table 18 after 100 Monte Carlo runs. Columns
1, 2, and 3 in Table 18 show the best, worst, and average
performances of BAM algorithm, respectively, while Column
4 in Table 18 shows the average CPU time consumed by BAM
algorithm.

From Table 18, we can recognize that the threat values
for BAM varies little with the increasing F, and BAM reaches
optimum/minimum on F = 0.5. So, we set F = 0.5 in other
experiments. From Table 18 we can draw the conclusion that
BAM is insensitive to the weighting factor F, so we do not
have to fine-tune the parameter F to get the best performance
for different problems.

Table 16: Mean normalized optimization results on UCAV path
planning problem on different r. The numbers shown are the
minimum objective function values found by BA and BAM
algorithms, averaged over 100 Monte Carlo simulations.

Parameter Algorithm

A r BA BAM

0.95 0 9.9001 0.8457

0.95 0.1 9.0247 1.0440

0.95 0.2 7.5435 1.0412

0.95 0.3 8.0903 1.0977

0.95 0.4 7.2892 0.8794

0.95 0.5 7.1919 0.9456

0.95 0.6 6.8803 0.7729

0.95 0.7 7.3384 0.8632

0.95 0.8 7.8609 0.8817

0.95 0.9 9.0251 1.1881

0.95 1.0 11.1155 2.9290

Table 17: Average CPU time on UCAV path planning problem on
different r. The numbers shown are the minimum average CPU
time (sec) consumed by BA and BAM algorithms.

Parameter Algorithm

A r BA BAM

0.95 0 5.02 9.90

0.95 0.1 4.96 9.88

0.95 0.2 5.03 9.83

0.95 0.3 4.95 9.76

0.95 0.4 4.99 9.90

0.95 0.5 5.08 9.83

0.95 0.6 5.06 9.86

0.95 0.7 5.11 9.82

0.95 0.8 4.97 9.79

0.95 0.9 5.00 9.66

0.95 1.0 4.87 9.43

5.2.4. Scaling Factor: ε. For the sake of investigating the
influence of the scaling factor ε on the performance of BAM,
we carry out this experiment for the UCAV path planning
problem with the factor scaling factor ε = 0, 0.1, 0.2, . . . , 1.0
and fixed weighting factor F = 0.5. All other parameter
settings are kept unchanged. The results are recorded in
Table 19 after 100 Monte Carlo runs. Columns 1, 2, and 3
in Table 19 shows the best, worst, and average performances
of BAM algorithms respectively, while Column 4 in Table 19
shows the average CPU time consumed by BAM algorithm.

From Table 19, we can recognize that the values for
BAM vary little with the increasing ε, and BAM reaches
optimum/minimum and the worst/maximum on ε = 0.1
and ε = 0, respectively. So, we set ε = 0.1 in other
experiments. From Table 19 we can draw the conclusion that
BAM is insensitive to the scaling factor ε, so we do not have
to fine-tune the parameter ε to get the best performance for
different problems.
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Table 18: Best normalized optimization results and average CPU
time on UCAV path planning problem on different F. The numbers
shown are the best results found after 100 Monte Carlo simulations
of BAM algorithm.

Parameter Algorithm

F ε
BAM

Best Worst Mean CPU time (Sec)

0 0.1 0.7045 9.6041 2.1675 9.58

0.1 0.1 0.7806 11.3137 1.7250 9.69

0.2 0.1 0.8138 11.0360 1.8369 9.75

0.3 0.1 0.7421 9.1672 1.6696 9.72

0.4 0.1 0.6879 9.2307 1.6681 9.74

0.5 0.1 0.6843 9.1385 1.5362 9.78

0.6 0.1 0.6903 7.9582 1.9313 9.61

0.7 0.1 0.7193 7.8036 1.8229 9.65

0.8 0.1 0.6645 9.5210 2.0243 9.57

0.9 0.1 0.6964 9.3858 1.8923 9.58

1.0 0.1 0.7546 9.5856 1.8489 9.73

1.1 0.1 0.6331 13.0251 1.7814 9.72

1.2 0.1 0.6508 9.0815 1.6803 9.74

1.3 0.1 0.6694 9.9523 1.9246 9.53

1.4 0.1 0.6966 8.3557 1.6807 9.74

1.5 0.1 0.7112 7.7598 1.8652 9.62

Table 19: Best normalized optimization results and average CPU
time on UCAV path planning problem on different ε. The numbers
shown are the best results found after 100 Monte Carlo simulations
of BAM algorithm.

Parameter Algorithm

F ε
BAM

Best Worst Mean CPU Time (sec)

0.5 0 0.8817 12.3484 2.9293 9.08

0.5 0.1 0.4541 3.4890 0.7290 9.84

1.0 0.2 0.4860 6.7479 0.9062 9.77

0.5 0.3 0.5158 7.8852 1.0775 9.76

0.5 0.4 0.5580 7.9747 1.0161 9.76

0.5 0.5 0.5570 8.6947 1.4135 9.67

0.5 0.6 0.6282 10.1393 1.3083 9.80

0.5 0.7 0.6363 10.8901 1.2981 9.82

0.5 0.8 0.6442 7.6385 1.5515 9.74

0.5 0.9 0.6779 9.9564 1.8094 9.68

0.5 1.0 0.7060 9.5250 1.9116 9.61

The simulation experiment performed in Sections 5.1
and 5.2 shows that the algorithm BAM we proposed
performed the best but worst effectively when solving the
UCAV path planning problem. From deep investigation,
we can see that BAM cam reach minima when maximum
generation Maxgen = 50 and population size Popsize = 30,
while other population-based optimization methods cannot
achieve satisfactory result under this condition; that is,
BAM needs fewer maximum generation, less population
size, and less time than other population-based optimization
methods when arriving to the same performance. In sum,

the simulation implemented in Section 6 shows that the
algorithm BAM we proposed performed the best and most
absolutely effectively, and it can solve the UCAV path
planning problem perfectly. Furthermore, comparing to
other population-based optimization methods, the algo-
rithm BAM is insensitive to the parameter loudnessA, pulse
rate r, weighting factor F, and scaling factor ε, so we do not
have to fine-tune the parameters A, r, F, and ε to get the best
performance for different problems.

5.3. Discussions. The BA algorithm is a simple, fast, and
robust global optimization algorithm developed by X. S.
Yang in 2010. However, it may lack the diversity of popula-
tion between bats. Therefore, in this work, we add mutation
operation between bats to the BA during the process of
new solutions updating. And then, the BAM algorithm
is proposed to solve the UCAV path planning. From the
experimental results we can sum up the following:

(i) Our proposed BAM approach is effective and effi-
cient. It can solve the UCAV path planning problem
effectively.

(ii) The overall performance of BAM is superior to
or highly competitive with BA and other com-
pared state-of-the-art population-based optimiza-
tion methods.

(iii) BAM and other population-based optimization
methods were compared for different maximum
generations and the dimension. Under majority
conditions, BAM is significantly substantial better
than other population-based optimization methods.

(iv) BAM and BA were compared for different loudness A
and pulse rate r, weighting factor F, and scaling factor
ε. Under almost all the conditions, BAM is far better
than BA.

(v) The algorithm BAM is insensitive to the parameter
loudness A and discovery rate r, weighting factor F,
and scaling factor ε, so we do not have to fine-tune the
parameters A, r, F, and ε to get the best performance
for different problems.

6. Conclusion and Future Work

This paper presented a bat algorithm with mutation for
UCAV path planning in complicated combat field environ-
ments. A novel type of BA model has been described for
single UCAV path planning, and a modification is applied
to mutate between bats during the process of the new gener-
ation generating. Then, the UCAV can find the safe path by
connecting the chosen nodes while avoiding the threat areas
and costing minimum fuel. This new approach can accelerate
the global convergence speed while maintaining the strong
robustness of the basic BA. The detailed implementation
procedure for this improved metaheuristic approach is also
described. Compared with other population-based opti-
mization methods, the simulation experiments show that
this improved method is a feasible and effective way in
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UCAV path planning. It is also flexible, in complicated
dynamic battle field environments and pop-up threats are
easily incorporated.

In the algorithm of UCAV path planning, there are many
issues worthy of further study, and efficient route planning
method should be developed depending on the analysis of
specific combat field environments. Currently, the hot issue
contains self-adaptive route planning for a single UCAV and
collaborative route planning for a fleet of UCAVs. As the
important ways of improving aircraft survivability, adaptive
route planning should analyze real-time data under the
uncertain and dynamic threat condition; even it can re-
modify preplanned flight path to improve the success rate
of completing mission. The difficulty of the collaborative
route planning for a fleet of UCAVs exists in coordination
between the various UCAVs, including the fleet formation,
target distribution, arrival time constraint, and avoidance
conflict, each of which is a complicated question worthy of
further study. Our future work will focus on the two hot
issues and develop new methods to solve problem in UCAV
path planning and replanning.
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