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Abstract

We consider a batch arrival queueing system with two phases of ser-
vice, feedback and K optional vacations under a classical retrial policy.
At the arrival epoch, if the server is busy the whole batch joins the
orbit. Whereas if the server is free, then one of the arriving customer
starts its service immediately and the rest joins the orbit. For each
customer, the server provides two phases of service. After the com-
pletion of two phases of service, the customer may rejoin the orbit as a
feedback customer for receiving another regular service with probability
p. If the system is empty, then the server become inactive and begins
the first essential vacation. After the completion of first essential va-
cation, the server may either wait idle for a customer or may take one
of K additional vacations. The steady state distribution of the server
state and the number of customers in the orbit are obtained. Also the
effects of various parameters on the system performance are analyzed
numerically.

Mathematics Subject Classification: 60K25, 90B22, 68M20
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1 Introduction

Queueing systems are powerful tool for modeling communication networks,
transportation networks, production lines, operating systems, etc. In recent
years, computer networks and data communication systems are the fastest
growing technologies, which lead to glorious development in many applications.
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For example, the swift advance in Internet, audio data traffic, video data traffic,
etc.

Retrial queueing system are characterized by the fact that arriving cus-
tomer who finds the server busy is to leave the service area and repeat his
demand after some time called retrial time. Between trials, the blocked cus-
tomer joins a pool of unsatisfied customers called orbit. For example, web
access, telecommunication networks, computer systems, packet switching net-
works, collision avoidance star local area networks, etc.

Retrial queueing system operate under the classical retrial policy, where
each block of jobs generate a stream of repeated attempts independently of
the rest of the jobs in the orbit. For example, in call center, the customers
may call again and again independently if their request are not completely
fulfilled.

The feedback phenomenon are another important tool for communication
systems. When the service of a customer is unsatisfied, the service can be
retried again and again until the service is completed successfully. For example,
in multiple access telecommunication systems, where messages turned out as
errors are sent again can be modeled as retrial queues with feedback.

The server works continuously as long as there is at least one customer in
the system. When the server finishes serving a customer and finds the sys-
tem empty, it goes away for a length of time called a vacation. For example,
maintenance activities, telecommunication networks, customized manufactur-
ing, production systems, etc.

When no customers are found in the orbit, the server goes on a first essential
vacation. After first essential vacation, the server may either wait idle for
customers or the server may take one of Type k (k = 1, 2, . . .K) vacations. At
an optional vacation completion epoch, the server waits for the customers, if
any in the orbit or for new customers to arrive.

Artalejo [1], Kulkarni [12] and Templeton [15] have given explicit survey
on retrial queueing systems. Artalejo and Lopez Herrero [3] have investigated
an information theoretic approach for the estimation of the main performance
characteristics of the M/G/1 retrial queue. Gomez-Corral [7] widely discussed
about a single server retrial queueing system with general retrial times. Ar-
talejo and Gomez-Corral [2] have developed an M/G/1 retrial queue with finite
capacity of the retrial group. Takacs [13] studied a single server queueing sys-
tem with bernoulli feedback.

Krishnakumar and Arivudainambi [10] have analyzed a single server retrial
queue with bernoulli vacation schedules and general retrial times. Krishnaku-
mar et. al. [11] have introduced an M/G/1 retrial queueing systems with two
phase service and preemptive resume. J. C. Ke et. al. [9] have analyzed the
characteristics of an M [X]/G/1 queueing system with N policy and almost J
vacations.
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Though lot of work has been done in retrial queueing systems, no one is
done a batch arrival retrial queue with general retrial time, two phases of
service, feedback and K optional vacations. To fill this gap, we have given a
mathematical description in section 3, the practical justification for the model
is discussed in section 2. Section 4 deals with the derivations of the steady
state distribution of the server to be state. The mean number of jobs in the
system and several performance measures are discussed in section 5. In section
6 some important special cases of this model are discussed briefly. Numerical
results related to the effect of various parameters on the system performance
measures are analyzed in section 7.

2 Practical Justification of our Model

2.1 Packet Switched Network

Two or more networks can be attached using an interconnection device called
router and it is used to forward the packets within a network. Batch IP packets
arrive at the router according to a Poisson process. When packets arrive at the
router, one of the packet is selected for service and other packets will be kept
in the buffer. In the buffer, each packet waits for some time and requires the
service again. After all the packets are forwarded, the router will be in idle state
and wait for the new packets to arrive. In the queueing terminology, router,
buffer in the router, retransmission policy, maintenance activities in server idle
time are considered to be the server, the orbit, the retrial discipline, essential
vacation and optional vacation respectively.

2.2 Proxy of WWW server

The proxy of WWW server, HTTP requests arrive at the proxy according to
a Poisson process. When the requests arrive at the proxy, one of the requests
is selected for service and other requests will join in the buffer. In the buffer,
each packet waits for some time and requires the service again. In web con-
tents, proxy may do synchronize actions with WWW server when proxy is
idle. Some maintenance activities are performed randomly when the buffer is
empty (i.e) vacation. When the performed activity is finished, the proxy will
enter the idle state again and wait for the new requests to arrive. In the queue-
ing terminology, proxy, buffer in the proxy, retransmission policy, synchronize
actions and maintenance activities in server idle time are corresponds to the
server, the orbit, the retrial discipline, bernoulli vacation respectively.
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2.3 Production Line

The raw materials arrive in batches of random size instead of single unit. The
machine producing an item may require two phases of service such as prelimary
check followed by usual processing of raw materials. After the completion of
two phases of service the process either stopped for overhauling and mainte-
nance of the system or may continue the further processing of the raw materials
if no fault in the system.

3 Model Description

Customers arrive in batches according to a Poisson process with rate λ. Let
Xj , j = 1, 2 · · · denote the number of customers with a probability distribution
P [Xj = n] = χn, n = 1, 2, · · · and probability generating function X(z). One of
the arriving customers begins his service immediately if the server is available
and remaining customers leave the service area and join the orbit.

The customer access from the orbit to the server in governed by an ar-
bitrary law with distribution function R(t) and Laplace-Stieltjes Transform
(LST) R∗(θ). In succession, a single server provides two phases of service to
each customer. The first phase of service (FPS) is followed by the second
phase of service (SPS). It is assumed that the service Si(i = 1, 2) of the ith

phases of service follows a random variable with distribution function Si(t)
and Laplace-Stieltjes Transform S∗

i (θ). After completion of FPS and SPS, the
service of a customer is unsatisfied, the customer may rejoin the orbit as a
feedback customer with probability p (0 ≤ p ≤ 1) or may leave the system
with probability q.

When no customers are found in the system, the server deactivates and may
decide to go for a first essential vacation of random variable V0 with distribution
function V0(t) and Laplace-Stieltjes Transform V ∗

0 (θ). After completion of
first essential vacation, the server may either wait idle for customers with
probability p0 or may take one of Type k (k = 1, 2, . . . , K) vacations with
probability pk. The Type k vacation times are assumed to follow an arbitrary
distributed random variable Vk with distribution function Vk(t) and Laplace-
Stieltjes Transform V ∗

k (θ), where k = 1, 2, . . . , K and
∑K

k=0 pk = 1. Note that
when p0 = 1, the server does not take any one of these optional vacations upon
returning from the essential vacation and this case K = 0.

Let the random variable Y (t) denotes the server state 0, 1, 2, 3, 4, . . . k +
3, . . . , K +3. If Y (t) = 0 the server being free at time t. If Y (t) = 1 and 2, the
server is busy with FPS and SPS respectively at time t. If Y (t) = 3, 4, k + 3
and K + 3 the server is in essential vacation, type 1 vacation, type k vacation
and type K vacation respectively at time t.

In addition, let R0(t), S0
i (t) and V 0

k (t) be the elapsed retrial time, service
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time and vacation time respectively at time t. In order to obtain a bivari-
ate Markov process {C(t), ξ(t)}, we introduce the supplementary variables
R0(t), S0

i (t) and V 0
k (t), where C(t) is the number of the customers in the

orbit and ξ(t) = R0(t) if Y (t) = 0 and C(t) > 0, ξ(t) = S0
i (t) if Y (t) = i

and C(t) ≥ 0 where i = 1, 2, ξ(t) = V 0
k (t) if Y (t) = k + 3 and C(t) ≥ 0,

k = 0, 1, 2, . . . , K.
The functions θ(x)dx, μi(x)dx and νk(x)dx are the conditional comple-

tion rates for repeated attempts, service and vacation respectively at time x.
i.e., θ(x)dx = dR(x)/(1 − R(x)), μi(x)dx = dSi(x)/(1 − Si(x)), νk(x)dx =
dVk(x)/(1 − Vk(x)).

Theorem 3.1 Let {tn; n = 1, 2, · · ·} be the sequence of epochs at which ei-
ther a service period completion occurs or a vacation time ends. The sequence
of random vectors Zn = {C(tn+), ξ(tn+)} from a Markov chain which is em-
bedded in the retrial queueing system. By similar arguments of Gomez-Corral
[7], we show that the embedded Markov chain {Zn; n = 1, 2, · · ·} is ergodic if
and only if ρ/q < 1, where ρ = E(X)[1 − R∗(λ) + λ(E(S1) + E(S2))].

4 Steady State Distribution of the Server State

For the process {X(t), t ≥ 0}, the probability can be define as P0(t) =
P{C(t) = 0, Y (t) = 0} and the probability densities Pn(x, t)dx = P{C(t) =
n, ξ(t) = R0(t); x < R0(t) ≤ x + dx}, Qi,n(x, t)dx = P{C(t) = n, ξ(t) =
S0

i (t); x < S0
i (t) ≤ x + dx} for t ≥ 0, x ≥ 0 and n ≥ 0 where i = 1, 2

and Gk,n(x, t)dx = P{C(t) = n, ξ(t) = V 0
k (t); x < V 0

k (t) ≤ x + dx} for
x ≥ 0, n ≥ 1 and 0 ≤ k ≤ K.

We assume that the steady state condition ρ/q < 1 is fulfilled, so that
we can set P0 = limt→∞ P0(t), Pn(x) = limt→∞ Pn(t, x) for x ≥ 0 and n ≥ 1,
Qn(x) = limt→∞ Qn(t, x) for x ≥ 0 and n ≥ 1 and Gn(x) = limt→∞ Gn(t, x)
for x ≥ 0 and n ≥ 1. By the method of supplementary variables, we obtain

λP0 = p0

∫ ∞

0

G0, 0(x) ν0(x)dx +

∫ ∞

0

G1, 0(x) ν1(x)dx

+ . . . +

∫ ∞

0

GK, 0(x) νK(x)dx (1)

d

dx
Pn(x) + [λ + θ(x)] Pn(x) = 0, x > 0, n ≥ 1 (2)

d

dx
Qi, 0(x) + [λ + μi(x)] Qi, 0(x) = 0, x > 0, i = 1, 2 (3)

d

dx
Qi, n(x) + [λ + μi(x)] Qi, n(x) = λ

n∑
j=1

χjQi,n−j(x), n ≥ 1, i = 1, 2 (4)
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d

dx
Gk, 0(x) + [λ + νk(x)] Gk, 0(x) = 0, x > 0, 0 ≤ k ≤ K (5)

d

dx
Gk, n(x) + [λ + νk(x)] Gk, 0(x) = λ

n∑
j=1

χjGk,n−j(x), n ≥ 1, 0 ≤ k ≤ K(6)

The above set of equations are to be solved using the steady state boundary
conditions at x = 0,

Pn(0) = p0

∫ ∞

0

G 0, n(x) ν0(x)dx +

∫ ∞

0

G 1, n(x) ν1(x)dx + . . .

+

∫ ∞

0

GK, n(x) νK(x)dx + q

∫ ∞

0

Q 2, n(x) μ2(x)dx

+p

∫ ∞

0

Q2, n−1(x) μ2(x)dx, n ≥ 1 (7)

Q1, 0(0) =

∫ ∞

0

P1(x) θ(x)dx + λχ1P0 (8)

Q1, n(0) =

∫ ∞

0

Pn+1(x) θ(x)dx + λ

∫ ∞

0

n∑
j=1

χjPn−j+1(x)dx + λχn+1P0(9)

Q2, n(0) =

∫ ∞

0

Q1, n(x) μ1(x)dx, n ≥ 1 (10)

λP0 =

∫ ∞

0

G0, 0(x)ν0(x)dx (11)

G0, 0(0) =

{
q
∫ ∞
0

Q2,0(x)μ2(x)dx, n = 0
0, n ≥ 1

(12)

Gk, n(0) = pk

∫ ∞

0

G 0, n(x) ν0(x)dx, n ≥ 0, 0 ≤ k ≤ K (13)

The normalization condition is given by

P0 +
∞∑

n=1

∫ ∞

0

Pn(x)dx +
∞∑

n=0

2∑
i=1

∫ ∞

0

Qi, n(x)dx +
K∑

k=0

∞∑
n=0

∫ ∞

0

Gk, n(x)dx = 1(14)

Let us define the probability generating functions as P (x, z) =
∑∞

n=1 znPn(x)
for |z| ≤ 1 and x > 0, P (0, z) =

∑∞
n=1 znPn(0) for |z| ≤ 1, Qi(x, z) =∑∞

n=0 znQi,n(x) for |z| ≤ 1 and x > 0, Qi(0, z) =
∑∞

n=0 znQi,n(0) for |z| ≤ 1
and Gk(x, z) =

∑∞
n=0 znGk,n(x) for |z| ≤ 1 and x > 0.

Theorem 4.1 Under the stability condition ρ/q < 1, the stationary distri-
butions of the number of customers in the system when the server is free, busy
in FPS, busy in SPS and on vacations are given by

P (z) = P0

{z[1 − R∗(λ)][1 − [(p0+
�K

k=1 pkV ∗
k (λ−λX(z)))V ∗

0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ



Retrial queue with two phases of service 1077

− [1 − R∗(λ)][(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

γ

}
(15)

Q1(z) = P0

{[z[1 − [(p0+
�K

k=1 pkV ∗
k (λ−λX(z)))V ∗

0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ

−(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))

γ

]
ω +

X(z)

z

}

×
{

1 − S∗
1(λ − λX(z))

1 − X(z)

}
(16)

Q2(z) = P0

{ [1 − z[(p0+
�K

k=1 pkV ∗
k (λ−λX(z)))V ∗

0 (λ−λX(z))−1]

V ∗
0 (λ)

]ωz − X(z)

γ

}

×
{

S∗
1(λ − λX(z))[1 − S∗

2(λ − λX(z))]

1 − X(z)

}
(17)

G0(z) =
p0[1 − V ∗

0 (λ − λX(z))]

V ∗(λ)[1 − X(z)]
(18)

Gk(z) =
p0pk{V ∗

0 (λ − λX(z))[1 − V ∗
k (λ − λX(z))]}

V ∗(λ)[1 − X(z)]
, k = 1, 2 · · ·K(19)

P0 =
q − ρ

q[
λE(V0)+λ

�K
k=1 pkE(Vk)

V ∗
0 (λ)

+ R∗(λ)]
(20)

where ρ = E(X)[1 − R∗(λ) + λ(E(S1) + E(S2))]

ω =
[R∗(λ) + X(z)(1 − R∗(λ))]

z

γ = [(pz + q)(R∗(λ) + X(z)(1 − R∗(λ)))S∗
1(λ − λX(z))S∗

2(λ − λX(z)) − z]

Proof
Multiplying equations (2) - (6) by suitable powers of z, summing over n and
using generating functions, we obtain the partial differential equations

∂P (x, z)

∂x
+ [λ + θ(x)]P (x, z) = 0, x > 0 (21)

∂Qi(x, z)

∂x
+ [λ − λX(z) + μi(x)]Qi(x, z) = 0, x > 0, i = 1, 2 (22)

∂Gk(x, z)

∂x
+ [λ − λX(z) + νk(x)]Gk(x, z) = 0, x > 0, k = 0, 1, · · ·K(23)

Solving the above partial differential equations (21) - (23), we get

P (x, z) = P (0, z)[1 − R(x)]e−λx, x > 0 (24)

Qi(x, z) = Qi(0, z)[1 − Si(x)]e−λ(1−X(z))x, x > 0, i = 1, 2 (25)

Gk(x, z) = Gk(0, z)[1 − Vk(x)]e−λ(1−X(z))x, x > 0, k = 0, 1, 2, · · ·K (26)
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From equation(5), we obtain

G0, 0(x) = G0, 0(0)[1 − V0(x)]e−λx, x > 0 (27)

Multiplying equation (27) by ν0(x) on both sides and integrating with respect
to x from n = 0 to ∞ and using equation (11), we have

G0, 0(0) =
λP0

V ∗
0 (λ)

(28)

From equations (12) and (28), we get the simplification

G0(0, z) =
λP0

V ∗
0 (λ)

(29)

Multiplying equation (7) by suitable powers of z, summing over n from 1 to ∞
and after some algebraic simplification we get,

P (0, z) = p0

∫ ∞

0

G0(x, z)ν0(x)dx +

K∑
k=1

∫ ∞

0

Gk(x, z)νk(x)dx

+(pz + q)

∫ ∞

0

Q2(x, z)μ2(x)dx − λP0 − G0, 0(0) (30)

Multiplying equations (8) - (10) and (13) by appropriate powers of z, summing
over n from 0 to ∞ and after some algebraic manipulation we get,

Q1(0, z) =
1

z

∫ ∞

0

P (x, z) θ(x)dx +
λX(z)

z

[ ∫ ∞

0

P (x, z)dx + P0

]
(31)

Q2(0, z) = Q1(0, z)S∗
1(λ − λX(z)) (32)

Gk(0, z) = pk
λP0

V ∗
0 (λ)

V ∗
0 (λ − λX(z)) (33)

Further using equations (25) - (29) and (33) in equation (30), we get

P (0, z) =
λP0p0

V ∗
0 (λ)

V ∗
0 (λ − λX(z))

{
1 +

K∑
k=1

pkV
∗
k (λ − λX(z))

}

+(pz + q)Q2(0, z)S∗
2(λ − λX(z)) − λP0 − λP0

V ∗
0 (λ)

(34)

Substituting equation (24) in (31), we obtain

Q1(0, z) = P (0, z)ω + λP0
X(z)

z
(35)
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Using equation (35) in equation (32), we get

Q2(0, z) =

[
P (0, z)ω + λP0

X(z)

z

]
S∗

1(λ − λX(z)) (36)

Substituting equation (36) in (34) and after some algebraic manipulation

P (0, z) =
λzP0[1 − [(p0+

�K
k=1 pkV ∗

k (λ−λX(z)))V ∗
0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ

−λP0[(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

γ
(37)

Substituting equation (37) in (35), we get

Q1(0, z) = λP0

{ωz[1 − [(p0+
�K

k=1 pkV ∗
k (λ−λX(z)))V ∗

0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ

−ω[(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

γ
+

X(z)

z

}
(38)

Utilizing equation (37) in (36) and simplifying we get

Q2(0, z) = λP0S
∗
1(λ − λX(z))

{ωz[1 − [(p0+
�K

k=1 pkV ∗
k (λ−λX(z)))V ∗

0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ

−ω[(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

γ
+

X(z)

z

}
(39)

Substituting equations (33), (37) - (39) in equations (24) - (26) and after some
algebraic manipulation, we obtain

P (x, z) = λP0

{z[1 − [(p0+
�K

k=1 pkV ∗
k (λ−λX(z)))V ∗

0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ

− [(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

γ

}
[1 − R(x)] e−λx

Q1(x, z) = λP0

{ωz[1 − [(p0+
�K

k=1 pkV ∗
k (λ−λX(z)))V ∗

0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ

−ω[(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

γ
+

X(z)

z

}

×
{

[1 − S1(x)]e−λ(1−X(z))x
}
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Q2(x, z) = λP0

{ωz

[
1 − [(p0+

�K
k=1 pkV ∗

k (λ−λX(z)))V ∗
0 (λ−λX(z))−1]

V ∗
0 (λ)

]

γ

−ω[(pz + q)X(z)S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

γ
+

X(z)

z

}

×
{

[1 − S2(x)]e−λ(1−X(z))x
}

S∗
1(λ − λX(z))

Gk(x, z) =
λP0pk

V ∗
0 (λ)

V ∗
0 (λ − λX(z))[1 − Vk(x)]e−λ(1−X(z))x, k = 0, 1, 2, · · ·K

Integrating the above equations with respect to x from 0 to ∞, we finally get
the required results equations (15) - (19).

At this point, the only unknown is P0, which can be determined by using the
normalization condition P0 +P (1) +Q1(1) +Q2(1) +G0(1) +

∑K
k=1 Gk(1) = 1.

Let Ks(z) = P0 + P (z) + z[Q1(z) + Q2(z)] + G0(z) +
∑K

k=1 Gk(z) and

K0(z) = P0 + P (z) + [Q1(z) + Q2(z)] + G0(z) +
∑K

k=1 Gk(z) be the probability
generating function of the system and orbit size distribution at stationary point
of time. Thus we have the following theorem.

Theorem 4.2 Under the stability condition ρ/q < 1, the probability gener-
ating function of the system and orbit size distribution at stationary point of
time is given by

Ks(z) = P0

{
q

[ [
1−(p0+

�K
k=1 pkV ∗

k (λ−λX(z)))V ∗
0 (λ−λX(z))

V ∗
0 (λ)

]

γ[1 − X(z)]

×[R∗(λ) + X(z)[1 − R∗(λ)] +
R∗(λ)

γ

]

×[S∗
1(λ − λX(z))S∗

2(λ − λX(z))(1 − z)]

}
(40)

K0(z) = P0

{
q

[ [
1−(p0+

�K
k=1 pkV ∗

k (λ−λX(z)))V ∗
0 (λ−λX(z))

V ∗
0 (λ)

]

γ[1 − X(z)]

×[R∗(λ) + X(z)[1 − R∗(λ)]] − R∗(λ)

γ

]

×[S∗
1(λ − λX(z))S∗

2(λ − λX(z))]

}
(1 − z) (41)

where P0 is given (20).
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5 Performance Measures

In this section, we analyze some system performance measures of the retrial
queue. Differentiating equation (40) with respect to z and evaluating at z = 1,
the mean number of customers in the system Ls is obtained as

Ls =
Nr1

Dr1
+

Nr2

Dr2
+ {λE(X)[E(S1) + E(S2)]} (42)

where Dr1 = {2qE(X) [λE(V0) + λ

K∑
k=1

pkE(Vk) + V ∗
0 (λ)R∗(λ)]}

Nr1 = q{[λE(X)]2[E(V 2
0 ) + 2

K∑
k=1

pkE(Vk)E(V0) +
K∑

k=1

pkE(V 2
k )]

+2λ[E(X)]2[1 − R∗(λ)][E(V0) +

K∑
k=1

pkE(Vk)]}

Nr2 = {[λE(X)]2[E(S2
1) + 2E(S1)E(S2) + E(S2

2)]

+2λ[E(X)]2[1 − R∗(λ)][E(S1) + E(S2)]

+E[X(X − 1)][1 − R∗(λ) + λ(E(S1) + E(S2))] + 2pρ}
Dr2 = [2(q − ρ)]

Differentiating equation (41) with respect to z and evaluating at z = 1, we get
the expected number of customers in the orbit Lq is obtained as

Lq =
Nr1

Dr1
+

Nr2

Dr2
− pλ[E(X)][E(S1) + E(S2)]

q
(43)

6 Special cases

In this section, we analyze briefly some special cases of our model, which are
consistent with the existing literature.
Case 1: If P [X = 1] = 1, p0 = 1 and p = 0, the model reduces to the M/G/1
retrial queue with general retrial times and a single vacation. The probability
generating function of the number of customers in the system Ks(z), the idle
probability P0 and the mean queue size Lq can be simplified to the following
expressions and which are in accordance with those of Krishnakumar et al [10].

P0 =
[R∗(λ) − λE(S)]V ∗

0 (λ)

{λE(V0) + V ∗
0 (λ)R∗(λ)}

Ks(z) = P0

{
[1 − V ∗

0 (λ − λz)][R∗(λ) + z(1 − R∗(λ))] − R∗(λ)V ∗
0 (λ)

V ∗
0 (λ)[(z + (1 − z)R∗(λ))S∗(λ − λz) − z]

}

×{S∗(λ − λz)}
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Lq =
{
λ2[E(V 2

0 )] + 2λE(V0)[1 − R∗(λ)]
}{

2[λE(V0) + R∗(λ)V ∗
0 (λ)]

}−1

+
{
λ2[E(S2) + 2λ[1 − R∗(λ)]E(S)

}{
2[R∗(λ) − λE(S)]

}−1

Case 2: If P [X = 1] = 1, V ∗
0 (λ) = 1 and p = 0, our model reduces to

M/G/1 retrial queue with general retrial times and two phases of service.
The probability generating function of the number of customers in the system
Ks(z), the idle probability P0 and the mean queue size Lq can be simplified
to the following expressions and this result is equivalent to the result obtained
by Choudhury [4].

P0 =
[R∗(λ) − λ(E(S1) + E(S2))]

R∗(λ)

Ks(z) = P0

{
R∗(λ)(1 − z)S∗

1(λ − λz)S∗
2(λ − λz)

[(z + (1 − z)R∗(λ))S∗
1(λ − λz)S∗

2(λ − λz) − z]

}

Lq =
λ2[E(S2

1) + 2E(S1)E(S2) + E(S2
2)]

2[R∗(λ) − λ[E(S1) + E(S2)]]
+

2λ[1 − R∗(λ)][E(S1) + E(S2)]

2[R∗(λ) − λ[E(S1) + E(S2)]]

Case 3: If V ∗
0 (λ) = 1, P [X = 1] = 1, p0 = 1 and p = 0, we get an M/G/1

retrial queue with general retrial times. In this case, the probability generating
function of the number of customers in the system Ks(z), the probability of
no customers in the system P0 and the mean queue size Lq can be rewritten
in the following form and the results agree with Gomez-Corral [7].

P0 =
R∗(λ) − λE(S)

R∗(λ)

Ks(z) = P0

{ R∗(λ)(1 − z)S∗(λ − λz)

[(z + (1 − z)R∗(λ))S∗(λ − λz) − z]

}

Lq =
λ2E(S2) + 2λ(1 − R∗(λ))E(S)

2[R∗(λ) − λE(S)]

Case 4: If V ∗
0 (λ) = 1, p0 = 1 and p = 0, we get the M [X]/G/1 queue with

classical retrial policy. In this case, the probability generating function of
the number of customers in the system Ks(z), the idle probability P0 and the
expected number of customers in the queue Lq can be simplified to the following
forms and which is consistent with the results of Falin and Templeton [6].

Ks(z) =
(1 − z)(1 − ρ)

[R∗(λ) + X(z)R∗(λ)]

Lq =
(λE(X))2E(S2)

2(1 − ρ)
+

λ(E(X))2E(S)(1 − R∗(λ))

1 − ρ

+
E(X(X − 1))[1 − R∗(λ) + λE(S)]

2(1 − ρ)
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P0 =
1 − ρ

R∗(λ)

Case 5: If R∗(λ) → 1, V ∗
0 (λ) = 1, P [X = 1] = 1 and p0 = 1, we obtain the

M/G/1 queueing system with two phases of service and bernoulli feedback. In
this case, the probability generating function of the number of customers in the
system Ks(z), the idle probability P0 and the expected number of customers
in the queue Lq can be simplified to the following expressions and which is
equivalent the results obtained by Choudhury and Paul [5].

P0 = 1 − ρ

q

Ks(z) = P0

[ q(1 − z)S∗
1(λ − λz)S∗

2(λ − λz)

(pz + q)S∗
1(λ − λz)S∗

2(λ − λz) − z

]

Lq = ρ +
λ2[E(S2

1) + 2E(S1)E(S2) + E(S2
2)]

2(q − ρ)
+

λp[E(S1) + E(S2)]

q − ρ

Case 6: If R∗(λ) → 1, p0 = 1 and p = 0, we get the M (X)/G/1 queueing sys-
tem with a single vacation. In this case, the probability generating function
of the number of customers in the system Ks(z), the probability of no cus-
tomers in the system P0 and the expected number of customers in the queue
Lq can be simplified to the following expressions and the equations coincides
with equation of Takagi [14].

P0 =
[1 − λE(X)E(S)]V ∗

0 (λ)

λE(V0) + V ∗
0 (λ)

Ks(z) = P0

{
[1 − V ∗

0 (λ − λX(z)) + V ∗
0 (λ)[1 − X(z)]](1 − z)S∗(λ − λX(z))

V ∗
0 (λ)[S∗(λ − λX(z)) − z][1 − X(z)]

}

Lq =
{

(λE(X))2[E(V 2
0 )]

}{
2E(X)[λE(V0) + V ∗

0 (λ)]
}−1

+
{
λE(X))2[E(S2) + E(X(X − 1))λE(S)

}{
2[1 − λE(X)E(S)]

}−1

Case 7: If R∗(λ) → 1, V ∗
0 (λ) = 1, P [X = 1] = 1, p0 = 1 and p = 0, our model

can be reduced to the M/G/1 queueing system. In this case, the probability
generating function of the number of customers in the system Ks(z), the idle
probability P0 and the mean queue size Lq can be simplified to the following
expressions and which are consistent with well known the P-K formula [8].

P0 = 1 − ρ

Ks(z) =
(1 − ρ)(1 − z)S∗(λ − λX(z))

[S∗(λ − λX(z)) − z]

Lq =
λ2E(S2)

2(1 − ρ)
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7 Numerical Illustration

We present some numerical results using Matlab in order to illustrate the effect
of various parameters on the main performance of our system. For the effect of
parameters λ, θ, p and k on the system performance measures, two dimensional
graphs are drawn in Fig 1-3 such that the stability condition is satisfied. We
assume that the service time distributions for chosen parametric values are
Exponential, Erlangian and Hyper exponential distribution. Figure 1 shows
that the mean orbit size Lq decreases for increasing the values of the feedback
with probability p. Figure 2 shows that the mean orbit size Lq increases for
increasing the values of the optional vacation k. Figure 3 shows that the mean
orbit size Lq increases for increasing the values of the the retrial rate θ.

Three dimensional graphs are illustrated in figures 4-6. In figure 4, the
surface displays a upward trend as expected for increasing value of the feedback
probability p and the retrial rate θ against the mean orbit size Lq. The mean
orbit size Lq increases for increasing value of the feedback probability p and
the optional vacation k is shown in figure 5. In figure 6, the surface displays
sharp fall trend as expected for increasing value of the retrial rate θ and the
optional vacation k against the mean orbit size Lq.

8 Conclusion

In this paper, we introduced a single server retrial queueing system with gen-
eral repeated attempts, batch arrival, two phases of service, feedback and K
optional vacations. The probability generating function of the number of cus-
tomers in the system is found using the supplementary variable technique.
Various performance measures and special cases are analyzed. Some practical
justification such as the packet-switched networks, proxy of WWW server and
production line are given. The effect of various parameters on the performance
measure are illustrated graphically. The result of this paper is useful for the
network design engineers and software engineers to design various computer
communication systems.
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Figure 1: Lq versus p
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Figure 2: Lq versus k
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Figure 3: Lq versus θ
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Figure 4: Lq versus p and θ
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Figure 5: Lq versus p and k
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