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Abstract—To develop a new generation of high-speed photonic
modulators on silicon-technology-based photonics, new materials
with large Pockels coefficients have been transferred to silicon sub-
strates. Previous approaches focus on realizing stand-alone devices
on dedicated silicon substrates, incompatible with the fabrication
process in silicon foundries. In this work, we demonstrate mono-
lithic integration of electro-optic modulators based on the Pockels
effect in barium titanate (BTO) thin films into the back-end-of-line
of a photonic integrated circuit (PIC) platform. Molecular wafer
bonding allows fully PIC-compatible integration of BTO-based
devices and is, as shown, scalable to 200 mm wafers. The PIC-
integrated BTO Mach–Zehnder modulators outperform conven-
tional Si photonic modulators in modulation efficiency, losses, and
static tuning power. The devices show excellent Vπ L (0.2 Vcm) and
Vπ Lα (1.3 VdB), work at high speed (25 Gbps), and can be tuned
at low-static power consumption (100 nW). Our concept demon-
strates the possibility of monolithic integration of Pockels-based
electro-optic modulators in advanced silicon photonic platforms.

Index Terms—Electrooptic modulators, monolithic integrated
circuits, silicon photonics.
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I. INTRODUCTION

S
ILICON technology based photonic integrated circuits (Si

PIC) are becoming essential for various applications in the

domain of communication technologies [1]. For large data cen-

ters, Si PIC technology offers attractive features for transceivers

targeting intra and inter data-center communication. Utilizing

advanced manufacturing techniques for the co-integration of

optics and electronics enables high-speed and cost-effective

transceiver solutions that take advantage of device scaling op-

portunities. Targeting a truly monolithic integration with CMOS

(or Bi-CMOS) is crucial for such transceivers. The co-use of the

back-end of line (BEOL) by photonic and electronic devices re-

sults in the smallest possible parasitics, which is a pre-requisite

for efficient RF driving. Standard Si PIC modulators are based on

phase shifters using the free-carrier dispersion effect. In terms

of phase-shifter properties this is not the optimum solution.

Besides a rather low modulation efficiency, nonlinearity and

high-loss also limit modulator performance. The impossibility

of disentangling amplitude and phase modulation also restricts

their use for higher modulation formats [2], [3]. In addition,

the high junction capacitance limits the achievable bandwidth

[3] and is detrimental for power consumption. It is therefore

highly desirable to enable - in a silicon photonic technology -

pure electro-optic phase shifters exploiting the Pockels effect, in

order to provide a solution without residual amplitude modula-

tion, yet with high linearity, high efficiency and low optical loss.

Recently, this field of research experienced a renaissance, with

several attempts to demonstrate Pockels modulators potentially

compatible with Si-PIC. Different strategies are being followed,

using either a strain-induced Pockels effect in silicon [4], using

well-known Pockels materials such as LiNbO3 , bonded onto

silicon by direct wafer bonding [5], [6], or introducing novel

materials with large Pockels coefficients [7], [8]. All these ap-

proaches have intrinsic weaknesses, coming either from a weak

Pockels effect [4], the limited availability of large wafer sizes

[5], [6], thermal stability issues [8], or incompatibility with stan-

dard fabrication processes [7].

Our approach utilizes single crystalline, ferroelectric BaTiO3

(BTO) as a material having a large Pockels coefficient and
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Fig. 1. Scheme for monolithic integration of BTO/Si on PIC platforms. (a) Schematic cross-sections of PIC with electrical and optical front-end, and BTO
integration in the back-end (this work) or front-end (future route). (b) Cross-section of active BTO/Si waveguide used for electro-optic modulators. The electrodes
(shown in grey) are fabricated in the BEOL of the PIC platform. (c) Schematic layout of BTO/Si electro-optic modulator reported in this work. The BTO/Si active
waveguide is used as phase shifter in a Mach-Zehnder modulator.

where an integration path of single crystalline layers with sil-

icon does exist [9]–[11]. Over the past years, great progress

has been made in developing a hybrid BTO/silicon technol-

ogy, including passive structures with low-propagation losses

[12], active electro-optic switching [13], [14], excellent thermal

stability [15], and, very recently, large Pockels coefficients of

r42 = 923 pm/V and high-speed modulation in photonic de-

vices [10], [11]. However, previous work was developed on

silicon-on-insulator substrates – without attention to process in-

tegration in a standard PIC or electronic PIC (EPIC) process.

Here, we overcome this limitation and demonstrate the integra-

tion of highly efficient BTO Pockels modulators in the BEOL of

a silicon photonic process flow and show the scalability of our

approach up to 200 mm, making this an attractive technology

for high-speed transceivers.

II. TECHNOLOGY CONCEPT

Our concept of high-speed transceivers relies on the mono-

lithic integration of BTO thin films via direct wafer bonding

above an interlayer dielectric (ILD) in a standard EPIC flow

(Fig. 1(a)) [16]. The bonding step can be performed on top of

any ILD above the front-end-of-line (FEOL) structures. Using

wafer bonding we can first deposit BTO epitaxially on a silicon

substrate, and then transfer the epitaxial layer onto an amor-

phous substrate, such as an ILD. Having an epitaxial BTO film

is of importance for two reasons: First, the low defectivity in

single-crystalline films is crucial for achieving a large effec-

tive Pockels effect in the material [17]. Second, the low surface

roughness of epitaxial BTO films is critical for obtaining high

bonding yield. To fabricate BTO thin films, we use a deposition

process based on molecular beam epitaxy [9], [18], which relies

on the epitaxial growth on Si wafers and can thus be scaled to

large wafer sizes. The availability of large substrates is major a

benefit compared to the bonding of LiNbO3 on silicon or to the

epitaxial growth on crystalline oxides, both approaches being

limited by the available substrate or donor crystal sizes.

The BTO devices are based on a strip-loaded waveguide ge-

ometry, where a Si strip on top of BTO guides the optical mode

(Fig. 1(b)). Lateral electrodes for phase shifters are made using

metal lines fabricated in the top metal level of the BEOL before

BTO integration, combined with a final metallization after BTO

integration. Optical simulations are used to inform the design

of the BTO-Si waveguides and to ensure substantial overlap of

the transverse electric (TE) optical mode and the BTO layer at a

wavelength of 1550 nm. Using a 170-nm-thick BTO layer loaded

with a 100-nm-thick Si strip, we achieve an optical overlap of

38% between the first order TE mode and the BTO layer. The

BTO/Si phase shifters can be used in Mach-Zehnder modulators

(MZMs), or ring modulators. In this work we used unbalanced

MZMs, with multi-mode interference splitters. Grating couplers

were used to couple light in and out of the devices (Fig. 1(c)).

The magnitude of the refractive index change induced by the

Pockels effect is strongly anisotropic and depends on the relative

orientation of the crystalline axes, the optical electrical field, and

the modulating electric field [10], [19]. To ensure the maximum

response we designed phase shifters with waveguides along the

BTO [110] direction.

III. INTEGRATION AND FABRICATION

We deposited BTO thin films on SrTiO3-buffered silicon-on-

insulator (SOI) substrates with 100 nm top Si using a previously

reported process [9], [18]. Deposition of BTO using molecular

beam epitaxy ensures a high-quality single-crystal film. After

BTO deposition, we transferred the BTO layer and the top Si

layer onto a planarized acceptor wafer using thin alumina layers

for adhesion at the bonding interface. The donor wafer was

subsequently removed by a combination of mechanical grinding

and chemical etching, resulting in a high transfer yield from the

source wafer.

To demonstrate the scalability of our approach, we transferred

BTO layers grown on a 200 mm SOI substrate onto another
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Fig. 2. Wafer bonding transfer of thin-film BTO between 200 mm source and
target wafers. (a) Photo of transferred BTO layer. (b) Radial measurements of
the homogeneity of the transferred BTO layer. XRD and ellipsometry was used
to measure the lattice parameter, rocking curve, and thickness of the BTO, all
of which show good homogeneity across the 200 mm wafer.

Fig. 3. Simplified process flow for integration of BTO modulators in the
BEOL of a PIC process flow. Schematics of the cross-sections (left) are shown
at various steps in the process (right). After wafer-bonding of the BTO and
Si layers, the Si is patterned into a strip-loaded waveguide, after which vias
and contacts are fabricated. Figures (c)–(d) show a magnification of the region
within the dashed rectangle in (b).

200 mm silicon wafer that had been capped with a thermal ox-

ide (Fig. 2(a)). The transferred BaTiO3 layer was thoroughly

characterized using X-ray diffraction (XRD) and ellipsometry

(Fig. 2(b)). The out-of-plane lattice parameter and rocking curve

show good crystalline homogeneity with only minor variations

along the 100 mm radius. Additionally, the thickness of the

BTO, measured by ellipsometry, varies only minimally across

the wafer. The observed variations in thickness contain a signif-

icant uncertainty due to variations also in the other layers of the

stack.

For the fabrication of modulators (Fig. 3), we used 200 mm

target wafers, processed following a PIC flow having the same

BEOL processes as EPIC runs [20]. In this work, the BEOL

process of the PIC run was interrupted at the 4th metallization

level, top metal 1 (TM1), after ILD planarization. We trans-

ferred a 170-nm-thick BTO layer from a 50 mm SOI wafer

onto the planarized PIC wafer. Si waveguides were patterned

by dry etching. In order to ensure a homogenous electric field

across the BTO and to avoid a voltage drop over the thin

ILD layer between BTO and TM1, vias to TM1 were etched

through the BTO and the ILD along the waveguides. With a

Fig. 4. Cross-sectional STEM image of BTO modulator integrated after top
metal 1 (TM1) in BEOL process of a Si PIC wafer. The schematic shows how
the modulator was integrated in this work. The electron micrograph shows the
successful integration of BTO/Si modulators. Intermediate metal levels (M1 to
M3) as well as the FEOL levels can be identified.

Fig. 5. Comparison of FEOL Ge photodiode performance before and after
integration BTO modulators. The photodiodes were characterized by recording
a modulated data signal, and by measuring the dark-current. No detectable
degradation is caused by integration of BTO modulators, showing that the
integration scheme is compatible with the PIC FEOL.

final metallization step, we extended the buried RF lines on

top of the BTO. A cross-sectional electron micrograph (Fig. 4)

demonstrates the successful fabrication of BTO/Si modulators

on the PIC substrate.

Direct wafer bonding using Al2O3 adhesion layers has a tem-

perature budget well within the limits of the BEOL process

[21]. However, annealing steps at temperatures up to 350 °C

are needed to reduce the propagation losses in the BTO layer

[12]. It is therefore necessary to verify that the BTO integra-

tion does not cause any degradation of FEOL components. As

the Ge photodiodes fabricated in the FEOL are highly sensi-

tive to thermal degradation, we characterized their performance

before and after BTO device integration. We cannot detect any

degradation in either dark current or high-speed signal detection

performance (Fig. 5). The absence of such degradation confirms

that our integration strategy is compatible with the thermal lim-

itations of the FEOL and BEOL processes, making integration

of BTO devices compatible with PIC platforms, and fulfills the

prerequisites for compatibility with EPIC platforms.

IV. DEVICE PERFORMANCE

To characterize the device performance, we used both pas-

sive ring resonators and active MZMs. The ring resonators had
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Fig. 6. (a) Induced phase shift when applying voltage to one arm of a
2-mm-long MZM. The response is linear at large voltages but shows non-linear,
hysteretic contributions for small biases due to ferroelectric domain switching
in the BTO layer as visualized in (b): The yellow arrows correspond to the polar-
ization of ferroelectric domains. In the middle configuration the EO response of
oppositely oriented domains cancel out, resulting in a vanishing effective Pock-
els coefficient. A sufficient bias voltage can align the domains to maximize the
EO response. The ferro-electric domain switching is a slow effect that does not
occur at frequencies >1 GHz. (c) Transmission spectra at various bias voltages
in the poled regime used for Vπ L extraction.

a radius of 30 µm, to ensure negligible bending losses, and

allow accurate extraction of propagation loss. From the high

Q-factor (∼50,000) of ring resonators we extract a propaga-

tion loss of 5.8 dB/cm. Since the BTO layer itself has only

minimal contributions to the propagation losses [12], we are

instead limited by scattering losses in the Si waveguides. Using

an optimized patterning process the propagation losses can be

reduced further. We performed electro-optic characterization on

unbalanced MZMs with phase shifter lengths of 1–2 mm. By

applying a voltage to one arm of the MZM and recording the

induced phase shift as a function of the applied voltage (Fig. 6),

we extracted the DC Vπ L value as 0.23 Vcm. This value is

10 times smaller than state-of-the-art Si depletion-type plasma-

dispersion modulators (Vπ L∼2 Vcm) [3], [17] and comparable

to integrated silicon semiconductor-insulator-semiconductor ca-

pacitor (SISCAP) modulators (Vπ L of ∼0.2 Vcm) [23]. When

taking into account propagation losses α we reach a Vπ Lα of

1.3 VdB, which is significantly better than any available high-

speed Si modulator (Vπ Lα >10 VdB). In the current devices

the propagation losses are limited by scattering from rough-

ness in the Si waveguide. By improved processing, propaga-

Fig. 7. Power-voltage characteristics of a 2-mm-long MZM device. The leak-
age current is small in the full bias range (<100 nA), resulting in low static
power consumption of ∼100 nW at the operating point of 2 V.

tion losses can be reduced to less than 3 dB/cm, resulting in a

Vπ Lα < 0.7 VdB. The low Vπ Lα shows one of the key advan-

tages of the hybrid BTO/Si technology compared to alternative

modulator concepts: BTO/Si shows both a large electro-optic re-

sponse and low insertion losses, since neither high doping levels

nor absorbing materials are needed in the modulator design.

When sweeping the bias voltage, the phase shift of the MZM

(Fig. 6(a)) exhibited a hysteretic behavior, consistent with the

ferroelectric nature of BTO [10]. The hysteresis curve illus-

trates the need for poling the BTO layer with a bias above the

coercive field (∼1 V) to maximize the electro-optic response.

For smaller bias voltages, mixed ferroelectric domain states re-

sult in a reduced effective Pockels effect reff , which ultimately

vanishes for evenly populated domain states [9] (Fig. 6(b)). The

cancellation effect of opposing domains causes a deviation from

the linear phase response when varying a DC voltage: The total

electro-optic response is the convolution of the linear Pockels

effect and nonlinear domain switching effects. To isolate the

Pockels effect from the electro-optical response we extract the

Vπ at the extremes of the curve shown in Fig. 6(a), where all

domains have been poled. The re-orientation of ferroelectric do-

mains is a relatively slow process (<<1 GHz) [24], which does

not impact the operation of the modulator at high frequency –

even at a bias below the poling voltage.

Moreover, as the Pockels effect is an electric-field effect, very

low-power tuning of the MZMs is possible. The low leakage re-

sults in extremely low tuning powers, Pπ <100 nW (Fig. 7),

compared to silicon thermo-optic tuning elements which typi-

cally have a Pπ >1 mW [25]. As the Pockels-effect is a linear

EO effect the device bias can be used for tuning without chang-

ing propagation losses and without affecting the modulation

efficiency.

From the measured Vπ L it is possible to extract the effective

Pockels coefficient reff of the BTO layer using eq. (1)

reff = λg

n3
B T O

ΓB T O Vπ L (1)

as reff = 380 pm/V. Here, λ is the operating wavelength of

1.55 µm, g is the electrode-gap (2.6 µm), nBTO is the re-

fractive index of BTO (2.29) as measured by ellipsometry on

similar films, and ΓBTO is the EO interaction factor which can

be estimated as the optical overlap with BTO (38%) assuming
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Fig. 8. Small signal frequency response of a 1-mm-long MZM, and a ring
modulator with radius 10 µm. The bandwidth of the MZM is limited by mis-
match between the optical and RF modes, whereas the ring modulator is limited
by the photon lifetime.

a homogenous electric field across the BTO. The magnitude

of the extracted reff is in the range of expected values for BTO

thin films: The electro-optic response exceeds values previously

reported on MBE-grown BTO layers on silicon [9], [13], [17],

but is smaller than those reported in ref. [10], where BTO films

of very high crystalline quality with rocking curves of 0.3° are

reported. The variation of the magnitude of the Pockels coef-

ficients in similar material stacks is in agreement with the de-

pendence of the electro-optic response on the actual crystalline

quality and film morphology [17].

To determine the high-frequency response, small-signal

electro-optic S21 measurements were performed on a MZM

with 1-mm-long electrodes (Fig. 8). The 3-dB bandwidth is

2 GHz. The reason for this limited bandwidth is a mismatch

between the optical mode and the electrical mode in the trav-

elling wave electrodes, caused by the high dielectric constant

of the BTO. Our device designs are based on moderate BTO

permittivity values of εBTO = 100 [26], which turned out to

be strongly underestimated compared to recent reports of εBTO

as high as 3000 in epitaxial BaTiO3 thin films [10], [27], [28].

To improve the bandwidth, the electrodes should be designed

based on the actual properties of the BTO layer to achieve mode

matching between the RF and optical modes. To show that the

bandwidth is not limited by the electro-optic properties of the

material but rather by the electrical design, we measured the

bandwidth of a ring modulator with a 10 µm radius, the small

radius induces bending losses resulting in a reduced Q-factor

of ∼15,000. The measured bandwidth of ∼20 GHz (Fig. 8) is

limited by the photon lifetime but demonstrates the potential for

high bandwidth operation using BTO/Si devices – as confirmed

in previous reports [10], [15].

We further characterized the high-speed performance of the

BTO/Si modulators with data-modulation experiments using a

1-mm-long MZM. An electrical pseudorandom binary sequence

(PRBS) was generated with a bit-pattern generator, without pre-

emphasis or any other signal processing. The signal was ampli-

fied (Vp ∼2 V) and was then applied to one arm of the MZM

along with a 2 V DC bias. The MZM was operated in a travelling

wave configuration with an off-chip 50 Ω termination. The mod-

ulated optical signal was amplified (to compensate losses from

Fig. 9. Eye-diagrams from back-to-back data transmission through 1-mm-
long BTO MZM in single-drive mode at 10, 20, and 25 Gbps, respectively. A
bias voltage of 2 V was applied during the experiments.

grating couplers and from the experimental setup) and directly

detected using a high-speed photodiode. Eye-diagrams were

recorded on a sampling oscilloscope with 10, 20, and 25 Gbps

data rates (Fig. 9). Non-closed eyes can be achieved even at

25 Gbps, however the result of the limited EO bandwidth of

the modulator is qualitatively visible as a reduction eye open-

ing from 10 to 25 Gbps. With an adapted electrode design, we

expect to reach data rates >50 Gbps using MZMs.

V. CONCLUSION

We have shown how a material (BaTiO3) with the Pock-

els effect can be integrated into a silicon photonics platform

in a scalable way using direct wafer bonding. The demon-

strated Mach-Zehnder modulators show excellent performance,

exceeding state-of-the-art silicon-based devices on several fig-

ures of merit, such as Vπ L and Vπ Lα. The established integra-

tion concept provides a path for a novel generation of high-speed

modulators and ultra-fast switches. The technology is however

not limited to such existing components, but further enables

entirely new types of devices on a silicon photonics platform.

Using BTO, ultra-low-power tuning elements [14] and compact

plasmonic devices [10], [29], as well as non-volatile elements

for optical neuromorphic computing exploiting ferro-electric

domain switching [30] are possible.
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