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Abstract— This paper describes a control algorithm for a 
battery energy storage system (BESS) to deliver a 
charge/discharge power output in response to changes in 
the grid frequency constrained by the National Grid 
Electricity Transmission (NGET) – the primary electricity 
transmission network operator in the UK – whilst managing 
the state-of-charge (SOC) of the BESS to optimise the 
availability of the system. Furthermore, this paper 
investigates using the BESS in order to maximise Triad 
avoidance benefit revenues whilst layering other services. 
Simulation using a 2 MW/1 MWh lithium-titanate BESS 
validated model are carried out to explore possible 
scenarios using the proposed algorithms. Finally, 
experimental results of the 2MW/1MWh Willenhall Energy 
Storage System (WESS) verify the performance of the 
proposed algorithms. 
 

Index Terms— Battery energy storage; enhanced 
frequency response; frequency stability; grid support; 
lithium-titanate; triad avoidance; Willenhall energy storage. 
 

I. INTRODUCTION 

ITH increasing environmental concerns about climate 

change and burning fossil fuels, and the requirement for 

a more sustainable grid, renewable energy sources (RES) play 

an essential role in energy continuity for today’s electricity 
supply grid [1],[2]. Increased penetration of uncertain and 

intermittent RES on power grids causes many challenges for 

grid operators including increased frequency fluctuations, 

power quality reduction, reduced reliability and voltage 

transients [3]. Energy storage systems (ESSs) are one of the 

efficient ways to deal with such issues by decoupling energy 

generation from demand. Moreover, ESSs can be used to tackle 

the power quality concerns, especially in the UK, by providing 

ancillary services such as 15-minute fast frequency response, 

frequency regulation, Triad avoidance, load levelling and peak 

shaving [4], [5]. 

There are various types of existing ESSs such as pumped 

hydro, hydrogen, fuel cells, cryogenic, compressed air, 

flywheel and superconducting magnetic storage [6]. In 

comparison to such ESSs, the battery energy storage system 

(BESS) has numerous advantages including faster response 

time compared to conventional energy generation sources, 

energy efficiency, storage size, long cycle life, low self-

discharge rate, high charging/discharging rate capability, and 

low maintenance requirements [7], [8]. The cost of batteries has 

been decreasing in recent years and therefore there is now 

potential for profitable large-scale grid application. BESSs 

mostly participate in balancing demand and supply through 

frequency response services, voltage support and peak power 

lopping [9], [10] BESSs using various battery chemistries are 

installed around the world for grid support [4]. 

In power distribution networks, the frequency changes 

continuously due to the imbalance between total generation and 

demand; if demand surpasses generation, a decrease in the 

frequency will occur and vice versa [4], [11] Maintaining the 

grid at a nominal frequency (i.e. 50 Hz for the UK) requires the 

management of many disparate generation sources against 

varying loads. The National Grid Electricity Transmission 

(NGET) – the primary electricity transmission network operator 

in the UK – has introduced a new faster frequency response 

service, called Enhanced Frequency Response (EFR), to assist 

with maintaining the grid frequency closer to 50 Hz under 

normal operation [12]. A BESS is an ideal choice for delivering 

such a service to the power system due to its rapid response and 

its capability to import/export [4]. In the UK, there are limited 

numbers of installed BESS facilities which are suitable for 

providing grid support. In 2013, The UK’s first grid-tie lithium-

titanate BESS, the Willenhall Energy Storage System (WESS), 

was installed by the University of Sheffield to enable research 

on large scale batteries and to create a platform for research into 

grid ancillary services [4], [8], [13]. 

In the UK, the “Triad” refers to the three half-hour settlement 

periods with the highest system demand between the months of 

November and February, separated by at least ten clear days. 

The timing of these peaks is typically one period between 

1600hrs to 1800hrs. These three periods are not known in 

advance and therefore are determined from the measured data 

analysed in March of every year. Half-hourly metered (HHM) 
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electricity customers in the UK pay charges proportional to 

their consumption during the Triad; this is called the 

Transmission Network Use of Service (TNUoS). The HHM 

customers can minimise their TNUoS charges by reducing their 

demand during Triad periods. Many commercial customers 

have an energy storage device or back-up generators to ensure 

the maintenance of critical supplies in case of a failure that can 

also be engaged to decrease Triad demand; this is known as 

‘Triad avoidance’ [14]-[19]. It is also possible for generating 

assets such as BESSs to export power to the grid during the 

Triad, this results in a payment from the electricity supplier 

known as the Triad Avoidance Benefit (TAB). It is a complex 

task to predict the Triad periods in advance, however, many 

electricity suppliers offer Triad prediction services based on 

insufficient system margin (NISM) provided by NG and other 

factors such as the weather forecast [16].  

Since the EFR is introduced as a new UK grid balancing 

service published in the late of 2016, in literature there are only 

a few papers about EFR service delivery for grid support. In 

[20], a new EFR control algorithm implemented in the DC/AC 

converter of a BESS was developed to fulfil the NGET EFR 

service requirements, however in this paper EFR control is 

achieved with battery energy management system rather than 

controlling the energy storage converter. The study [20] 

compares the performance of the EFR Sevice-1 (wide 

deadband) and Service-2 (narrow dead-band), and it was stated 

that the narrow service is technically more challenging, likely 

requiring four time the storage capacity of the wide service. 

That control algorithm does not cover the 15-mins frequency 

event control to be able to increase the availability of the BESS, 

especially with the narrow dead-band. However, this paper 

extends the basic EFR control algorithm with the two different 

extended 15-mins frequency event controls to achieve a 

maximum BESS availability for delivering EFR service. In 

addition, in [20], the algorithm manages the SOC of the BESS, 

maintaining at 49-51%. But, the SOC band should not be kept 

at less than 5% SOC band in order to reduce battery degradation 

and hence prolong its lifetime.  

In [21], Cooke et al.  present a method of providing the new 

EFR service to avoid the necessity of holding more FFR in 

reserve when system inertia falls. That study also introduced 

several alternative response curves which indicate that if 

arresting the fall in grid frequency in the event of a drop in 

generation is an important aspect of the control design, then a 

stepped response may provide a better service. An energy 

storage strategy based on PI control can help with restoration 

and damping of frequency. However, that response time will be 

slower than a stepped response so that stability can be ensured.  

In [22], the authors investigate the possible performance of a 

BESS in EFR provision, by simulating its response to grid 

frequency according to the EFR service requirements, and this 

evaluating its ability to exchange energy for the service, a 

service performance indicator, and the possible aging related to 

battery cycling. Different EFR power versus frequency 

characteristics, BESS technologies and BESS energy capacities 

are considered in [22]. It was also assumed that the BESS are 

connected to the UK or to the Continental Europe (CE) 

synchronous area; therefore, for the CE system those 

requirements are adjusted according to the CE frequency 

behaviour. However, a major specification of the EFR service 

is to consider ramp-rate limits in the UK requirements, it was 

not considered in [22] for simplicity; power exchange rate 

limits internal to the batteries was also neglected. In addition, 

that study did not cover an extended 15-min frequency event 

control in order to increase the batteries availability. 

 In contrast to other recent works in the field; the main 

contribution of this paper is to present a novel control algorithm 

that enables BESSs to provide a bi-directional power in 

response to changes in the grid frequency, whilst managing the 

SOC of the BESS to optimise availability of the system. 

Moreover, this study introduces a strategy to generate 

additional revenues from ancillary services such as Triad 

Avoidance only available during the winter season.  

Moreover, this paper considers layering the new UK grid 

frequency balancing service, EFR, with Triad Avoidance in 

order to maximise the system’s availability and profitability. It 
should be noted that the previous basic study [4] presented 

initial three EFR control methodologies with their simulation 

results; and this paper extends to show how this can be used to 

maximise profits from other services such as Triad Avoidance. 

This paper also includes experimental validation with a 

2MW/1MWh lithium-titanate BESS, commissioned and 

operated by the University of Sheffield, which is the largest 

research only platform for grid-tie energy storage applications. 

This paper is organised as follows. In Section II, the technical 

specification of the new UK EFR service is described. In 

Section III, three different EFR service models are developed 

to evaluate control strategies for delivering a real-time response 

to deviations in the grid frequency. The first model introduces 

a control algorithm designed to meet the technical requirements 

of NGET specifications [12]. The second model addresses the 

EFR service design with an extended 15-minute frequency 

event control, in order to optimise the use of the available stored 

energy. The third model extends the EFR control algorithm to 

include a dynamic SOC target to maximise the energy stored on 

predicted Triad days. In Section IV the simulation results based 

on the 2 MW / 1 MWh BESS are analysed to verify the transient 

performance of the proposed control strategy. In Section V, the 

performance of the EFR service delivery through TAB is 

quantified and the performance of the proposed EFR control 

algorithm is verified experimentally with the 2MW / 1MWh 

WESS in Section VI.  

II. EFR SERVICE TECHNICAL SPECIFICATIONS 

EFR is introduced as a new fast frequency response service 
for grid balancing that can deliver full-scale active power within 
one second of registering a grid frequency deviation. NGET 
prepared an EFR specification to facilitate a tender competition 
for 200 MW of support provision to be distributed amongst 
potential energy storage providers in 2016 [12], which is 
described as follows. 
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Fig. 1. NGET specifications (a) EFR envelope and (b) power zones [12]. 

TABLE I 
EFR ENVELOPE FREQUENCY AND POWER BOUNDARIES [12] 

 Frequency (Hz)  Power (%) 

Ref. 
Point Service-1 Service-2 Ref. 

Point Service-1 Service-2 

A 
B 
C 
D 
E 
F 

49.5 
49.75 
49.95 
50.05 
50.25 
50.5 

49.5 
49.75 
49.985 
50.015 
50.25 
50.5 

t 
u 
v 
w 
x 
y 
z 

100 
44.44444 
9 
0 
-9 
-44.44444 
-100 

100 
48.4536 
9 
0 
-9 
-48.4536 
-100 

 

Energy storage providers must respond to deviations in 

nominal frequency (50 Hz) by decreasing or increasing their 

power output. Specifically, energy storage devices must 

provide power to the grid to respond to deviations in frequency 

outside of a dead band (DB). Providers must deliver continuous 

power to the grid as described in one of the two EFR service 

envelopes (Service-1, Service-2) of Table I [12]. As seen in 

Error! Reference source not found.(a), the power level must 

remain within the upper and lower envelopes at all times; power 

provided outside the envelope will decrease the service 

performance measurement (SPM), and thus reduce the income 

revenue [12]. In DB, the reference power profile is at zero MW 

output and hence providers do not have to respond to changes 

in the grid frequency. The BESS can be freely operated to 

charge/discharge in DB, however, the maximum export/import 

power must not exceed 9% of the BESS’s full-scale range [12]. 

Providers may operate anywhere within the upper and lower 
envelopes to deliver a continuous service to the power system, 
with respect to the specified limitations on ramp rates as given 
in [4],[12]. For a BESS, this effectively provides some control 
over state-of-charge (SOC) of the battery. For the zones A, C, D 
in Error! Reference source not found.(b), the ramp rate must 
obey the specified values in [4], [12]. Operation in zones C and 
D will result in payments at a lower SPM. Hence, in such cases, 
EFR power output has to return to the specified envelope with 
respect to the ramp-rate limits given in [4]. Ramp-rate zone B is 
described as being the area between the upper and lower 
envelopes, excluding the DB, and extends to achieve the full 
power capability at ±0.5 Hz [12]. The allowable ramp rates 
within zone B depend on the rate of change of frequency. For 
EFR Service-1 and Service-2, the ramp rate limitations for all 
frequencies in zone B are shown in [4]. With these ramp limits, 
output power changes proportionally to changes in grid 
frequency, whilst allowing the energy storage providers some 
flexibility [12] to manage the battery SOC. 

III. EFR DESIGN ALGORITHM  

A BESS model is developed in MATLAB/Simulink and 
verified against experimental operation of the WESS. An EFR 
control algorithm is then implemented on the model to deliver 
a grid frequency response service to the NGET specification. 
Fig. 2 presents the EFR control scheme implemented in EFR 
Model-1 [4], where the inputs are real-time grid frequency (݂) 
and battery SOC, and the output is the required EFR power.  

 
Fig. 2. EFR control scheme implemented in EFR Model-1 [4]. 

The algorithm starts by detecting the position of the 
measured grid frequency with respect to the zones bounded by 
vertical lines ‘A’ to ‘F’ in Fig. 1 (a). This is achieved by the 
‘EFR Power Calculation’ block (labelled ‘1’), where the 
required EFR response envelopes are calculated. In the 2 MW 
BESS model, the frequency and power bounds are calculated as 
a function of the limits denoted in Fig. 1 (a), with their values 
declared in Table I. The power output is restricted to ±180 kW 
(i.e. 9% of 2 MW) within the DB and both services include an 
upper, base line and lower power line denoted ܷ, ܼ and ܮ, 
respectively. Block 2 selects the required power line with the 
decision being based on the measured SOC. For example, if the 
current SOC is below the desired SOC range, the demanded 
power is calculated using the equations derived for the upper 
line (ܷ). This has the effect of either importing energy to charge 
the battery or minimising the exported energy to maintain a 
desired SOC range. ‘Zone Assignment’ (Block 3) is responsible 
for identifying the current operating zone (refer to Fig. 1(b)) for 
the calculation of the power-output levels.  
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Finally, the change in power output per time step (1 second) 

for each zone is determined using the given ramp-rate limits 
given in [4]. In this study, battery SOC is calculated using (1) 
[4], where SOC୧୬୧୲, ܳ  and ܲ ୠୟ୲୲ represent initial SOC, Watt-hour 
capacity and instantaneous battery power, respectively. 

SOCout ൌ SOCinit ൅ ׬ ܲbatt ή Ͳ͵͸ͲͲݐݐ݀ ൈ  ܳ  (1) 

 
Fig. 3. Flow chart showing the structure of the two proposed battery energy 
management strategies for enhanced frequency response in the UK [4]. 

The EFR specification defines frequency outside DB for 
longer than 15 minutes as an extended event, whereby after the 
15 minutes, it is optional to deliver power for up to 30 minutes 
post the grid frequency returning to DB. In order to increase the 
availability of the BESS in Model-1, by avoiding SOC limits, 
an extended 15-minute frequency event control algorithm is 
implemented in EFR Model-2 and Model-3, as given in Fig. 3. 
EFR Model-2 introduces a timed control block, which measures 
the length of time that the grid frequency is continuously 
outside of the DB. If this block measures a value higher than 15 
minutes, then the BESS’s output power is set to zero. The BESS 
remains in this state until the system frequency returns within 
DB, at which point a second timer starts timing for 30 minutes 
and the output power stays at zero until the timer expires, at 
which point, the EFR control is reset back to operating as EFR 
Model-1. EFR Model-3 allows the BESS to manage its SOC 
between its upper (SOC୳୮) and lower limits (SOC୪୭୵) during the 

30-minute rest period by charging and discharging the battery 
within the ±9% power limits. 

IV. SIMULATION RESULTS OF EFR MODELS  

Using a real-time frequency data set obtained from NGET 
[23], the three EFR models are simulated in 
MATLAB/Simulink. The simulation results presented in this 
paper are all based on a 1 MWh BESS model, which has been 
experimentally validated on the WESS plant in the UK, with a 
maximum EFR power of ±2 MW. Table V shows the 
parameters used in the EFR models.  

A. Simulation results of EFR Model-1 

In order to show the performance of the reported EFR algorithm 
in Section III, the real grid frequency data for the 21st of October 
of 2015 [23] is employed herein, as this particular day is known 
to have a large period of under frequency.  

TABLE I 
SYSTEM PARAMETERS [12] 

Parameter Value 

Nominal frequency  
Low/high DB 
Max/min EFR power limit 
Battery rated power/capacity 
Battery initial SOC (SOC୧୬୧୲) 
SOC band (SOC୪୭୵- SOC୳୮) 

Inverter efficiency (ߟ୧୬୴) 
Battery charge/discharge efficiency (ߟେ/ߟୈ) 

50 Hz 
±0.015 Hz (Service-2) 
±2 MW 
2 MW/1 MWh 
50% 
45-55% 
97% 
94% 

Fig. 4 shows the simulation results of Model-1 for a ‘Service-

2’ EFR with a target SOC band of 45-55%. On the frequency 

plot, the DB (±0.015 Hz) is shown by the green lines. It is clear 

that the SOC sharply drops, reaching 0% at 11:00, and stays 

there for ~30mins due to the grid frequency demands at that 

time. As the frequency stabilises, the EFR algorithm charges 

the battery when it is permissible (frequency in DB) and returns 

the SOC to within the specified band of 45-55%. The power 

response versus frequency plot of EFR Model-1 for 21st 

October 2015 is shown in Fig. 7(a). The red lines represent the 

upper, reference and lower EFR power lines. It can be seen that 

the EFR power (blue circles) does not remain within the 

required zones of  ‘A’  and  ‘B’. As outlined  in Fig. 1,  this  is  

*CPower: Calculated 
power dictated by 
EFR specification. 

  

Start

Measure frequency

Frequency in 

DB?

PowerOut = CPower

Event Counter=0

Timer1=0

Timer2=0

End
Yes

No

Start/Continue Timer1
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No

PowerOut = CPower

Yes

M2/M3

M2

Start/Continue Timer2
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PowerOut=0

No

Yes
PowerOut = CPower

End
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Event Counter=1

Stop Timer1 & Timer2

M3

Start/Continue Timer2

Timer2≥30 mins

PowerOut = CPower

Yes

End

No Frequency in 

DB?

Yes
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No

SOC>SOCup?

Yes

Yes

No
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PowerOut = CPower

(charging battery)

PowerOut=0No
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PowerOut = CPower
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Event Counter=1

Stop Timer1 & Timer2
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Fig. 4. Simulation results of EFR Service-2 obtained using Model-1 for 21st 

Oct 2015 frequency dataset. 

because of the SOC reaching 0% and therefore there is no 

power available for delivery to the grid. This non-conformance 

would cause a penalty in the SPM and hence it is necessary to 

improve the EFR control algorithm to minimise such 

occurrences. 

A. Simulation Results of EFR Model-2 

Model-2 introduces the extended grid frequency event timer 

and cuts the EFR power output after 15 minutes (Fig. 3). The 

same frequency data is injected into Model-2 capturing 13 15-

minute extended frequency events (Fig. 5(d)). The simulation 

results (Fig. 5) show that the minimum battery SOC reaches 

30.7% compared to 0% (Fig. 4) in Model-1. Therefore, the 

BESS is 100% available for providing power according to the 

EFR specification. 

B. Simulation Results for EFR Model-3 

The EFR algorithm implemented in Model-3 allows for the 
charge/discharge of the battery during the 30-minute rest period 
(Fig. 3). The model is simulated with the 21st October 2015 grid 
frequency data [23] as shown in Fig. 6. The simulation results 
demonstrate that again, the BESS provides 100% availability as 
similar with Model-2 Fig. 7(b), however, the lowest SOC 
achieved with Model-3 is now 32.3%, compared to 30.7% (Fig. 
5) of Model-2. This is a substantial achievement in terms of 
maximising the utilisation of the BESS stored energy. 

C. Results Analysis 

In the EFR models, it is possible to define two aims for 
power flow in/out of the battery; the first is defined as charging 
and discharging the battery i.e. power is requested in either 
direction for the sole purpose of battery SOC management; the 
second is import and export which defines when the BESS is 
performing a mandatory response to a grid frequency event. The 
energy calculation of the BESS is given in (2) and (3) [5]. 

 
Fig. 5. Simulation results of EFR Service-2 obtained using Model-2 for 21st 

Oct 2015 frequency dataset. 

 
Fig. 6. Simulation results of EFR Service-2 obtained using Model-3 for 21st Oct 

2015 frequency dataset. 

 
Fig. 7. EFR power response of Model-1 (a), Model-2 (b) for 21st Oct 2015. 

Discharge/Export:   ܲ ൐ Ͳ ՜ ܧ݀   ൗݐ݀ ൌ െ ܲ ஽ൗߟ  (2) 

Charge/Import:        ܲ ൏ Ͳ ՜ ܧ݀   ൗݐ݀ ൌ െܲǤ ஼ߟ  (3) 

where P, E, ߟ஽ and ߟ஼ represent the power exchanges by the 

BESS, present stored energy, and battery discharging and 

charging efficiencies, respectively. The energy management 

findings of all EFR models are summarised in Table VI. It is 

clear that, by implementing the extended 15-minute grid 

frequency event control in EFR Model-2 and Model-3, the 

availability of the battery is increased from 98% to 100% 

(SPM).  As desired, the battery’s SOC has been shown in the 

simulation results to converge on the selected band of 45-55% 

(a) (b) 
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in all of the EFR models. In EFR Model-3, the SOC converges 

faster towards the desired band and it is predicted that this will 

minimise SOC excursions towards the limits. However, 

compared to EFR Model-2, this is at the expense of using more 

energy solely for SOC management (charge/discharge) within 

the DB. This is important as energy used outside of the DB 

(import/export) can be classified as Applicable Balancing 

Services Volume (ABSVD) and it is possible for this to be 

excluded by the energy storage provider i.e. zero cost. The 

difference in import/export energy observed between EFR 

Model-2 and Model-3 is because of the variation in SOC and so 

the BESS will not follow the same selection of EFR envelopes. 

V. EFR SERVICE DELIVERY THROUGH TRIAD AVOIDANCE 

In this section, both EFR Model-2 and Model-3 are compared 

for TAB using the real-time frequency dataset for the 4th 

December 2014, 19th January 2015, 2nd February 2015 [23-24] 

and 20th December 2015 [23], these represent the 2014-2015 

year actual Triad days, and a high under-frequency day in 2015, 

respectively. The EFR service is delivered from midnight, 

whilst managing the SOC of the battery to within a typical range 

of 45-55%. The control algorithm then switches the SOC target 

range to 90-95% on receiving Triad warnings to maximize the 

available energy for delivery. Between 16:00 and 19:00 real 

power is exported using a weighted profile based on the 

statistical likelihood that a Triad would occur in each half 

hourly period, as shown in Table VII.  

The analysis in this section considers varying the time that a 

Triad prediction is acted on, meaning that the SOC target is set 

to 90-95%, between 10:00 and 13:00. The simulation results 

show the SOC achieved by 16:00, with a higher SOC giving a 

maximum potential revenue through TAB. From Table VIII it 

can be seen that on 20th Dec 2015, preparing for Triad later than 

12:00 is sub-optimal; a lower SOC is achieved compared to 

earlier times. This is because it is a particular day which has a 

large period of under-frequency events, as seen in Fig. 8 and 

Fig. 9. Preparing for Triad at 10:00, there is a considerable 

improvement, and it can be see that there are further gains to be 

made using Model-3 (87.17%) over Model-2 (70.08%). 

TABLE II 
ENERGY MANAGEMENT FINDINGS OF THE THREE EFR MODELS 

21st 
Oct 
2015 

Min 
SOC 
(%) 

Max 
SOC 
(%) 

SPM Battery 
Charging 
Energy 
(kWh) 

Battery 
Discharging 

Energy 
(kWh) 

Battery 
Import 
Energy 
(kWh) 

Battery 
Export 
Energy 
(kWh) 

Total 
Energy 
(kWh) 

M1 0 57.96 0.9828 160.6 83.33 1744 1470 3458 

M2 30.67 57.8 1 63.48 71.2 1225 950.5 2310 

M3 32.3 57.93 1 136.2 102 1185 957 2381 

TABLE III 
POWER PROFILE USED FOR TRIAD AVOIDANCE 

Time (hr) Service used 
for Triad 

SOC band 
(%) 

Power 
Delivery (kW) 

00:00 – SW EFR  45-55 EFR 

SW – 16:00 EFR 90-95 EFR 

16:00 – 16:30 Discharge - 200 

16:30 – 17:30 Discharge - 500 

17:30 – 18:00 Discharge - 300 

18:00 – 18:30 Discharge - 200 

18:30 – 19:00 Discharge - 100 

19:00 – 00:00 EFR 45-55 EFR 

 
Fig. 8. Simulation results for EFR Model-2 through Triad Avoidance for 20th 
Dec 2015, switching mode to triad preparation at 10:00. 

 
Fig. 9. Simulation results for EFR Model-3 through Triad Avoidance for 20th 
Dec 2015, switching mode to triad preparation at 10:00. 

 
TABLE IV 

 STARTING BATTERY SOC (%) FOR TRIAD PERIOD AT 16:00 

Real/ 
predicted 

Triad days 
in 2015 

EFR 
Models 
used for 

Triad 

Switch (SW) Mode to Triad 
Preparation at 

10am 11am 12pm 13pm 

4th Dec 
2014 

Model-2  91.42  91.5 90.65 78.27 

Model-3 92.23 91.98 91.5 79.13 

Recovery 0.81 0.48 0.85 0.86 

19th Jan 
2015 

Model-2  90 84.84 72.06 64.54 

Model-3 92.43 86.48 73.61 66.07 

Recovery  2.43 1.64 1.55 1.53 

2nd Feb 
2015 

Model-2 99.26 99.26 99.25 97.79 

Model-3 99.73 99.83 99.7 98.5 

Recovery 0.47 0.57 0.45 0.71 

20th Dec 
2015 

Model-2 70.08 70.08 63.99 56.57 

Model-3 87.17 87.08 70.39 60.56 

Recovery  17.09 17 6.4 3.99 

 

Based on the 2016 TAB payment of £45.6 / kWh [28], total 

triad revenues of £3229 and £2583 are obtained for Model-2 

and 3 respectively (Table IX). This means that in Model-3, the 
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SOC converges faster (17.09%) causing the highest triad 

revenue (£646) as shown in Table IX, since the battery has an 

opportunity for charging/discharging during the 30-min rest 

periods, as shown by the many 15-minutes   events in Fig. 9.  In 

comparison, there is no significant SOC recovery (<2.5%) 

between Model-2 and Model-3 at 10:00 on the real Triad days 

of the year of 2014-2015 (4th Dec 2014, 2nd Feb and 19th Jan 

2015) because of the low amount of extended under-frequency 

events. 
 

TABLE IX 
 TOTAL TRIAD PROFIT (£) OBTAINED AT 17:30-18:00 PREDICTED TRIAD TIMES 

Real/ 
predicted 

Triad days 
in 2015 

EFR 
Models 
used for 

Triad 

Switch (SW) Mode to Triad 
Preparation at 

10am 11am 12pm 13pm 

4th Dec 
2014 

Model-2 3442 3442 3409 2934 

Model-3 3478 3460 3442 2965 

Recovery 36 18 33 31 

19th Jan 
2015 

Model-2  3400 3193 2707 2421 

Model-3 3490 3258 2767 2479 

Recovery  90 65 60 58 

2nd Feb 
2015 

Model-2 3733 3733 3730 3681 

Model-3 3753 3753 3748 3706 

Recovery 20 20 18 25 

20th Dec 
2015 

Model-2 2583 2583 2353 2063 

Model-3 3229 3223 2594 2217 

Recovery  646 640 241 154 

VI. EXPERIMENTAL VERIFICATIONS WITH WESS 

The UK’s first grid-connected lithium-titanate type of 

battery, WESS, was commissioned in 2015 by the University of 

Sheffield (UoS). The facility consists of a 1MWh, 2MW 

Toshiba lithium-titanate battery, interfaced to the grid through 

an 11 kV feed at the Willenhall Primary Substation in the UK 

(see Fig. 10). It aims to investigate the characteristics of a 

lithium-titanate type battery, as well as different battery 

chemistries, for providing grid support functions at scale [8], 

[13], [25]-[27]. The battery is made up of 40 parallel-connected 

racks, each consisting of 22 series-connected modules to form 

a rack, and each module consists of 24 cells in a 2P12S 

formation. There are 21,120 cells in the battery unit with a total 

capacity of approximately 1 MWh. The battery is connected to 

a four quadrant DC/AC 2 MVA converter. More technical 

details on the WESS can be found in [8], [13].  

In order to experimentally validate the performance of the 

proposed EFR control algorithm, WESS was utilised as a test 

bed. Fig. 11 compares the results obtained from the developed 

EFR Model-1 and the real WESS, responding to grid frequency 

deviations through the EFR service for a 12-hour operation 

period for 21st Oct 2015. The figures show that the model is 

representative of the real system with a root-mean-square error 

(RMSE) of 0.19% and a mean-absolute-percentage error 

(MAPE) of 0.31% for SOC.   

 
Fig. 10. (a) Block diagram and (b) photo of the 1 MWh/2MW WESS plant. 

 

 
Fig. 11. Comparison of the experimental and simulation results obtained on 

EFR Model-1. 

 

Fig. 12. EFR power versus frequency plot for (a) simulation and (b) measured 

using Model-1. 

DDDC 

Storage

PCS100 ESS

Converter

Coupling

Transformer

AC

Grid

DC Storage

(475V – 712Vdc)

Coupling Voltage

350Vac
Grid Voltage

11 kV

Transformer
Converters

Battery

(a) 

(b) 

(a) (b) 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
The slight variances in power are explained by a small 

difference in SOC at the boundaries of the SOC target band, 

meaning that each system will choose a different EFR envelope 

line to use. Small deviations can be accounted from the 

increased losses in the experimental system when compared to 

the model operating at very low power (<100kW). This is due 

to the operational efficiencies of the inverter being outside of 

its optimised operating range. It should also be noted that 

WESS is configured with an operational SOC band of 5-95%. 

Fig. 12 presents the delivery envelope of the proposed control 

algorithm for both simulation and experimental using Model-1. 

The comparison of experimental and model findings indicates 

that the proposed EFR control algorithm shows a good 

performance with <4.5% and ~0.3% of MAPE power and 

battery SOC for the 12-hour period in 21st Oct. 

VII. CONCLUSION 

In this paper, three novel EFR control algorithms, based on 

the model of a 2 MW/ 1 MWh BESS, have been developed to 

respond to changes in the grid’s frequency with a proportionate 

active power output. Simulation results demonstrated that all 

three algorithms met the UK’s NGET EFR requirements, whilst 

managing the battery’s SOC by converging towards a desired 

band of 45-55%. It was shown that, for the historical dataset 

considered, the basic EFR algorithm, Model-1, would not be 

able to manage the extended 15-minute grid frequency events, 

thus, causing the battery’s SOC to drop to 0%, which would 

incur a service performance penalty charge. EFR Model-2 has 

demonstrated that in order to increase the availability of the 

BESS, it is necessary to stop any EFR activity after an extended 

15-minute frequency event, as allowed by the EFR 

specifications. The third algorithm (Model-3) was shown to 

have a better performance in terms of SOC management by 

using the 30-minute rest periods in between frequency events 

as a window of opportunity to move SOC towards the desired 

band of 45-55%. However, there was a small increase in the net 

energy consumed. The results were validated experimentally on 

a 2MW / 1MWh BESS with some small variances accounted 

for. Finally, it was demonstrated that with strategic 

management of the battery’s SOC during EFR delivery the 

BESS could be prepared in order maximise the available energy 

to export for TAB. The results show that the amount of energy 

available to export would depend greatly on the frequency 

conditions of the day and the time that a decision is made to 

commit to preparing for TAB. 
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