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ABSTRACT

We study a two phase queuing system model where arrivals come to the system in batches of variable size following a compound
Poisson process. We consider that service is provided in two phases, the first service is essential and second service is optional. Service
becomes unavailable when the server goes for vacation and customers may decide to renege. We treat reneging in this paper when
service is unavailable as the server is on vacation. We obtain steady state results in terms of probability generating function. Some
special cases are discussed and a numerical illustration is provided.
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RESUMEN

Estudiamos un sistema bifasico de colas donde los arribos llegan al sistema en lotes de tamafio variable que siguen un proceso
compuesto de Poisson. Consideramos que el servicio esta provisto de dos fases, en el primero el servicio es esencial y el segundo el
servicio es opcional. El servicio no esta disponible si este sale de vacaciones y los clientes pueden optar por retirarse. Tratamos en este
trabajo el retiro cuando el servicio no esta disponible por estar de vacaciones el servidor. Obtenemos un servicio estable en términos de
la funcion generatriz de probabilidad. Algunos casos especiales son discutidos y se brinda una ilustracién numérica.

1. INTRODUCTION

In real life, there are queuing situations when some customers are impatient and discouraged by a long wait in the
queue. As such, the customers may decide not to join the queue (balking) or leave the queue after joining without
receiving any service (reneging). We often witness such situations in real life like calls waiting in call centers,
emergency patients in hospitals, programs on computer, banks etc.

Balking and reneging have attracted the attention of many authors and study of queues with behavior of impatient
customers has significantly developed and we see an extensive amount of literature in this area. Daley [7] appears to
be the first who studied queues with impatient customers. Since then queuing models with balking and reneging has
been studied by many authors like Ancker et al [3], Altman and Yechiali[1], Choudhury and Medhi[ 6] to quote a
few. In recent years, studies related to customers’ impatience has been mainly concentrated on queuing models with
single server. We refer to [2, 4] to readers for reference. Significant contribution by various authors on queues with
server vacation has been seen in the last few years. Authors like Levy and Yechiali [11], Doshi[8], Ke [10], Wang et
al[15]have studied queues under different vacation policies. Most of the literature on queues deals with one main
server. However, in real life there are situations when there is a second server providing service to some customers
demanding subsidiary services. Madan [12] was the first to introduce the concept of a second optional service.
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Such models with an optional service have been studied by many other authors mentioning a few are Medhi [13]
Wang [11], Jain and Chauhan [9]

In this paper we have considered a batch arrival with two phases of services, one essential and the other as optional.
Servers take vacation for a random length of time and customers renege during server vacation. The rest of the paper
is structured as follows: The assumptions underlying the mathematical model are given in section2. Section 3 gives
the definitions and notations used. In section 4 we give the equations governing the queuing system. In section 5 we
derive the queue size distribution at a random epoch. The average queue size and average waiting time are obtained
in section 6. Some special cases are discussed in section 7 and in section 8 we provide a numerical example to
illustrate the feasibility of our results.

2. MODEL AND ASSUMPTIONS

The model has been defined under the following assumptions:

a) Customers or units arrive in batches following a compound Poisson process. Let A8, dt be the first order

probability of ‘i’ customers arriving at an instant of time (t, t+dt],0 < q, < 1,i=1, 2,3... The service to

customers is based on a first come first served basis (FCFS); they receive the first essential service and may
choose the second optional service (SOS) if needed. The first essential service (FES) is required by all

customers. As soon as FES is completed by a customer then he may choose SOS with probability ¢ or
leave the system with probabilityl— ¢ .The service times of FES and SOS follow the general (arbitrary)
distribution with distribution function S; (u) and density functions; (u). Let z;(x)dx, j =12 be the

conditional probability of service completion of FES and SOS respectively during the interval (x, x+dx]
and is given by
( ) ~[ utdx
w1y (X) = s ( ) j=12andthus s;(U) = u; (U)e ° 1)

b) We assume that customers may renege (leave the system after joining the queue) when the server is on
vacation and reneging is assumed to follow exponential distribution with parameter p Thus

f(t)=pB"dt,p>0
Let Adt be the probability that a customer can renege during a short interval of time (t, t+dt].

c) After each service the server goes on vacation with probability p or remains in the system with probability
1— p. The vacation time is also assumed to follow general distribution with distribution function F (V)

and density function f(v).Let y(X)dxbe the conditional probability of a vacation period during the
interval (x, x+dx] given that elapsed time is x such that

( ) —Iy(v)dx

y(X) = ) and thus T (V) =y(v)e ° (2

3. DEFINITIONS AND NOTATIONS

Let Wn(l) (X, 1) is the steady state probability that the server is providing first essential service working since
elapsed time x, when there is n in the queue (n>0) excluding one customer in first service.

Let Wn'(z) (X, 1) = steady state probability that the server is providing second service since elapsed time x, when
there is n in queue (n > 0) excluding one customer in service.

Let V, (X,t) be the probability that there are n customers in the queue (n >0) and the server is on vacation.
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Let Q is the probability that the system is empty and the server is idle but available in the system.

We define the following probability generating functions

WO (x2)=>2"W,7(x) ; WP(2)=>1z"W,"; j=12

n=0 n=0

V(x,2) =iz"Vn(x) o V()= iz“vn

A(z):iaizi

4. EQUATIONS GOVERNING THE SYSTEM

The steady state equations for our model are

%vvn“’ (X) + (2 + 2, )W, @ (x) = 121: aw,,® n>0 (3)
%wom (X)+ (A + 24, ()W, P (x) =0 @)
%wn@) () + (2 + 1, COW,P (x) = /121: aW,?  n>0 ()
%WO(Z) () + (2 + 1, Y2 () =0 ©®
9V,00+ (1 70+ AV, 00 = zz 8, Vo () + AV, () )
%vo () +(2+ 7))V, (x) =0 ®

AQ = ]C.VO (X)y(x)dx+(1— p)L—¢) TWO(l) (X) g, (X)dx + (1— p)]C.WO(Z) (X), (X)dx )

The boundary conditions for solving the above differential equations at x=0 are

W, 2 (0) = (L= p)(A— @) Wy, ()2, 0+ (L= p) [W2 ()2, (10)
+ TVM (X)y(x)dx + Aa, ,,Q n>0
W2 (0) = 6 W, ()1, () n>0 an
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V4 (0) = p(— ) [W,“ ()2, ()dx+ p W, (x) 2, (x)dlx n>0 (12)
0 0
The Normalizing condition is

Q +Zzl iTWn(x)dH iTvn(x)dx =1

j=1 n=0 n=0 o
5. QUEUE SIZE DISTRIBUTION AT RANDOM EPOCH

We multiply equation (3) and (5) by z" and taking summation over all possible values of n, we obtain

%W @ (x,2) + (2= AAZ) + 14, () )W @ (x,2) =0 (13)
%W @ (x,2) + (1= AAZ) + 1, )W @ (x,2) =0 (14)
Similarly from (7) and (8)

%v (x,2) + {(ﬁ —AA(2))+y(X)+ B — ﬂv (x,2)=0 (15)

We now integrate equations (13), (14) and (15) between limits 0 and x and obtain,

WP (x,2) =W ®(0,2) exp {— (2 - 2A(2) )x - j m (t)dt} (16)
W@ (x,2) =W @(0,2) exp[— (1 - AA(2) )x — j 1y (t)dt} (17)
V(x,2)=V(0,2) exp{— (/1 —AA(2)+ B — éjx - JX‘;/(t)dt} (18)

Next we multiply equation (10) with appropriate powers of z and summing over suitable values of n, and utilizing
(9) we get

W (0,2) = (1 P)L—#)[W (x 224 () + (A p) [W2 ()2, () + [V (, 207 ()
—[(1— P)L- )W (001,00 + (L ) [WE2 ()12, () +TV0(X)7(X)dX}+/1A(Z)Q
2W(0,2) = (- )i ) [ W (x,2) 2 ()0 + (L )W 2 ()1, ()
o 0 0 (19)
+ j V (%, 2)7(x)dx + (AA(z) - A )Q
Proceeding similarly with equations (11) and (12) we get
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W2(0,2) = 6[W (x, )2 ()0 @

V(0,2) = p(L— ) [W @ (x) 2, (x)cx +p [W P (x, 2) z, (X)lx (21)
0 0
Again we integrate equations (16), (17) and (18) with respect to x by parts and use (1) and (2). Thus it yields
WO (@) —wo (0,2 1S 2AD) 22)
A—1A(2)
W@ (z) =W @ (0,2) 1-S,(2-2A(2)) )
A—2A(Z)

1—F*[/1—/1A(z)+ﬂ—ﬂ}
V(2) =V (0,2) .
A—IA@)+ =P

z

(24)

0

where S’ (1 — 1A(z)) = j e AONGS (x); j=12and

0

. ﬂ 2 —[/’L—/lA(Z)-%—ﬂ—ng
FlA-AA(@2)+p—= |= Ie dF (x) is the Laplace-Steiltjes transform of service and vacation
z
0
time respectively.
To determine the integrals IW (X, 2) g, (X)dx,i =1,2 and JV (X, 2)y(X)dx we multiply equations (16), (17)
0 0

and (18) with 4 (X), 24, (X) and y(X) respectively, integrate by parts with respect to x and using (1) and (2) obtain

o0

j W@ (x, 2) g, (X)dx =W @ (0,2) S, [2 - 1A(2)] (25)
TW @ (x,2) 1, (X)dx =W @ (0,2)S, [1 — 1A(2)] (26)
TV(X, 2)y(x)dx =V (0, z)F{i—iA(zHﬂ—é} @7

andW @ (0, z),W ® (0, 2),V (0, z) are given in (17), (18) and (19) respectively.

Now from (19) we have
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ZW®(0,2) = (1- p)AL— )W @ (0,2)S; (A - AA(z))+ (L— p)W @ (0,2)S, (1 — 1A(Z))

+V (0, Z)F*(i —AN2)+ B - gj +(1A@2) - AR (28)
W@ (0,2) = W ©(0,2)S; (1 — 1A(2)) 29)
V(0,2) = p—g)W @ (0,2)S; (1 — AA(2))+ pW @ (0, 2)S, (1 — 1A(Z)) (30)

From equations (29) and (30) we have

V(0,2) = pl— W ¥ (0,2)S; (A — AA(2)) + pAV @ (0,2)S; (A — AA(2))S; (A1 - AA(z))  (3D)
Now using (29) and (31) in (28) we get

W @ (O, Z) — _ (/IA(Z) B Z)Q _ (32)

(L- p)L-¢) +(1- p)gS, (A - AA(z))

z—|+ p(1—¢)F*(/1—/1A(z)+,B— 'Bj

> S, (1 - AA(2))

+ pgs, (4 —iA(z))F*(ﬂ — AA(2) +,8—’f)

W@ (0,2)= PAA@) - 2)8, (A - AR

(33)

(- p)(1-¢) + (A- p)¢S, (A - 1A(2))
z—|+ p(1—¢)F*(/1—/1A(z)+ﬁ—fj S, (1—-1A(2))

o (- 2A@)F - a0+ 5 |

Z -

V(0,2)= HA@- 2)pA-9)S; (2 - 2A(2))+ pgS; (4 - 2A2))S; (2 - AA@)R

(34

(1- p)A- ) + (L- p)¢S; (2 - 2A(2))
z—|+ p(l—¢)F*(/1—/1A(z)+[3—f] S, (1-1A(2))

+ pgS, (A —AA(Z))F*(A —- 1A(2) +,B—’fj

Now using (32),(33) and (34) in(22), (23) and (24) we can obtain W © (),W @ (z) and V (2) respectively.

Now we use the normalizing condition Pq (1) + Q =1 to determine the unknown probability Q.

Since W, () =W @ (2) +W @ (z) +V (2) is indeterminate of the 0/0 form at z =1, we use L’Hopital’s rule.
Thus
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W(l)(l) — ZE(I)E(Ul)Q

(35)
1-2E(1)E(U,) - ME(1)EWU,) - p(AE(I) - B)E(V)
1- AE(1)E(U,) - #E(1)EU,) - p(AE(1) - B)E(V)
v PAE(DEM)Q -

T 1-JE(1)E(U,) - ME(1E(U,) - p(AE(1) - BEV)

Where E(1) is the mean size of batch of arriving customers, S, (0) = —E(U,), S, (0) = —E(U,) is the mean of
service time of FES and SOS time and F ™/ (0) = —E (V) is the mean of vacation time. Further
S;(0=1j=12 F (0)=1.

Thus the unknown probability Q is derived as

AE(D[AEWU,) + ¢EU,) + PE(V)]

Q=1 L+ pAE(Y) e

Thus

= ZEM[EV) +EU,) + pEV)] )
1+ pBEWV)

is the stability condition under which steady state exists.

Further using (39) in into equations into (22)-(24) yields

P (server is providing FES at random epoch) = AE(1)E(U,) (40)
P (server is providing SOS at random epoch) = S E(1)E(U,) (41)
P (sever is on vacation at random epoch) = ApE(1)E(V) (42)

Let W_(z) =W P (2) +W @ (2) +V (2) denote the probability generating function of queue size irrespective of
the state of the system. Hence adding (22), (23), (24) we obtain

o n[S; (m) —1]+ ngs; (m)(S; (M) —1)- mp(L—4)S; (M) F*(nﬂ]

—mpgs; (m)S; (M- F*(n)]
{z ~ (1~ p)L-¢)S; (m) - (L~ p)¢5; (M)S; (M) ]

~ P(L-¢)S; (MF"(n) - pgS; (M)S, (m)F " (n)

W, (2) = {

(43)

Where we take A — AA(z) =m, A —AA(2) + S — s
z

Substituting Q from (38) into equation (43), we have completely and explicitly determined
W, (2) , the Probability Generating Function of the queue size.

6. THE AVERAGE QUEUE SIZE AND AVERAGE WAITING TIME
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d
Let Lq = d—Wq (z)| denote the mean number of customers in the queue under the steady state .
z z=1

Since the above relation is of 0/0 form at z =1, we use L Hopital’s rule twice to obtain Lq .

N(z
Let us write W, (2) = % where N(z) and W (z) are the numerator and denominator of RHS of (43), then
z

_ D'MN" @) -N' @)D" )

L, : (44)
2(D' (1))
Where primes and double primes in (44) are first and second derivatives respectively at z=1
N’ (1) = QAE()[E(U,) +¢EU,) + PE(V)] (45)
N1 =QUE( /I —1)+2,B)[2E(I I =1){EU,) +gEU,)}+ 2¢(/1E(I))2E(U1)E(U2)J
(46)
JE(/1-D{EU,) +gEU,)}
{AE(1 /1 =1)+28}E(V)
+QPAE(I /1 1) + 2(AE(N P EU?) + EU2)} { }
) +(AE(1)- BYE(V?)
+2¢(ZE(1))E(U,)E(U,)
D' (1) =1- AE()[EU,) + gEU,) + PE(V)]+ pAE(V) @7
D"(1) = —2E(1/1 ~D[EU,) + gEU,) + PE(V)]
| EUD) +¢EUS)
—(AE(D)) (48)
+2{gE(U,)E(U,) + PEU,)E(V) + dpEU,)E(V)}

—2pBAE(N)[EU,)E(V) +¢EU,)ENV)]-2pBENV) — p(AE(1) - B EV ?)

where E(1 /1 —1)is the second moment of batch of arriving customers, E(U;),E(UZ)and E(V ?) is the
second moment of FES, SOS and vacation time respectively. The value of Q has been obtained in (38). Substituting

the values of N’ (1), N” (1), D’ (1), D (1) and Q from equations (45)-(48) and (38) we obtain L, inaclosed
form. The mean waiting time of a customer can be obtained using the relation Wq =1

7. SPECIAL CASES
Casel. No reneging during server vacation

In this situation customers do not renege when the server is on vacation. Then f=0. Thus M = N.Thus our
probability generating function (43) reduces to
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) o pL-#S,(m) |
Q{5 (m) —1}+ g5, (m){S; (m) ~1}+ T -y
+ pgs; (m)S; (m)
z—(1- p)A-¢)S; (m)- (1- p)¢S; (m)S;(m)

~ p(-¢)S; (m)F"(m)~ pgs; (M)S; (M)F " (m)
Where m = A — AA(z2)
Q=1-ZE()[EWU,) +EU,) + pE(V)]
N'(1) = QAE(N[EU,) + gE(U,) + PE(V)]
JE(1/1 =){EU,) + ¢EU,)}
N" (1) = Q + (AE() EU2) + gEUR)]) [+ pAE(H 11 ~DPEQ 11 ~DEV) - (ZE)F E(V2)
+2¢(AE(1))*E(U,)EU,)
D' (1) =1-ZE(1)[EU,) + E(U,) + PE(V)]
D"(1) =-2E(1 /1 -D{EU,) + g(L- P)E(U,) + PE(V)}
ECREYICHENE S
+2{¢E(U,)EU,) + E(U,)E(V) + pEEU,)EV)}

W, (2) =

S

(49)

-(AE(1))

Thus (49) is the queue size of a Batch Arrival Vacation Queue with second optional service.

Case 2. No second optional service. In this case, there is only one sever providing service, such thatg=0. Then the
probability generating function in (43) reduces to

W, () — QiSI ) ~1j-mps; it - F ()
5 nlz - (- p)S; (M) - pS; (M)F"(n)]

(49a)
Where m = 4 — AA(z), n =/1—/IA(Z)+,B—€

- L ZEMI[EV,) + pEV)]
1+ pBE(V)

N'(1) = QME()EU,) + pAE(1)E(V)]
{AE(1/1 -2+ 28HAE(1 /1 -1)}EU,) |

AE(1/1-1)E(,)
(AE(1/1 —1)+2ﬁ)E(v)}
-(AE()-B)E(V?)

N"@=Q| 4 p(E(I /1 DY+ 20E)FEU?)
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D’ (1) =1- AE(1)E(U,) + p(- AE(1) + B)E(V)
D" (1) =—AE(1 /1 ~D{EU,) + pE(V)}- (AE() P {EUZ) + 2pEU,)E(V)]
—2pBAE(IN{EWU,EV)}-(AE(1) - B) PE(V ?)

Equation (49) gives the queue size distribution of a Batch Arrival with Reneging during vacation period.
Case 3. No server Vacation. If the server does not go for a vacation, in that case p =0
Thus our P.G.F in (43) becomes

[s:(2-2A(2) -1+ ¢ls; (2 - 1A@®))-1]
- (1-9)S; (21— A(2))-¢5; (1 - 2A(2))

W, (2) =

(50)
Q=1-E()[EU,) +EU,)]
N’ (@) = QAE(N[EU,) +¢EWU,)]
(AE(1/1-1{EU,) +¢EU,)}
N"@)=(E(/1-1)+283
+2¢(AE(1) ) E(U,)EU,)
D’ (1) =1-AE(N[EU,) + gEWU,)]

D" (1) =—2E(1/1 ~D{EU,) + gEU,)} - (2B [EUF) + fEU) + 20E(U)EV,)]
Equation (50) is the queue size of a Batch Arrival Queue with second optional service.

Case 4. No Reneging and no second optional service. Then =0, ¢=0.Thus from (43) we have

Q|- p)S; (A - AA(2))-1+ pS; (A - 1A@Z)F " (A - AAQD) )]
z—(1- p)S; (- AA(2))- pS; (A - AA(2)JF (A - AA(2))

Q=1-2E(I)[EU,) + PE(V)]
N’(1) = QAE(I)[E(U,) + pE(V)]
N”(@) = QE(I /1 -1(AE(I /1 -1))EU,)]
+Qp(AE(1/1 —1)[E(U1) +2(AEQ1)Y E(uf)][(;tE(l I1=1)EV)—(AE()) E(VZ)]
D' (1) =1-2E(N[E(U,) + PE(V)]
D' (1) =—2E(1 /1 ~[EU,) + PEV)]- (2E() P [EQUF) + PE(V?) + 2E(U,)EV)]

The result obtained in (51) is the queue size for a Batch Arrival Vacation queue.

W, (2) =

(61)

Case 5. No reneging, no second optional service and no sever vacation, then =0, =0, p=0

Equation (43) reduces to
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S, (A-AA(2))-1
z-S,(1-1A(2))

W (2) =

Q=1-E(1)E(U,)
N'(1) = QAE(1)EU,)
N (1) = QUE(I /1 ~)E(U,) + (AE(1) P EUP)]
D' (1) =1- AE(1)E(,)
D’ (1) =—-[AE(1 /1 —)EU,) + AE() P EU?)]

The result (52) tallies with the steady state queue size of a M G /1queue.

Case 6. Exponential service time and vacation time.

(52)

The exponential distribution is the most common form of distribution for the service time and vacation time. For
this distribution, the rate of service for first essential service is £, > 0 and rate of service for second optional service

is t4,> 0. The rate of vacation completion be 1 > 0.Then we have

S;(2-2A(2)) = m
SZ(A—/IA(Z))H_M’EZZ)W F*(z—zA(z)+ﬁ_ﬁj: i

Substituting the above relations in the expression for W, (2) in the main result (43), we get

z )| A—AA(Z) + 1y A—AAZ) + 1, ) AA(Z) — A + e,
p A -aA@+ -y
p@—#) ! z

Q ﬂ—ﬂA(z)+,u1/1_AA(Z)+ﬁ,_ﬂ

L,
+(A(Z) -2

ﬂ—/lA(z)+,6’—’f+

(l—ﬂA(z)+ﬂ_£){ AA@Z) -4 +¢[ H J AA(Z) — A } 1

Y.
. p¢[ i ][ s j ﬂ.—ﬂA(Z)+ﬁ—?
A —AA@Z) + 1, \ A — AA(Z) + w1, ﬂ—lA(z)+ﬁ—€+77 ]

W, (2) =

Ay 1 Ay Ay
z-A=Pa-9 = AA(Z) + 14, @ p”{z —AA(Z) + 1, J[

75 Ay
_ p(17¢5)[}b “AAZ) + 4 J[g — AA(2) + /lzj

_ p¢( A ][ s ] 7
A — AAN(Z) + g, N\ A — AA(Z) + e, ﬁ—ﬁA(z)+/3’—£+r7
z

(lflA(z)Jr,Bfg

N
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A — AA(Z) + w,

)




Q(/IA(Z) — /1{ L ¢ Hy + p(L—g) H Y eV ag) }

N +
W, (2) = k(2) "k (2)k, (2) . kmnkffﬂ ki (2)k, (2)ks (2)
z-(1-p)1-9) k. (2) ~(1-p)¢ k, (2)k,(2)
_pl— 1 _ 1]
P9 k@ Pk @)k, (k. (2) (53)

Where K, (2) = A —AA(Z) + 1, k,(z) = A — AA(2) + 1, and k3(z)=l—lA(z)+,B—€+;7
AE(I)[1+¢+p}
Mo M, 7
1408+
n
ﬂE(I){1+¢+p}
Mo Hy 7]
1+ pﬂ1
n

Q=1-

p:

N’(1):Q;LE(|){£+£+£}
H Hy 77

N" (1) = QAE(1 /1 —1){i+1+£}
M My 1]

2 2

+Q2(/1E(|))2{i2+£+£+ P, 9 p¢}
L A VA CV O R Y

~22EB-2Q
n

D’(1)=1—/1E(I){i+£+£}rpﬂi
o Hy, 77 n

D”(1)=—2E(I/l—n{i+i+£}—2(m(|))z{%+i+ ¢, P, p¢}
n

2

Mo Ho My My Map, T [T
+2/1|5(|)pﬂ{ 1, ¢ }_Zﬂp
T KT n

—2(4E<|)—ﬂ)2{77%}
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The result (53) gives the PGF of a Batch Arrival with exponential second optional service and Reneging during
Vacation periods.

8. ANUMERICAL ILLUSTRATION

We consider the special case of exponential service time and exponential vacation time as a numerical illustration
for the validity of our results. All the values are arbitrarily chosen such that conditions of stability are satisfied. In
this example we show the effect of the reneging parameter (5) on the server’s idle time, utilization factor, mean
queue size and mean waiting time.

Table (1): Computed values of some queue performance measures

P4 |Q p L, L W, w
p=1

0.50 0.25 0. 2206 0.7794 45055 5.2849 2.2528 2.6425
0.50 0.50 0.1471 0.8529 7.4528 8.3057 3.7264 4.1529
050 0.75 0.0735 0.9265 16.304 17.2305 8.152 8.615
0.60 0.25 0.2582 0.7418 3.7117 4.4535 1.85585 2.22675
0.60 0.50 0.1902 0.8098 5.5572 6.448 2.7786 3.224
0.60 0.75 0.8777 0.1223 67.4195 67.5418 33.70975 33.7709
0.75 0.25 0.3049 0.6951 2.9818 3.6769 1.4909 1.83845
0.75 0.50 0.2439 0.7561 4.016 47721 2.008 2.38605
0.75 0.75 0.1829 0.8171 5.8963 6.7134 2.94815 3.3567

We assume A =2, =2, 1, =4,n=5¢=0.25E(l)=1and E(I1/1-1)=0

We fixed the values of A, My, 1, and 7, while B is assumed different varying values 7, 10 and 12. The above three

tables shows the computed values of the proportion of idle time, utilization factor, the mean queue size and the mean
waiting time. It clearly shows that as we increase the values of ¢ or p, the server idle time decreases while the
utilization factor, mean queue size and mean waiting time increases for different values of the reneging parameter
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Table (2): Computed Values of some Queue performance values

P ¢ | Q P L, L W, W

£ =10

0.50 0.25 0.3375 0.6625 2.9444 3.6069 1.4722 1.8034

0.50 0.50 0.275 0.725 4.1182 4.8432 2.0591 24216

0.50 0.75 0.2125 0.7875 5.8068 6.5943 2.9034 3.2972

0.60 0.25 0.6205 0.3795 4.252 4.6315 2.126 2.31575

0.60 0.50 0.6773 0.3227 6.2857 6.6084 3.14285 3.3042

0.60 0.75 0.7341 0.2659 12.2121 12.478 6.10605 6.239

0.75 0.25 0.4300 0.5700 2.1451 2.7151 1.07255 1.35755

0.75 0.50 0.3800 0.6200 2.3348 2.9548 1.1674 1.4774

0.75 0.75 0.3300 0.6700 3.3046 3.9746 1.6523 1.9873

Table(3): Computed Values of some queue performance values

P ¢ |1Q p L, L W, w
p=12
050 025 0.3977 0.6023 2.7057 3.308 1.3529 1.654
050 0.50 0.3409 0.6591 3.4415 4.1006 1.7208 2.0503
050 0.75 0.2841 0.7159 4.5028 5.2187 2.2514 2.6094
0.60 0.25 0.5594 0.4406 2.9386 3.3792 1.4693 1.6896
0.60 050 | 0.6107 0.3893 4.3323 47216 2.16615 2.3608
0.60 0.75 0.6619 0.3381 7.0271 7.3652 3.51355 3.6826
0.75 0.25 | 0.4911 0.5089 1.9219 2.4308 0.96095 1.2154
0.75 0.50 0.4464 0.5536 2.2849 2.8385 1.14245 1.41925
0.75 0.75 | 0.4018 0.5982 2.7778 3.376 1.389 1.688
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