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Abstract The need for reproducible and comparable

results is of increasing importance in non-targeted meta-

bolomic studies, especially when differences between

experimental groups are small. Liquid chromatography–

mass spectrometry spectra are often acquired batch-wise so

that necessary calibrations and cleaning of the instrument

can take place. However this may introduce further sources

of variation, such as differences in the conditions under

which the acquisition of individual batches is performed.

Quality control (QC) samples are frequently employed as a

means of both judging and correcting this variation. Here

we show that the use of QC samples can lead to problems.

The non-linearity of the response can result in substantial

differences between the recorded intensities of the QCs and

experimental samples, making the required adjustment

difficult to predict. Furthermore, changes in the response

profile between one QC interspersion and the next cannot

be accounted for and QC based correction can actually

exacerbate the problems by introducing artificial differ-

ences. ‘‘Background correction’’ methods utilise all

experimental samples to estimate the variation over time

rather than relying on the QC samples alone. We compare

non-QC correction methods with standard QC correction

and demonstrate their success in reducing differences

between replicate samples and their potential to highlight

differences between experimental groups previously hid-

den by instrumental variation.

Keywords LC–MS �Mass spectrometry �Metabolomics �
Quality control � Batch correction � QC correction

1 Introduction

Non-targeted metabolomic studies seek to analyse as wide

a range of metabolites as possible. The use of liquid

chromatography-mass spectrometry (LC–MS) for this

purpose has found a wide range of applications, including

drug discovery (Korfmacher 2005), disease biomarker

discovery (Lu et al. 2008), pesticide (Zhang et al. 2011)

and herbicide (Shalaby et al. 1992) analysis in agriculture,

wastewater analysis (Kostich et al. 2014) and the discovery

of novel metabolites (Nakabayashi and Saito 2013). LC–

MS however suffers from lower reproducibility in com-

parison to other analytical techniques such as NMR spec-

troscopy (Gürdeniz et al. 2013; Rusilowicz 2014). Many

non-targeted approaches focus on qualitative results, such

as biomarker discovery, and the need for reproducible and

comparable results is imperative, especially when differ-

ences between experimental groups are small. A number of

factors can cause differences in LC–MS response profiles

between acquisitions. Many of these relate to chromato-

graphic aspects, such as retention time drift or changes in

peak shape (Lai et al. 2009), but changes in the response of

the mass spectrometer can also be seen (Ohlsson and

Wallmark 1999). Most notable are the changes occurring

during the acquisition of a multi-sample experiment due to

the gradual contamination of the LC column. Whilst

effective cleaning, conditioning and calibration of the
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instruments can mitigate these problems to a degree, con-

secutive analysis of large numbers of samples has been

shown to present increasingly unacceptable variation (Ze-

lena et al. 2009). Samples are therefore often run in bat-

ches, interspersed with the relevant cleaning and

conditioning events. However, this can lead to other

sources of technical variation, such as differences in the

operating conditions under which the acquisitions of the

individual batches are performed. The randomisation of

sample order is essential as any correlation between

experimental groups and batch would clearly be

problematic.

Further sources of variation may be introduced in the

early stages of data analysis. Although advances in meth-

ods of spectral alignment can reduce the effects of retention

time drift and changes in peak shape, such methods do not

always provide a complete solution in non-targeted studies

involving thousands of potential metabolites. Spectral

misalignment prior to the peak-picking stage can result in

the classic problems seen in spectral binning, with differ-

ences between spectra being due to misaligned peaks rather

than true changes in intensity.

A widely implemented solution to these problems is the

inclusion of quality control (QC) samples into the study.

During data acquisition the experimental samples are

interspersed with a set of identical QC samples, providing a

fixed reference point from which any instrumental varia-

tion can be tracked and later accounted for. The QC sam-

ples should contain the same metabolites as are under

scrutiny in the study, being either a mixture of known

laboratory grade analytes, or a pooled sample from the

experiment itself. The former allows easier identification

and quantitative analysis, whilst the latter allows as wide a

range of metabolites as is attainable to be evaluated and is

naturally more suited for non-targeted analysis. Should

insufficient experimental samples be available for pooled

samples, biologically similar samples may also provide

reasonable QC data (Dunn et al. 2011; Van Der Kloet et al.

2009).

At the very least QCs can be used to gauge the reliability

of the measurements for the individual metabolites. For

example, in a GC–MS (gas chromatography-mass spec-

trometry) study, Begley et al. (2009) only accept individual

metabolites where the relative standard deviation (RSD) of

the QCs is less than 30 %. In another study involving

DIMS (Direct Infusion Mass Spectrometry), Kirwan et al.

(2013) use a limit of 20 % RSD with the additional crite-

rion that the distribution of the QC samples be similar to

that of the experimental ones. Other criteria have been

proposed, for example that QC values should lie within

15 % of their mean (Begley et al. 2009; U.S. Department

of Health and Human Services 2001).

However, since many sources of variation pertinent to

the sample metabolites also apply to the QC metabolites,

the function of the QC samples can be extended to correct

for variation, rather than just quantify it. To do this a

correction factor must be determined, for each metabolite

and sample. Van Der Kloet et al. (2009) list several

methods to achieve this, although the general form of the

correction follows Eq. 1:

X0
p;b;i ¼ Xp;b;i

Rp

Cp;b;i

ð1Þ

Here Xp,b,i is the intensity of peak p for sample i within

batch b, prior to correction and X0
p,b,i is the corrected value.

Cp,b,i represents the correction factor and Rp represents a

rescaling factor which allows the relative intensity of the

peak to be maintained. We refer to the set of correction

factors, C, for a particular peak as the trend for that peak.

The simplest correction is to divide a peak within a

sample by the average intensity recorded for that peak in

the QC samples in the same batch as the sample, so that

Cp;b;i ¼ Ap;b ¼ average
j in QðbÞ

Xp;b;j

� �

ð2Þ

Here Q(b) represents the QC samples in batch b, and

average represents the averaging measure, which may be

either the mean or the median. As the mean is more sen-

sitive, its use may provide benefits when the number of

observations is small, whereas the median offers a more

robust measure, useful in cases where experimental outliers

may affect the mean.

In (Van Der Kloet et al. 2009) the peak is rescaled to the

average QC value for the first batch, hence the rescaling

factor is Rp = Ap;1, whilst in (McKenzie 2013) it is sug-

gested that the average peak intensity across all samples

and batches be used and thus Rp = Ap;1::Nb
where Nb is the

number of batches. Since changes in instrumental drift can

be observed over time, per batch linear regression allows a

degree of within-batch dynamics to be accounted for. A

linear regression of QCs provides the correction factors:

Cp;b;i ¼ bbi + ab ð3Þ

where ab and bb are the regression coefficients for batch b.

Here, the integer i, relates to the ith sample for which data

were acquired. Other, more advanced regression models

including linear smoothers have also been used (Eilers

2003; Van Der Kloet et al. 2009). Dunn et al. (2011) apply

the LOESS (LOcally WEighted Scatter-plot Smoother)

algorithm to generate the trend-line for the QC samples in a

method they term QC-RLSC (QC robust LOESS signal

correction). LOESS is advantageous in that the data is

modelled by a set of local polynomials, which avoids the

constraint that the data follow any one global model and is
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less sensitive to errant data points (Cleveland 1979). The

method requires optimisation of a smoothing parameter a.

Whilst QCs have been shown to provide an effective

method for monitoring and correcting drift there has also

been some success involving non-QC correction methods.

It has been demonstrated that replicate measurements can

be used to track experimental drift in lieu of periodic QC

samples in a study involving ICP-OES (Inductively Cou-

pled Plasma Atomic Emission Spectroscopy) (Salit and

Turk 1998). This naturally allows more time to be dedi-

cated to real sample analysis. The use of QC samples from

pooled replicates has also been questioned because of

observed inconsistencies between samples and pooled QCs

(Ranjbar et al. 2012).

Checking the performance of any model can however be

difficult, and it has been recognised that each dataset should

be considered individually in order to determine which

methods should be applied (Ranjbar et al. 2012). Kirwan

et al. (2013) demonstrate success using a variation of theQC-

RLSC that substitutes LOESSwith a smoothing spline. Here

the authors use RSD of technical replicates to determine the

algorithm’s effectiveness, as did Ranjbar et al. (2012). Other

methods have been proposed which avoid the need for

technical replicates. Where QC samples are only used to

determine variation, rather than correct for it, the total dis-

tance between the QC samples, or the RSD of the QC sam-

ples, can be used as a measure of instrumental variation. The

distance between QC samples in principal component anal-

ysis (PCA) has been used to justify the idea that instrumental

variation is not significant enough to be of concern (Gika

et al. 2008). The predictive accuracy of partial least squares

discriminant analysis (PLS-DA) on experimental groups has

also been utilised to determine the effectiveness of correction

(Prakash and Wei 2011). One-way repeated measures

ANOVA has been used to calculate unexplained variation to

determine the number of peaks for which the variance is

reduced on the QCs (Ranjbar et al. 2012).

Here we explore data that is not amenable to QC cor-

rection due to the nature of the drift. The effects and per-

formance of QC and non-QC correction methods are

contrasted using these data. Previous studies have focussed

on reducing batch or acquisition order differences, using

the RSD of replicate samples as a method of gauging

correction performance. Since we form the trends used to

correct the data from experimental samples in addition to

the QC samples, use of this measure could result in real

differences between data points being erroneously

removed. PLS classification has also been used as a mea-

sure of performance, however changes in the data that do

not affect the classification rate cannot be detected. Here

two evaluation methods are employed, both of which

provide a metric of performance on a continuous scale. In

addition to the mean RSD to measure the similarity of

biological replicates we use PCA-MANOVA, a combina-

tion of Principal Components Analysis (PCA) and Multi-

variate Analysis of Variance (MANOVA), as a second

measure of performance.

PCA is one of the most widely used multivariate tech-

niques for exploratory analysis (Worley and Powers 2013).

In PCA the coordinate system is rotated so that the first

principal component (PC1) corresponds to the direction of

maximum variance in the data with subsequent compo-

nents (PC2, PC3, etc.) corresponding to progressively less

variance. Data reduction is achieved by considering just the

first few components accounting for most of the variance,

and therefore most information, in the data. As an unsu-

pervised method, PCA is commonly exploited in metabo-

lomics studies to highlight experimental differences

(Katajamaa et al. 2007; Rusilowicz 2014).

ANOVA (analysis of variance) can be considered a

generalisation of the t test, allowing multiple groups to be

considered. MANOVA is a multivariate extension of

ANOVA that allows for multiple independent variables.

PCA-MANOVA therefore allows us to ascertain whe-

ther experimental conditions or LC–MS batch order are

major sources of variation in our datasets and subsequently

whether our improved ‘‘background correction’’ method

facilitates a more robust determination of biological trends

in our datasets.

2 Materials and methods

2.1 Experimental procedure

2.1.1 Sample collection and preparation

Medicago truncatula, a model legume, was subjected to

individual biotic and abiotic stresses, and a combination

thereof. A total of 150 plants were grown comprising four

experimental groups as follows:

• C—Control group

• D—Abiotic stress group—subject to drought

• F—Biotic stress group—infected with the pathogen

Fusarium oxysporum

• B—Dual stress group—subject to both drought and

infection with Fusarium

Plants were planted in 350 ml pots containing a 3:1

mixture of perlite to sand by volume. Plants were grown in

a greenhouse at a temperature of 28 �C and humidity was

maintained using a fog system. Fusarium inoculation was

carried out by watering the plants with 50 ml of Fusarium

inoculate. Drought plants were subject to a 40 % drought

stress by weight of water, a proportion determined to be

effective from a previous pilot study.
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Three plants (biological replicates) were harvested from

each experimental group at daily intervals for 12 days. For

the C and F groups 78 plants were harvested from days 1 to

12, whilst for D and B harvesting commenced 1 day later,

from days 2 to 12 (72 plants), to allow uniform drying of

the growth medium. Each plant was removed carefully

from its substrate/gauze to minimise damage to the roots.

The plant was shaken and the roots gently washed to

remove any bound substrate. Roots were carefully dried

before both leaves (L) and roots (R) were cut directly into

beakers of liquid nitrogen. Only healthy mature leaves

were cut whilst dead or very young leaves were discarded.

After freezing, both leaves and roots were recovered from

the nitrogen and stored in aluminium foil before freeze-

drying for approximately 48 h. Lyophilised samples were

then stored and transported for metabolomic analysis at

room temperature.

Prior to analysis each dried sample was initially ground

carefully into a fine powder using a pestle and mortar to

preserve as much material as possible. Five mg ± 1 mg of

ground sample was accurately weighed into a labelled 2 ml

Eppendorf tube. To 5 mg of sample, 1 ml of extraction

solvent (1:1 (v/v) methanol:water) was added. Metabolites

were extracted into the solvent by shaking for 30 min. The

solid material was then removed by centrifugation at

14,000 rpm for 10 min and the supernatant liquid split into

two 400 ll aliquots, of which one was used for LC-HRMS

(Liquid chromatography-high resolution mass spectrome-

try) analysis. The supernatant to be analysed by LC-HRMS

was diluted fourfold using methanol: water 1:1.

In addition to the samples, an in-house reference was

extracted daily as a QC measure. As the amount of material

available from experimental samples was very low, the

material for the QC samples was sourced from a homo-

genised mixture of control samples collected from a pre-

vious experiment following a similar design. This allowed

the metabolites likely to be present in the experimental

samples to be included in the QC samples without requir-

ing the use of the limited experimental material in order to

create the QCs.

2.1.2 LC-HRMS parameters

One hundred and forty nine leaf (L) and 148 root

(R) samples were ultimately analysed—the number being

slightly lower than anticipated (2 9 150) due to plants not

attaining sufficient size for analysis or plant death.

Extractions were subject to both positive (?) and negative

(–) mode LC–MS, giving a total of four datasets (L?, L-,

R?, R-). LC–MS analysis was conducted in seven batches

to which the samples were assigned randomly to ensure

that no particular batch was dominated by any particular

experimental group or age-range.

The chromatography column used was an ACE 3Q

150 9 3 mm, 3 lm (Advanced Chromatography Tech-

nologies, Aberdeen, UK.). Mobile phases were 0.1 % for-

mic acid in water (mobile phase A, MPA) and 0.1 %

formic acid in acetonitrile (mobile phase B, MPB). The

gradient elution applied was 100 % MPA for 5 min before

increasing to 100 % MPB over 15 min. This was held for

10 min before reverting back to 100 % MPA and held for

2 min. Injection volume was 10 ll using a full loop

injection, flow rate was 0.4 ml/min and column tempera-

ture was 25 �C.

The MS used was a Thermo Exactive (Thermo Fisher

Scientific, MA, USA.) set at 50,000 resolution FWHM (full

width at half maximum) (at 200 m/z) with an acquisition

speed of 2 Hz. The column was conditioned before sample

analysis using 15 QC injections and then QCs were

inserted between every 6 experimental samples.

2.1.3 Data pre-processing

The raw LC–MS data were pre-processed using Progenesis

QI (Nonlinear Dynamics, Newcastle Upon Tyne, UK). The

software retention time aligned all MS spectra before

applying deconvolution and peak picking algorithms pro-

viding a matrix of potential metabolites for each observa-

tion in a dataset. The potential metabolites were initially

annotated by accurate mass m/z (between 80 and 1000) and

retention time (between 1 and 30 min) of their corre-

sponding peak. In reality some of these peaks may be due

to erroneous peak detection or several peaks may represent

the same compound. However, for brevity each peak will

be referred to as a ‘‘metabolite’’ throughout. Table 1 shows

the number of observations with the number of metabolites

recorded for each dataset.

3 Data analysis

It can be necessary to discard certain data points, for

instance to remove noise peaks which present no useful

information. Variables were removed from the dataset

Table 1 The number of

observations and metabolites

(variables) for each of the four

datasets

Leaf (L) Root (R)

184 observations (149 exp. ?35 QC) 182 observations (148 exp. ?34 QC)

1239 L- metabolites 1681 L? metabolites 4292 R- metabolites 4813 R? metabolites
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where the median of the QC values was zero (i.e. when

50 % or more of the QCs fail to show a value) to ensure

that an accurate trend could be obtained. Similarly, when

determining the trend using non-QC techniques, variables

for which the median of all values was zero were removed.

All data analyses were carried out in R (R Development

Core Team).

3.1 Assessment of performance

Performance was assessed using the mean RSD across all

metabolites and replicates. For simplicity only replicate

sets containing at least three observations were used, and

values approaching zero (identified by at least one of the

three or more values being zero in the original data, or

containing all zeroes in the corrected data) were dis-

counted. RSDs were calculated using the equation for the

RSD of a subset (Rodbard 1974):

RSD ¼
r

x
ð4Þ

where r is the standard deviation of the three replicates and

x is the grand mean for the metabolite. Our RSDs were

calculated from the sets of biological replicates from plants

exposed to the same experimental conditions for the same

timepoints. It should be noted that in comparison to tech-

nical replicates, some differences are still to be expected,

even if a perfect batch correction were to be performed,

due to natural biological variation between the samples.

A combination of PCA and MANOVA was also used to

judge the correction in terms of group separation. Data

were mean centred and variables scaled to unit variance

(divided by the standard deviation of the variable) prior to

PCA to prevent metabolites with larger intensities domi-

nating the scores.

MANOVA was used to provide an F statistic which

shows the between group to within group variance ratio:

F ¼
variance between groups

variance within groups
ð5Þ

Comparison of the F value with the appropriate F dis-

tribution gives a p-value for the significance of any

difference between experimental groups. We used MAN-

OVA on the PCA scores (coordinates of the rotated vari-

ables) for the first two principal components to quantify

differences between experimental groups. This allowed the

most apparent variations in the data to be considered in the

MANOVA test. With an ideal correction the highest source

of variation should be due to experimental groups rather

than batch differences.

The groups considered in each test set are:

• Control and drought groups

• Drought and dual-stress groups

• Grouping due to LC–MS batch

We compared the control and drought groups as dif-

ferences were already apparent in the uncorrected data and

these should be retained by any correction method applied.

Initial analysis showed little difference between the

drought and dual stress groups and a correction method that

could reveal these differences would be advantageous.

3.2 Correction methods

The correction procedure involved the determination of the

correction factors Cp,b,i shown in Eq. 1. This process was

split into three stages. In the first stage the observations

used to calculate the trend were selected: this could be

based solely on the QCs, sets of replicates, or on all

observations. The second stage involved selecting the

method to be used to calculate the trend and in the third

stage the observations to which the correction was applied

are selected, i.e. individual batches or the full dataset.

In this analysis, correction methods were tested using

only the QCs, but also using all observations (including

QCs) to generate the trend, which we refer to as back-

ground correction. Both methods were tested on batches

individually (batch-wise), and with the full dataset con-

sidered as one.

3.3 Trend functions

The different methods used to determine the trend in the

second stage were as follows:

Mean The trend is set to the average of the samples, as in

Eq. 2.

Linear regression The trend is modelled via a linear

regression of the samples.

Moving median The trend is generated from the data

using a simple moving average for smoothing. We used the

median as analysis revealed that the moving mean resulted

in unfavourable responses to individual high or low values

(including genuine experimental values and not just

Table 2 Table showing parameter values optimised in terms of RSD

of biological replicates

Method Parameter Value

LOESS Neighbourhood (a) 0.45

Batchwise LOESS Neighbourhood (a) 0.5

Moving median Window width (w) 5

Batchwise moving median Window width (w) 5

Polynomial Degree (n) 6

Batchwise polynomial Degree (n) 1
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outliers). For the moving median the correction factor Ci is

calculated as the median of a moving window:

Cp;b;i ¼ median Xp;b;i�w::Xp;b;iþw

� �

ð6Þ

where the Xp,b,i values used in the calculation are as defined

for Eq. 1 and w is the window width.

Polynomial regression Polynomial regression allows the

data to be modelled as a simple nth degree polynomial and

requires the degree of the polynomial n to be specified.

Smoothing spline The smoothing spline method fits a set

of intersecting polynomials to the data. The function is

controlled by a smoothing parameter k, with larger values

of k leading to smoother functions (Hastie 1990). The

smooth.spline algorithm from the R package stats (Ripley

et al.) was used to generate the smoothed spline.

LOESS LOESS combines multiple regression models and

has previously been used to determine the correction fac-

tors both on QCs and on the full data set for DI-MS and

LC–MS data (Kirwan et al. 2013; Kultima et al. 2009).

Like the smoothing spline, LOESS is also controlled by a

smoothing parameter.

3.4 Method parameters

Several methods used to account for non-linear drift require

parameters to be optimised. The window width w for the

moving median, the degree n of the polynomial and the

neighbourhood a that determines the smoothing parameter

in LOESS were optimised to give the lowest mean RSD for

biological replicates. The optimised parameters are listed in

Table 2. Note that the correction using the batch-wise

polynomial performed best with a polynomial degree of 1,

effectively making it a linear correction. The smoothing

spline was calculated using the R function smooth.spline

with the default parameter set, which optimises the

parameter k via generalised cross validation in order to best

fit the curve to the data (Ripley et al.).

4 Results and discussion

For each dataset, it is clear from the Principal Components

Analysis (PCA) of the scaled data that the majority of the

variance is due to batch differences rather than experi-

mental groups. Figure 1a shows the scores plot for the first

two principal components for the L? dataset. After batch

correction using the traditional ‘‘mean of the QCs’’ method,

PCA plots reveal that batch differences in the L-, R ? and

Fig. 1 a The scores plot for the first two principal components of the

scaled ‘‘L?’’ dataset showing batch differences as a major source of

variation. b The scores plot after batch correction using the mean QC

value, in which batch differences are made worse. c The scores plot

after batch correction using the background correction method, in

which batch differences are no longer apparent
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R– datasets are clearly reduced, with differences between

the experimental groups becoming more apparent. How-

ever, this method was not able to correct for the batch

differences in the L? dataset as shown in Fig. 1b. It can be

seen that several of the batches are ‘‘split’’ along the first

principal component (PC1), with part of the batch having

low scores for PC1 and the rest having higher scores. One

of the implications of this is that the assumptions of stan-

dard statistical tests, such as t-tests or ANOVA may be

invalid. Closer inspection of the L ? dataset reveals that a

large degree of within-batch drift can be observed for many

metabolites, such as the example shown in Fig. 2a. Initial

analyses of correction methods were also confounded by

the presence of an outlier (drought, day 6, replicate 3),

which was removed and the analysis repeated. Just as the

median is more robust to outliers than the mean, robust

PCA could potentially be employed to prevent the effects

of outliers.

At first sight, the use of linear regression modelling of

the QCs in each batch to determine the trend appears to
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p = 0.01
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give improved results, as batch differences are no longer

the greatest source of variance in the PCA. However batch

differences are not eliminated and are now apparent along

PC3. Furthermore, the method creates a number of outliers

due to intensities being divided by very small numbers.

This happens, for example, with metabolite #1283, which

is responsible for the majority of variance along PC2 in

unscaled PCA, and so is not restricted to peaks of low

intensity. Patterns in the data when viewed in order of

acquisition also remain, with sudden changes in the

reported intensities within an individual batch that are not

accounted for by a linear model. For example in batch 6,

metabolite #1459 shows a drift in the experimental values

different to that of the QCs (Fig. 2a). Such changes, which

could have instrumental or analytical origins, lead to a poor

fit of the linear regression model. The average RSD of the

biological replicates, calculated across all variables and

metabolites, shows that linear regression of the QCs leads

to a huge increase in variation (Fig. 3). In fact the greatest

source of variance seen in PCA is now due to artefacts

introduced by the QC correction rather than to genuine

differences between experimental groups.

Figure 3 shows that methods which use all observations

reduce the batch variation more than methods based on the

QCs alone. The comparatively poor performance of the QC

based methods may be due to several factors:

• It can be problematic to determine an accurate trend

due to the variation in the recorded intensities of the

QCs.

• Since the QCs are placed intermittently they are unable

to account for changes occurring at points between their

placement.

• The number of QCs is low in comparison to the total

number of observations, providing less information

from which an accurate set of correction factors may be

determined.

Background correction methods, i.e. techniques based

on all observations (not just QCs), can follow the drift seen

in the actual experimental samples of interest, allowing the

correction of metabolites where the concentration is suffi-

ciently different between QC and experimental samples.

Figure 3 also shows that performing a background cor-

rection separately on each batch is more effective than

ignoring batching and using all observations in a single

background correction step. The average reduction in RSD

achieved using batch-wise correction is 5.4 %. The dif-

ference is most apparent in polynomial correction, with the

moving median being the least affected, possibly due to the

moving median’s ability to rapidly track abrupt changes in

the general flow of the data.

The best results, in terms of RSD between replicates, is

achieved with the batch-wise smoothing spline with a

14.4 % reduction in RSD in comparison to the working set

(the original data with variables classified as ‘‘noise’’

removed). The LOESS and the moving median correction

methods both gave an improvement of *9 % in compar-

ison with the original data.

The optimal parameters determined by RSD analysis are

shown in Table 2. The correction methods were then

evaluated using PCA-MANOVA. Figure 4 shows the PCA-

MANOVA F statistics for control-drought discrimination

are actually decreased by some batch correction methods in

comparison to uncorrected data. In particular, the moving

median, which gave good results in terms of RSD between

replicates, gives a lower F statistic for the between group to

within group variance ratio than for the working set.

However the control-drought groups separate well prior to

batch correction, with a p value of 0.001 for the F-test. The

p value of 0.003 for the moving median shows the sepa-

ration is still significant. The smoothing spline methods,

which also showed good separation based on RSDs, show

little difference in comparison to the uncorrected data,

suggesting that, at the very least, we can apply these cor-

rections without significantly damaging existing variations

of interest.

Figure 5 shows the PCA-MANOVA results for the

drought and dual-stress groups. It can be seen that all

correction methods give improved separation of experi-

mental groups in comparison to uncorrected data. Inter-

estingly, the moving median methods provide the best

separation, performing considerably better than the

smoothing spline methods. Figure 6 shows PCA scores

plots for the Fusarium and dual-stress plants, before and

after correction with the moving median, with just three
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Fig. 5 PCA-MANOVA results for the separation of drought and

dual-stress experimental groups after batch correction using various

techniques. A larger F statistic indicates a higher between-group to

within-group variance ratio. Where applicable the techniques have

been optimised to provide the lowest RSD across biological

replicates. The working set represents the original data with

metabolites approaching the limit of detection removed. The dotted

line shows the critical F-value of 2.71 for p = 0.1
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batches shown for clarity. The increased separation of

experimental groups can be seen.

PCA-MANOVA analysis of batch separation shows all

correction methods provide a drastic reduction in batch

differences, with only the uncorrected data having a sig-

nificant F statistic. However, in some cases the F statistic

may be reduced by the splitting of batches into two clus-

ters, as shown in the PCA scores plot in Fig. 1. Since the

different metrics of success yield different results this

suggests that different correction techniques have their own

merits and some may be more suited to certain situations

than others.

In cases where QC samples do not truly represent the

trends within batches, perhaps because insufficient samples

are available, background correction using all samples

(including QCs) provides a viable alternative. However, as

QC samples should be identical and therefore most suit-

able for determining the correction factor, a hybrid method

Fig. 6 PCA scores plots of Fusarium and dual-stress samples for

three batches, before and after background correction. The top plots

show that obvious batch differences in uncorrected data are not

evident after correction. The lower plots show the same data coloured

according to experimental group with darker colours indicating

samples from later in the time series
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could potentially be developed in which more weight is

given to QC samples.

5 Concluding remarks

Where experimental drift occurs steadily throughout data

collection, the overall trend may be identified using QC

samples. However, jumps between batches require each

batch to be treated individually and may result in insuffi-

cient QC samples to characterize the within-batch drift. In

such cases improved correction may be achieved using a

smoothed function of all observations within the batch to

represent the trend. Background correction can be more

effective than standard QC correction and does not nec-

essarily require additional samples. Although the use of a

batch-wise smoothing spline to represent the experimental

drift was found to reduce the differences between biolog-

ical replicates, all background correction methods evalu-

ated provided better discrimination between experimental

groups than uncorrected data. The use of a simple moving

average not only gave good reduction in RSDs between

replicates, but gave the highest between-group to within-

group variance ratio for the drought and duel-stress groups,

so that more complex smoothing methods may not be

necessary. However, the moving median was less effective

for the drought and control groups, where separation was

already apparent in the uncorrected data. Just as scaling

improves results in some situations and not others, different

correction techniques may be more suited to some situa-

tions than others with no single method providing the

optimal correction in all cases.
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