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We study the behavior of a batch arrival queuing system equipped with a single server providing general arbitrary service to
customers with di
erent service rates in two �uctuating modes of service. In addition, the server is subject to random breakdown.
As soon as the server faces breakdown, the customer whose service is interrupted comes back to the head of the queue. As soon
as repair process of the server is complete, the server immediately starts providing service in mode 1. Also customers waiting for
service may renege (leave the queue) when there is breakdown or when server takes vacation. 	e system provides service with
complete or reduced e�ciency due to the �uctuating rates of service.We derive the steady state queue size distribution. Some special
cases are discussed and numerical illustration is provided to see the e
ect and validity of the results.

1. Introduction

In this paper, we study a single server queue where the server
is providing service in two di
erent modes with probabilities�1 and�2. In real life, service o
ered to each arriving unitmay
not be at the same rate. Sometimes the service o
ered by the
server may be fast, mostly normal, and at times slow. 	us
the e�ciency of a queuing system is completely a
ected by
di
erent modes of service. In the current age of electronics,
most of the servers in a queuing system are electronic devices.
It is very natural that such machines may experience sudden
mechanical breakdown which cause the stoppage of service
until the machine is repaired. In such cases, the customer
whose service is interrupted returns back to the head of the
queue and waits until repair process is completed. In the real
world, we see such breakdown occurring in machines used
in production and manufacturing units, communication
systems, tra�c intersections, automatic teller machines, and
so forth.

	e server while providing service may take a pause
or break which is referred to as vacation in the queuing

literature. We have also considered the phenomenon of
customers’ impatience called reneging. Persons may renege
or leave the queue aer joining as they become impatient
when the server breaks down or during server vacation. Here
we assumed reneging to happen during breakdowns and
vacation. 	is is a very realistic situation where we come
across situations where customers prefer to leave without
receiving service when there is a failure in the service system
or the server is not available for a certain period of time.

	ere have been extensive studies in queues with vaca-
tions by prominent researchers since the last decade. Levy
and Yechiali [1], Takagi [2], Doshi [3], Madan [4–6], to
name a few. We see numerous contributions on queues
with breakdown and service interruptions; see, for example,
authors like Gaver [7], Aissani and Artalejo [8], Wang et al.
[9], Ke [10], Tang [11], and Gray et al. [12]. Recently, Khalaf
et al. [13] have studied some queuing systems with random
breakdown and delay times. Most of the queues studied here
have focused on a single server providing service in the same
rate and breakdown occurring during the working state of
the server. But in our study, we have assumed that failure or
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breakdown can occur even when the server is in idle state.
Also, we further assumed that the server provides service in
two �uctuating modes at two di
erent rates.

Further signi�cant contribution has been done on queues
dealing with impatient customers like reneging and balking.
Queues with reneging had been initially studied by Daley
[14]. We �nd studies on queues with reneging by authors like
Altman and Yechiali [15], Bae et al. [16], Ancker and Gafarian
[17], Choudhury and Medhi [18], and Zhang et al. [19]. We
see real-life implications on reneging during breakdown and
vacations as persons waiting for service may discard the
queue due to the absence of the server.

	e mathematical model is de�ned under the following
assumptions.

(1) Customers (or units) arrive in batches of variable
size according to a compound Poisson Process. Let����� (� = 1, 2, 3, . . .) be the �rst-order probability
of arrival of batch “�” customers in the system at a
short interval of time (�, � + ��], where 0 ≤ �� ≤ 1,∑∞�=1 �� = 1; � > 0 is the arrival rate of batches.

(2) 	ere is one server providing service in 2 �uctuating
modes.	eunits are served one by one on a �rst come
�rst served basis. We assume that the probability of
providing service in mode 1 is �1 and mode 2 is�2(�1 + �2 = 1). 	e service time follows general
distributions
1 and
2 at modes 1 and 2 with rates of
service �1 and �2, respectively. Let ��() and ��() be
the distribution function and density function of the
service time, respectively.	e conditional probability
of the service time during the interval (, +�) given
that elapsed service time is  is

�� () = �� ()1 − �� () and thus

� (�) = �� (�) exp(−∫�
0
�� () �) , � = 1, 2.

(1)

(3) 	e system may fail or be subjected to breakdown at
random. 	e breakdowns are time-homogeneous in
the sense that the server can fail even while it is idle.
	e customer receiving service during breakdown
returns back to the head of the queue. Once repair
process is complete, the server immediately provides
service to the customer in mode �1. We assume
that time between breakdowns occurs according to
a Poisson process with mean rate of breakdown as� > 0. Further, the repair times follow a general
(arbitrary) distribution with distribution function�() and density function �(). Let the conditional
probability of completion of the repair process be�()� such that �() = �()/(1 − �()) and thus�(�) = �(�) exp(− ∫�0 �()�).

(4) Aer each service completion, the server may take
a vacation of random length with probability � or
remain in the system with probability 1 − �. 	e
server’s vacation time follows a general (arbitrary)

distribution with distribution function �(�) and den-
sity function �(�). Let �()� be the conditional
probability of completion of vacation during the
interval (,  + �] during the elapsed vacation time, so that

� () = � (�)
1 − � (�) and therefore

� (�) = � (�) exp(−∫�
0
� () �) .

(2)

(5) We assume that customers may renege (leave the
system aer joining the queue) when the server is
on vacation and reneging is assumed to follow expo-
nential distribution with parameter �. 	us �(�) =��−����, � > 0. Let ��� be the probability that a
customer can renege during a short interval of time(�, � + ��].

2. Definitions and Notations

Let  (�)	 (�, ) = Probability that at time � the server is
providing service in mode �, (� = 1, 2) since elapsed time ,
and there are ! (! ≥ 0) customers in the queue excluding one
customer in service. (�)	 () = ∫∞0  	(�)(�, )� = Probability that at time �
there are ! (! ≥ 0) customers in the queue excluding one
customer in service irrespective of the value  (� = 1, 2).#	(�, ) =Probability that the server is under repairs since
elapsed time  and there are ! (! ≥ 0) customers in the queue.#	(�) = ∫∞0 #	(�, )� = Probability that the server is

under repairs and there are ! (! ≥ 0) customers in the queue
irrespective of the value .$	(�, ) = ∫∞0 $(�, )� = Probability that at time � the
server is on vacation with elapsed vacation time  and there
are ! (! ≥ 0) customers waiting in the queue for service.$	(�) = ∫∞0 $	(�, )� = Probability that at time � the
server is on vacation and there are ! (! ≥ 0) customers in the
queue irrespective of the value .% = the steady state probability that the server is idle.

3. Steady State Equations Governing
the System

According to the assumptions above, we derive the following
steady state di
erential equations:

�� 	(1) () + (� + �1 () + �)  	(1) ()
= � 	∑
�=1

�� 	−�(1) () ! ≥ 1
(3)

�� (1)0 () + (� + �1 () + �)  (1)0 () = 0 (4)
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�� (2)	 () + (� + �2 () + �)  (2)	 ()
= � 	∑
�=1

�� (2)	−� () ! ≥ 1
(5)

�� (2)0 () + (� + �2 () + �)  (2)0 () = 0 (6)

��#	 () + (� + � () + �) #	 ()
= � 	∑
�=1

��#	−� () + �#	+1 () ! ≥ 1
(7)

��#0 () + (� + � () + �) #0 () = �#1 () (8)

��$	 () + (� + � () + �)$	 ()
= � 	∑
�=1
�	−�$	−� () + �$	+1 () ! ≥ 1

(9)

��$0 () + (� + � ()) $0 () = �$0 () (10)

(� + �)% = (1 − �)
× [∫∞
0
 0(1) () �1 () �

+∫∞
0
 0(2) () �2 () �]

+ ∫∞
0
#0 () � () � + ∫∞

0
$0 () � () �.

(11)

	e boundary conditions for solving the above di
eren-
tial equations are

 (1)	 (0) = ��	+1�1% + (1 − �)
× [
[
�1 ∫∞
0
 (1)	+1 () �1 () �

+�1 ∫∞
0
 (2)	+1 () �2 () �]]

+ �1 ∫∞
0
#	+1 () � () �

+ �1 ∫∞
0
$	+1 () � () � ! ≥ 0.

(12)

	e le side indicates the probability that there is one
customer in service and ! customers in the queue. Zero in
the parentheses of the le side of the boundary condition
(12) implies the moment when the service starts in mode 1.
	e right side of (12) shows �vemutually exclusive cases each

contributing to the immediate start of service in mode 1. 	e
�rst termon the right sidemeans that as soon as a batch of size! + 1 arrives when the system is empty, the service in mode 1
starts immediately. Similarly, other terms on the right side of
(12) indicate that just aer the completion of a service inmode
1 or in mode 2, or completion of a vacation or completion
of repairs, the service in mode 1 immediately starts. Utilizing
similar reasoning, we get the other boundary conditions as
follows:

 (2)	 (0) = ��	+1�2% + (1 − �)
× [�2 ∫∞

0
 (1)	+1 () �1 ()

+�2 ∫∞
0
 (2)	+1 () �2 () �]

+ �2 ∫∞
0
#	+1 () � () �

+ �2 ∫∞
0
$	+1 () � () � ! ≥ 0

(13)

#	+1 (0) = �∫∞
0
 (1)	 () � + �∫∞

0
 (2)	 () �

= � (1)	 + � (2)	 ! ≥ 0
(14)

#0 (0) = �% (15)

$	 (0) = � [∫∞
0
 	(1) () �1 () �

+∫∞
0
 	(2) () �2 () �] .

(16)

4. Queue Size Distribution at Random Epoch

Let us now de�ne the following probability generating func-
tions:

 (�) (, 9) = ∞∑
	=0

9	 (�)	 ()  (9) = ∞∑
	=0

9	 (�)	
# (, 9) = ∞∑

	=0
9	#	 () # (9) = ∞∑

	=0
9	#	

$ (, 9) = ∞∑
	=0

9	$	 () $ (9) = ∞∑
	=0

9	$	
: (9) = ∞∑

	=1
9	�	.

(17)

Now multiplying (3) by 9	 and taking sum over “!” from
1 to∞, adding with (4) and using (17), we obtain

�� (1) (, 9) + (� − �: (9) + �1 () + �)  (1) (, 9) = 0.
(18)
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Similarly performing the same operations to (5), (7), and
(9) and using (17), we have

�� (2) (, 9) + (� − �: (9) + �2 () + �)  (2) (, 9) = 0
(19)

��# (, 9) + (� − �: (9) + � () + � −
�
9)# (, 9) = 0

(20)

��$ (, 9) + (� − �: (9) + � () + � −
�
9)$ (, 9) = 0.

(21)

Now for the boundary conditions, we multiply (12)

by 9	+1, summing over “!” from 0 to ∞, and using the
probability generating functions de�ned in (17) and (11), we
get

9 (1) (0, 9) = �1�: (9)% + (1 − �)
× [�1 ∫∞

0
 (1) (, 9) �1 () �

+ �1 ∫∞
0
 (2) (, 9) �2 () �]

+ �1 ∫∞
0
# (, 9) � () �

+ �1 ∫∞
0
$ (, 9) � () �

− �1 {(1 − �) [∫∞
0
 (1)0 () �1 () �

+ ∫∞
0
 (2)0 () �2 () �]

+ ∫∞
0
#0 () � () �

+ ∫∞
0
$0 () � () �}

9 (1) (0, 9) = �1 (�: (9) − � − �)% + (1 − �) �1
× [∫∞
0
 (1) (, 9) �1 () �
+ ∫∞
0
 (2) (, 9) �2 () �]

+ �1 ∫∞
0
# (, 9) � () �

+ �1 ∫∞
0
$ (, 9) � () �.

(22)

Similarly, performing the same operation in (13), we have

9 (2) (0, 9) = �2 (�: (9) − � − �)% + (1 − �) �2
× [∫∞
0
 (1) (, 9) �1 () �

+ ∫∞
0
 (2) (, 9) �2 () �]

+ �2 ∫∞
0
# (, 9) � () �

+ �2 ∫∞
0
$ (, 9) � () �.

(23)

Now multiplying (14) by 9	+1, summing over ! from 0 to∞, and using (15) and (17), we have

# (0, 9) − �% = �9 (1) (9) + �9 (2) (9)
Or # (0, 9) = �9 [ (1) (9) +  (2) (9)] + �%. (24)

Againmultiplying by 9	, summing over ! from 0 to∞, in
(16) and (17), we get

$ (0, 9) = � [∫∞
0
 (1) (, 9) �1 () �

+ ∫∞
0
 2 (, 9) �2 () �] .

(25)

Now integrating (17)–(21) over 0 to  gives

 (1) (, 9) =  (1) (0, 9)
× exp [− (� − �: (9) + �)  − ∫


0
�1 (�) ��]

(26)

 (2) (, 9) =  (2) (0, 9)
× exp [− (� − �: (9) + �)  − ∫


0
�2 (�) ��]

(27)

# (, 9) = # (0, 9)
× exp [−(� − �: (9) + � − �

9) − ∫



0
� (�) ��]

(28)

$ (, 9) = $ (0, 9)
× exp [−(� − �: (9) + � − �

9) − ∫



0
� (�) ��] .

(29)
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Again integrating (26)–(29) by parts with respect to 
yields

 (1) (9) =  (1) (0, 9) [1 − �∗1 (� − �: (9) + �)(� − �: (9) + �) ] (30)

 (2) (9) =  (2) (0, 9) [1 − �∗2 (� − �: (9) + �)(� − �: (9) + �) ] (31)

# (9) = # (0, 9) [1 − �∗ (� − �: (9) + � − �/9)� − �: (9) + � − �/9 ] (32)

$ (9) = $ (0, 9) [1 − �∗ (� − �: (9) + � − �/9)� − �: (9) + � − �/9 ] , (33)

where �∗� (� − �:(9) + �) = ∫∞0 �−(−�(�)+�)
���(), �∗(� −:(9) + � − �/9) = ∫∞0 �−(−�(�)+�−�/�)
��() and �∗(� −
�:(9)+�−�/9) = ∫∞0 �−(−�(�)+�−�/�)
��() are the Laplace-
Stieltjes transform of the service time ��(), G = 1, 2, repair
time �(), and vacation time �(), respectively.

To evaluate the integrals ∫∞0  (1)(, 9)�1()�, ∫∞0  (2)
(, 9)�2()�, ∫∞0 #(, 9)�()� and ∫∞0 $(, 9)�()�, we
multiply (26), (27), (28), and (29) by �1(), �2(), �(), and�(), respectively, and integrating w.r.t. , we have
∫∞
0
 (1) (, 9) �1 () � =  (1) (0, 9) �∗1 (� − �: (9) + �)

∫∞
0
 (2) (, 9) �2 () � =  (2) (0, 9) �∗2 (� − �: (9) + �)

∫∞
0
# (, 9) � () � = # (0, 9) �∗ (� − �: (9) + � − �

9)
∫∞
0
$ (, 9) � () � = $ (0, 9) �∗ (� − �: (9) + � − �

9) .
(34)

Let us take � − �:(9) + � = H, � − �:(9) + � − �/9 = �
and utilizing the values from (34) in (22) and (23), we obtain

9 (1) (0, 9) = − �1H% + (1 − �) �1
× { (1) (0, 9) �∗1 (H) +  (2) (0, 9) �∗2 (H)}
+ �1# (0, 9) �∗ (�) + �1$ (0, 9) �∗ (�) .

(35)

Rewrite the above equation as

[9 − (1 − �) �1�∗1 (H)]  (1) (0, 9)
− (1 − �) �1�∗2 (H)  (2) (0, 9)
− �1�∗ (�) # (0, 9) − �1�∗ (�) $ (0, 9)

= −�1H%.
(36)

Similarly, from (23), we get

− (1 − �) �2�∗1 (H)  (1) (0, 9)
+ [9 − (1 − �) �2�∗2 (H)]  (2) (0, 9)
− �2�∗ (�) # (0, 9) − �2�∗ (�) $ (0, 9) = −�2H%.

(37)

Again using relations (30) and (31) in (24) yields

�9 [1 − �∗1 (H)H ] (1) (0, 9)
+ �9 [1 − �∗2 (H)H ] (2) (0, 9) − # (0, 9) = −�%.

(38)

Utilizing (34) in (25) gives

$ (0, 9) = � (1) (0, 9) �∗1 (H) + � (2) (0, 9) �∗2 (H) . (39)

Now using (39) in (36) and (37) and rewriting the
equations again, we obtain

[9 − �1�∗1 (H) {(1 − �) + ��∗ (�)}]  (1) (0, 9)
− �1�∗2 (H) {(1 − �) + ��∗ (�)}  (2) (0, 9)
− �1�∗ (�) # (0, 9) = −�1H%
− {(1 − �) + ��∗ (�)} �2�∗1 (H)  (1) (0, 9)
+ [9 − �2�∗2 (H) {(1 − �) + ��∗ (�)}]  (2) (0, 9)
− �2�∗ (�) # (0, 9) = −�2H%

�9 [1 − �∗1 (H)]H  (1) (0, 9) + �9 [1 − �∗2 (H)]H  (2) (0, 9)
− # (0, 9) = − �%.

(40)

Solving (40) using Cramer’s rule, we obtain

 (1) (0, 9) = 9�1 [H − ��∗ (�)] %
Δ (41)

 (2) (0, 9) = 9�2 [H − ��∗ (�)] %
Δ (42)

# (0, 9)
= 9�% {�1�∗1 (H) + �2�∗2 (H)} [{(1 − �) + ��∗ (�)} − 9]Δ .

(43)

	us using (41) and (42) in (39) yields

$ (0, 9) = 9�% [H − ��∗ (�)] [�1�∗1 (H) + �2�∗2 (H)]Δ , (44)
Δ = 92 − 9 {(1 − �) + ��∗ (�)} {�1�∗1 (H) + �2�∗2 (H)}

− 92��∗ (�) [�1 {1 − �∗1 (H)}H + �2 {1 − �∗2 (H)}H ] .
(45)
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We now substitute the values from (41)–(44) in (30)–(33)
and obtain

 (1) (9) = 9�1 [H − ��∗ (�)] %
Δ [1 − �∗1 (H)H ]

 (2) (9) = 9�2 [H − ��∗ (�)] %
Δ [1 − �∗2 (H)H ]

# (9)
= 9�% {�1�∗1 (H) + �2�∗2 (H)} [{(1 − �) + ��∗ (�)} − 9]Δ
× [1 − �∗ (�)� ]
$ (9) = 9�% [H − ��∗ (�)] [�1�∗1 (H) + �2�∗2 (H)]Δ

× [1 − �∗ (�)� ] .
(46)

Let  �(9) denote the probability generating function of
the queue size irrespective of the state of the system. 	us
adding the equations in (46), we have

 � (9) =  (1) (9) +  (2) (9) + # (9) + $ (9) = P (9)Q (9) . (47)

	e unknown probability % can be obtained using the
normalizing condition

 � (1) + % = 1. (48)

Since  �(9) is of indeterminate of 0/0 form for 9 = 1, we
apply L’Hopital’s rule on (47) and derive

 (1) (1) = lim
�→1

 (1) (9)
= (%�1 [�R (S) + � (�R (S) − �) R (#)]

× [1 − �∗1 (�)� ])
× ( [�1�∗1 (�) + �2�∗2 (�)]

× {1 − � (�R (S) − �) R ($)}
− [� (�R (S) − �) R (#) + �R (S)]
×{�1 (1 − �∗1 (�))� + �2 (1 − �∗2 (�))� })−1,

(49)

 (2) (1) = lim
�→1

 (2) (9)

= (%�2 [�R (S) + � (�R (S) − �) R (#)]

× [1 − �∗2 (�)� ])

× ( [�1�∗1 (�) + �2�∗2 (�)]
× {1 − � (�R (S) − �) R ($)}
− [� (�R (S) − �) R (#) + �R (S)]
×{�1 (1 − �∗1 (�))� + �2 (1 − �∗2 (�))� })−1,

(50)

# (1) = lim
�→1

# (9)
× (�% {�1�∗1 (�) + �2�∗2 (�)}

× {1 − (�R (S) − �) �R ($)} R (#))
× ( [�1�∗1 (�) + �2�∗2 (�)]

× {1 − � (�R (S) − �) R ($)}
− [� (�R (S) − �) R (#) + �R (S)]
×{�1 (1 − �∗1 (�))� + �2 (1 − �∗2 (�))� })−1,

(51)

$ (1)
= (%� {�R (S) + � (�R (S) − �) R (#)}

× {�1�∗1 (�) + �2�∗2 (�)} R ($))
× ( [�1�∗1 (�) + �2�∗2 (�)]

× {1 − � (�R (S) − �) R ($)}
− [� (�R (S) − �) R (#) + �R (S)]
×{�1 (1 − �∗1 (�))� + �2 (1 − �∗2 (�))� })−1,

(52)

where R(S) is the mean batch of arrivals, R(#) is the mean
repair time, and R($) is the mean vacation time.
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Now utilize (49), (50), (51), and (52) in the normalizing
condition and obtain % as

% =( [�1�∗1 (�) + �2�∗2 (�)] {1 − � (�R (S) − �) R ($)}
− [� (�R (S) − �) R (#) + �R (S)]
× [�1 (1 − �∗1 (�))� + �2 (1 − �∗2 (�))� ])

× ({1 + ��R ($) + �R (#)} {�1�∗1 (�) + �2�∗2 (�)})−1.
(53)

	us the utilization factor is obtained as

X = 1 − % = ( [� (�R (S) − �) R (#) + �R (S)]

× [�1 (1 − �∗1 (�))� + �2 (1 − �∗2 (�))� ]
+ {��R (S) R ($) − �R (#)}
× {�1�∗1 (�) + �2�∗2 (�)} )

× ((1 + ��R ($) + �R (#))
× {�1�∗1 (�) + �2�∗2 (�)} )−1.

(54)

Equation (53) is the stability condition under which the
steady state exists given by X < 1.

We can substitute the value of % in (49)–(52) and obtain
clear and explicit expression for  (�)(1); � = 1, 2, the steady
state probability that the server is active and providing service
to customers in two �uctuatingmodes, 1 and 2 at any random
point of time, #(1) the steady state probability that the server
is in failed state and is under repairs, and$(1) the steady state
probability that the server goes for vacation at any random
point of time.

	e probability generating function of the queue length
irrespective of whether the server is idle but available in the
system or the server is under repairs or whether the server is
on vacation is obtained as

 � (9) = % +  (1) (9) +  (2) (9) + # (9) + $ (9) . (55)

5. Special Cases

Case 1 (no reneging). Here we take � = 0. 	en our
model changes to a batch arrival single server vacation queue
with server providing service in two �uctuating modes with
breakdown and no reneging.

	en � changes to � = � − �:(9) and our equations in
(46) reduce to

 (1) (9) = �1% [(� − �: (9) + �) − ��∗ (� − �: (9))]Δ
× [1 − �∗1 (� − �: (9) + �)]� − �: (9) + �

 (2) (9) = �2% [(� − �: (9) + �) − ��∗ (� − �: (9))]Δ
× [1 − �∗2 (� − �: (9) + �)]� − �: (9) + �

# (9) = �% [�1�∗1 (H) + �2�∗2 (H)]Δ
× [{1 − � + ��∗ (� − �: (9))} − 9]

Δ
× [1 − �∗ (� − �: (9))� − �: (9) ]

$ (9) = �% [H − ��∗ (� − �: (9))] [�1�∗1 (H) + �2�∗2 (H)]Δ
× [1 − �∗ (� − �: (9))� − �: (9) ] ,

(56)

where

Δ = 9 − {1 − � + ��∗ (� − �: (9))} {�1�∗1 (H) + �2�∗2 (H)}
− 9��∗ (� − �: (9))
× [�1 (1 − �∗1 (H)) + �2 (1 − �∗2 (H))H ]

(57)

and % is given by

% = ( [�1�∗1 (�) + �2�∗2 (�)] [1 − ��R (S) R ($)]
− [��R (S) R (#) + �R (S)]
× [�1 (1 − �∗1 (�)) + �2 (1 − �∗2 (�))� ])

× ((1 + �R (#)) {�1�∗1 (�) + �2�∗2 (�)})−1.

(58)

	us the stability condition X is
X = ( {��R (S) R (#) + �R (S)}

× [�1 (1 − �∗1 (�) + �2 (1 − �∗2 (�)))� ]
+ {��R (S) R ($) + �R (#)}
× {�1�∗1 (�) + �2�∗2 (�)} )

× ((1 − �R (#)) {�1�∗1 (�) + �2�∗2 (�)})−1 < 1.

(59)



8 Journal of Probability and Statistics

Case 2 (no breakdowns and no reneging). Here � = 0, � =0. 	en the queuing model changes to a Batch arrival single
server vacation queue with server providing service in two
�uctuating modes.

	usH = �−�:(9), � = �−�:(9) and equations in (46)
reduce to

 (1) (9) = �1% [1 − �∗1 (� − �: (9))]Δ
 (2) (9) = �2% [1 − �∗2 (� − �: (9))]Δ

$ (9) = (�% [�1�∗1 (� − �: (9)) + �2�∗2 (� − �: (9))]
× [1 − �∗ (� − �: (9))]) × (Δ)−1,

(60)

where Δ = [1 − � + ��∗(� − �:(9))][�1�∗1 (� − �:(9)) +�2�∗2 (� − �:(9))] − 9.
	e probability of idle time % is

% = 1 − �R (S) [�1R (
1) + �2R (
2) + �R ($)] . (61)

	us X = �R(S)[�1R(
1) + �2R(
2) + �R($)] < 1, whereR(
1) andR(
2) are the expected value of service completion
in modes 1 and mode 2, respectively.

Case 3 (no vacation). Here we take � = 0. Consequently
our probability generating functions for the server providing
service in modes 1 and 2 at random point of time are given by

 (1) (9) = �1% [H − ��∗ (�)]
Δ [1 − �∗1 (H)H ]

 (2) (9) = �2% [H − ��∗ (�)]
Δ [1 − �∗2 (H)H ] .

(62)

	e steady state probability that the server is under
repairs at random point of time is

# (9) = �% [�1�∗1 (H) + �2�∗2 (H)] (1 − 9)Δ [1 − �∗ (�)� ] ,
(63)

Δ = 9 − {�1�∗1 (H) + �2�∗2 (H)} − 9��∗ (H)
× [�1 (1 − �∗1 (H)) + �2 (1 − �∗2 (H))H ] . (64)

	us %, the probability of idle time is

% = ( {�1�∗1 (�) + �2�∗2 (�)}
− {� (�R (S) − �) R (#) + �R (S)}
× [�1 (1 − �∗1 (�)) + �2 (1 − �∗2 (�))� ])

× ({1 + �R(#)} {�1�∗1 (�) + �2�∗2 (�)})−1

(65)

and the stability condition under which the steady state exists
is

X = ( {� (�R (S) − �) R (#) + �R (S)}

× [�1 (1 − �∗1 (�)) + �2 (1 − �∗2 (�))� ]

+ �R (#) {�1�∗1 (�) + �2�∗2 (�)} )
× ({1 − �R (#)} {�1�∗1 (�) + �2�∗2 (�)})−1

< 1.

(66)

Case 4 (server providing service in mode). In this case, we
take �1 = 1, �2 = 0.

	us our probability generating functions for server
providing service in mode 1, server under repairs, and server
taking vacation are, respectively, given by (67), (68), and (69)

 (1) (9) = [H − ��∗ (�)]
Δ [1 − �∗1 (H)H ] , (67)

# (9) = �% �∗1 (H) [{1 − � + ��∗ (�)} − 9]Δ [1 − �∗ (�)� ] ,
(68)

$ (9) = �% [H − ��∗ (�)] �∗1 (H)Δ [1 − �∗ (�)� ] . (69)

	e probability of idle time % is

% = (�∗1 (�) [1 − � (�R (S) − �) R ($)]
− [� (�R (S) − �) R (#) + �R (S)] [1 − �∗1 (�)� ])

× ({1 + ��R ($) + �R (#)} �∗1 (�))−1,
X = ( {��R (S) R ($) + �R (#)} �∗1 (�)

+ [� (�R (S) − �) R (#) + �R (S)] [1 − �∗1 (�)� ])
× ({1 + ��R ($) + �R (#)} �∗1 (�))−1 < 1.

(70)

	e utilization factor of the system is given by

X = ( {��R (S) R ($) + �R (#)} �∗1 (�)
+ [� (�R (S) − �) R (#) + �R (S)] [(1 − �∗1 (�)) /�])
× ({1 + � �R ($) + �R (#)} �∗1 (�))−1 < 1.

(71)
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Case 5 (no breakdown, no vacation and no reneging). 	e
corresponding results for this particular case are obtained by
putting � = 0, � = 0, � = 0. Consequently H = � − �:(9),� = � − �:(9). 	us �∗� (0) = 1, G = 1, 2, �∗(0) = 1, �∗(0) = 1.
With these substitutions in our main results, we obtain the
following.

	e probability generating functions of the queue size
when the server is providing service in mode 1 and mode 2
are

 (1) (9) = �1% [1 − �∗1 (� − �: (9))]Δ ,
 (2) (9) = �2% [1 − �∗2 (� − �: (9))]Δ ,
Δ = 9 − [�1�∗1 (H) + �2�∗2 (H)] .

(72)

	e idle time probability % is given by

% = 1 − �R (S) {�1R (
1) + �2R (
2)} . (73)

	us X = �R(S){�1R(
1) + �2R(
2)} < 1 is the stability
condition under which the steady state condition holds andR(
�) = lim�→1[(1−�∗� (�−�:(9)))/(�−�:(9))]; G = 1, 2 is
the expected value of service completion inmode 1 andmode
2, respectively.

Case 6 (no breakdown, no vacation and no reneging and
server providing service in single mode). 	e corresponding
results for this particular case are obtained by putting � = 0,� = 0, � = 0, and�2 = 0. Consequently�1 = 1,H = �−�:(9),
with these substitutions in our main results, we obtain the
following.

	e probability generating function of the queue size
when the server is providing service in single mode

 (1) (9) = % [1 − �∗ (� − �: (9))]
Δ ,

Δ = �∗ (� − �: (9)) − 9.
(74)

	e idle time probability% is given by% = 1−�R(S)R(
)
and X = �R(S)R(
) < 1, is the stability condition under
which the steady state conditions are satis�ed.

Equation (74) gives the probability generating function of
the number of customers in the queue at random epoch for
anZ�/
/1 queueing system.

Case 7 (the service time, vacation completion time, and repair
time are considered to follow exponential distribution). Here
we take �∗1 (H) = �1/(�1 + H),�∗2 (H) = �2/(�2 + H), �∗(�) =�/(� + �),�∗(�) = �/(� + �), where H = � − �:(9) + �,� = � − �:(9) + � − �/9.

	e units of arrivals are also assumed to be one by one,
such that R(S) = 1. Also here R(#) = 1/� and R($) = 1/�.
	us our equations in (46) changes to

 (1) (9) = �1%[H (� + �) − ��
� + � ] 1�1 + H

× (9 − {(� + �) (1 − �) + ��� + � }
× { �1�1�1 + H + �2�2�2 + H}
− 9��
� + � [

�1�1 + � +
�2�2 + �])

−1,
 (2) (9) = �2%[H (� + �) − ��

� + � ] 1�2 + H
× (9 − {(� + �) (1 − �) + ��� + � }

× { �1�1�1 + H + �2�2�2 + H}
− 9��
� + � [

�1�1 + � +
�2�2 + �])

−1,
# (9) = �%[ �1�1�1 + H + �2�2�2 + H][

(1 − �) + ��
� + � ] 1� + �

× (9 − {(� + �) (1 − �) + ��� + � }
× { �1�1�1 + H + �2�2�2 + H}
− 9��
� + � [

�1�1 + � +
�2�2 + �])

−1,
$ (9) = (�%[ �1�1�1 + H + �2�2�2 + H][

H (� + �) − ��
� + � ]

× 1� + �) × (9 − {
(� + �) (1 − �) + ��

� + � }
× { �1�1�1 + H + �2�2�2 + H}
− 9��
� + � [

�1�1 + � +
�2�2 + �])

−1.
(75)

Probability that the server is providing service in mode 1
and mode 2 at a random point of time is

 (1) (1) = %�1 [� + � (� − �)
� ] 1�1 + �

× (( �1�1�1 + � +
�2�2�2 + �)[1 −

� (� − �)
� ]

−(� (� − �)� + �)( �1�1 + �)(
�2�2 + �))

−1,
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 (2) (1) = %�2 [� + � (� − �)
� ] 1�2 + �

× (( �1�1�1 + � +
�2�2�2 + �)[1 −

� (� − �)
� ]

−(� (� − �)� + �)( �1�1 + �)(
�2�2 + �))

−1.
(76)

	e probability that the server is under repairs at random
point of time is

# (1) = ( �1�1�1 + � +
�2�2�2 + �)[1 −

(� − �) �
� ] 1�

× (( �1�1�1 + � +
�2�2�2 + �)[1 −

� (� − �)
� ]

−(� (� − �)� + �)( �1�1 + � +
�2�2 + �))

−1.
(77)

Probability that the server is on vacation at random point
of time is

$ (1) = �%( �1�1�1 + � +
�2�2�2 + �)[� +

� (� − �) �
� ] 1�

× (( �1�1�1 + � +
�2�2�2 + �) [1 −

� (� − �)
� ]

−(� (� − �)� + �)( �1�1 + � +
�2�2 + �))

−1.
(78)

	e probability that the server is idle but available in the
system is given by

% = ([ �1�1�1 + � +
�2�2�2 + �][1 −

� (� − �)
� ]

−[� (� − �)� + �] [ �1�1 + � +
�2�2 + �])

× ((1 + ��
� + ��)(

�1�1�1 + � +
�2�2�2 + �))

−1,
X = ([ �1�1�1 + � +

�2�2�2 + �] [
��
� + ��]

+[� (� − �)� + �] [ �1�1 + � +
�2�2 + �])

×((1 + ��
� + ��)(

�1�1�1 + � +
�2�2�2 + �))

−1 < 1.

(79)
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Figure 1: E
ect of reneging parameter � on the proportion of idle
time % and utilization factor X (when � = 2, � = 6, � = 5, � = 0.5).

And the utilization factor is

% = ([ �1�1�1 + � +
�2�2�2 + �][1 −

� (� − �)
� ]

− [� (� − �)� + �] [ �1�1 + � +
�2�2 + �])

× ((1 + ��
� + ��)(

�1�1�1 + � +
�2�2�2 + �))

−1 < 1.

(80)

6. Numerical Example

We illustrate a numerical example in order to see the e
ect
and validity of our results of the di
erent parameters used
in our model, namely, the failure rate �, reneging rate �,
the completion of repairs parameter �, and completion of
vacation � on the utilization factor X and on the probabilities
of various states of the system, namely, the working state,
failure state, vacation, and idle state. We choose all the values
of the parameters arbitrarily such that the stability condition
(54) is not violated.

We consider the special Case 6 for our numerical illustra-
tion. We �x the values of arrival rate �, service rates �1 and�2, the probabilities of providing service in modes 1 and 2 �1
and �2, and probability of server taking vacation �.

Numerical Table 1 shows that for �xed � (repair com-
pletion rate) and �xed � (breakdown rate), the e
ect of
increasing the reneging rate (�) and decrease in the vacation
completion rate (�) shows a decrease in the utilization factor(X) and an increase in the idle time %. It also shows that
due to these changes, there is decrease in the probability of
the server providing service in modes 1 and 2, respectively. It
is clear from Figure 1 that as the rate of reneging increases,
the proportion of server busy period (X) also increases while
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Table 1: � = 4, �1 = 8, �2 = 10, �1 = 0.4, �2 = 0.6, and � = 0.5.
� � � X %  (1)(1)  (2)(1) #(1) $(1)

� = 2 6 2 5 0.8123 0.1877 0.1485 0.1856 0.1739 0.3043

6 3 4 0.7662 0.2338 0.1237 0.1546 0.1708 0.3171

6 4 3 0.7195 0.2805 0.0976 0.1220 0.1667 0.3333

� = 3 6 2 5 0.8510 0.1490 0.1426 0.1809 0.2353 0.2941

6 3 4 0.7957 0.2043 0.1164 0.1477 0.2333 0.2999

6 4 3 0.7404 0.2596 0.0895 0.1136 0.2307 0.3076

� = 4 6 2 5 0.8837 0.1163 0.1370 0.1762 0.2859 0.2859

6 3 4 0.8208 0.1792 0.1096 0.1644 0.2858 0.2858

6 4 3 0.7589 0.2411 0.0822 0.1057 0.2856 0.2856
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Figure 2: E
ect of breakdown parameter � on the probability that
the server is providing service in mode 1 (when � = 6, � = 2, � = 5).
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Figure 3: E
ect of reneging � on the probability that the server is
providing service in mode 2 (when � = 6, � = 4, � = 5, 4, 3).

proportion of idle time decreases. Figures 2 and 3 show the
e
ect that as the rates of breakdown and reneging increase,
the probability of server providing service in mode 1 and
mode 2 decreases. From Figure 4, we observe that as we
increase the rate of reneging and vacation, there is increase
in the probability of server in vacation. 	e results obtained
above are logical and as expected.
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Figure 4: E
ect of � and � on the probability that server is on
vacation (� = 2, � = 6, � = 2, 3, 4).
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