A BAYES APPROACH TO A QUALITY CONTROL MODEL!
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Summary. This paper deals with a class of statistical quality control proce-
dures and continuous inspection procedures which are optimum for a specified
income function and a production model which can only be in one of four states,
two of which are states of repair, with known transition probabilities. The
Markov process, generated by the model and the class of decision procedures,
approaches a limiting distribution and the integral equations from which the
optimum procedures can be derived are given.

1. Introduction. A machine which is producing items possessing a measurable
quality characteristic « can be in one of four states. In state 2 = 1, 2 the machine
is in production and is characterized by a probability density fi(x) of the quality
characteristic z. In state j = 3, 4 the machine is being repaired, having previ-
ously been in state j — 2. The machine remains in the repair shop for n; time
units, where a time unit is taken as the length of time required to produce one
item. Repair puts the machine in state 1 which is assumed to be the desirable
state. When the machine is in state 1 there is a constant probability ¢g that in
the next time unit it will go into state 2. This probability is inherent in the
production process and is assumed to be known. Once the machine enters state
2 it remains in this state until it is brought to repair (i.e., state 4). The machine
is brought from production to repair by a statistical quality control rule R
based on observations on z.

Two cases are considered. In case 1 it is assumed that 1009, inspection of
the items is based upon grounds other than inspection costs. In this case the rule
R specifies only when to terminate production and put the machine in the repair
shop. In case 2 inspection costs are taken into account or alternatively 1009,
inspection is precluded by the destructiveness of the tests so that the rule R,
in addition to being a!“stop” rule, also specifies which items in the production
sequence are to be inspected. In both cases, the aim is to maximize the long run
average income. Case 1 will be discussed first.

2. Optimum quality control rule for the case of 1009, inspection. The eco-
nomic considerations involved in the production model in the case of 1009,
inspection are (a) a function V(x) which gives the income per item of quality
z produced, and (b) two positive constants ¢; , j = 3, 4, which represent the
cost of repair per unit of time the machine is in state j.

For the given production model, income function, and repair costs, the ex-
péected income per unit of time the production process is in operation in any
specified length of time depends on the particular quality control rule employed.

. 1 Presented to the Institute of Mathematical Statistics on December 27, 1950.
2 Research done under the sponsorship of the Office of Naval Research.
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For any rule R, let Iy(R) stand for the sample average income per unit of time
if the production process has been in operation for N time units and initially
the machine is in state 1. Furthermore, let 7.y (K = 1, 2, 3, 4) be the number
of time units in the N time units that the machine is in state k. Then

(2.01) LB =2 3 ve)++

N state 1 N state 2

Z V(IE) ol -r]sV—NCs ol -34—V.NC4.
Let E[V(z) | fi] stand for the expected value of V(z) given that the machine
is in state ¢ = 1, 2, and let my = E(rvny/N). Then from (2.01)

(2.02) ElIx(R)] = mnBIV(2)|f] + moxBV(@) | fil — monts — mants -

A rule R* will be called optimum or Bayes if it yields maxg limy_« E[Iy(R)]
That is, letting I(R) = lim y_.« E[Ix(R)], then R* is defined by

(2.03) I(R*) = max I(R).

In spite of the apparent complexity of the problem, the characterization of R*
turns out to be fairly simple.

Let ;, 2, ...be the quality of the items produced in sequence from the
time the machine comes out of the repair shop. Define

_ fz(xk) _ _
(2'04) yk (1 — g) f1(:t1,) ] ZO - 0, Zk - yk(]- + Zk—-l)'

For any positive constant a let EB(a) be the rule which states that inspection is
to continue as long as Z, < a, and inspection is to terminate and the machine
is to be put in the repair shop as soon as for some k, Z; > a. Furthermore, let
a* be such that

(2.05) I(R(a%)) = max I(R(a)).

The optimum quality control rule B* is corhpletely characterized by
TaEOREM 1. R* = R(a*) if there exists a constant a such that

E(V(z) | f) < I(R(a)).

The following definitions and lemmas are required to prove this theorem.

For any rule R in use, the time period during which the machine, having left
the repair shop, stays in production until it is placed back in the repair shop
and stays there for the specified length of time, will be called a cycle. Let n be
the number of time units the machine is in production under the rule B during
a cycle and let m = n 4+ n; wherej = 3 if the machine entered the repair shop
from state 1 and j = 4 if it entered the repair shop from state 2. Thus m is a
random variable and represents the length of the cycle. Let v = V(z) in any
time unit the machine is in production and v = —¢; (j = 3, 4) in any time unit
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the machine is in the repair shop. Let J..(R) be the total income per cycle. Then
JIm(R) = i ui. A rule RY will be called Bayes if it yields max EJ.(R). That
is, setting J (R) = EJ.(R), R is defined by ’

(2.06) J(RY) = max J(R).

Let R(a) be defined as above and let G be such that
(2.07) J(R(@)) = max J(R(a)).

Lemma 1. RY = R@) of E(V(z) | f2) < O.

Proor. The proof of Lemma 1 follows directly from the general character-
izations of Bayes solutions given by Arrow, Blackwell, and Girshick [1] and
only a brief sketch of the argument will be presented here.

If at any time that the machine is in production it were known that it is in
state 2, by the conditions of the lemma it would pay to place it in the repair
shop. Thus the only relevant information obtainable from the observations is
the a posteriori probability that the machine is in state 2. Whether or not for a
given a posteriori probability the expected income per cycle is maximized by
placing the machine in the repair shop depends on the existence or nonexistence
of a continuation rule which from this stage on would guarantee an expected
income exceeding the expected cost of repair. It is proved in the paper cited
above that the set of a posteriori probabilities for which the best procedure is
to take a given action is an interval. In the case under consideration, the set of
a postenon probabilities for which the best procedure is to put the machine in
the repair shop is an interval from g* to 1, where g* is a nonnegative fraction
and its value depends on V(z), ¢, ¢, and g. The optimum procedure R} can
therefore be described as follows. At each stage of inspection compute the a
posteriori probability that the next item will be produced in state 2. As long as
this a posteriori probability is less than g* continue inspection. However, as
soon as this a posteriori probability equals or exceeds g*, terminate inspection
and place the machine in the repair shop. That this procedure is equivalent to
R(&) can be seen from the following.

At the kth stage of inspection, let g, be the a posteriori probability that item
k + 1 will be produced while the machine is in state 1. Then

(1 - g)Qk—lfl(xk)
2. , =1-9g
(2.08) % = i fi(@e) + (1 — qre—1)fa(w) P g
Let y: be defined as in (2.04). Then
1 1 1
. — = — =1},
(2.09) il g + (Qk—l. )

o -t u(m k)
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Let

1—yg ( 1 1 )
2.11 z,o=r—g(1__1 Y
(2.11) k s\~ T3
Then from (2.10) .
(2.12) 7y = y;,(l + Zk—l), Zy = 0.
Let now pr = 1 — ¢i. Then from (2.11),

9(Zx + 1)

2.1 =i “,
(2.13) Dk 7 F 1
Consequently the relationship px § g* is equivalent to the relationship

< 9*—-9 _ . .
2.14 Zy < S—2 =a.
@14) R (D)

Thus, R} is equivalent to the rule, continue inspection as long as Z;, < g,
and terminate inspection as soon as Z; > d.
LemmA 2. For any posttive constant a

(2.15) P(m > mqo| R(a)) — 0 as mg — o,

where m = n + n; is the length of a cycle.

Proor. It suffices to show that the lemma holds for #, i.e., that R(a) terminated
production with probability 1. It is clear that P(y > 1|fi) = r > 0. Let n,
be a large positive integer and let ¢ < n, be any integer such that no — 7 >
[@ + 1] = d, where the symbol [¢] stands for the smallest integer greater than
or equal to . Furthermore let P(z, 2) stand for the probability that the machine
is in state 2 after < time units of production and let P(3, no | 2) be the probability
that there has been a run of at least d y’s each greater than 1 between the time
period ¢ and the time period n, given that the machine is in state 2. Then

(2.16) P(n <mo| B(@) 2 P(,2) PG, m0 | 2) 2 (1 — (1 — g)*) (1 — (1 — )",
where &k = [(no — 7)/d]. Setting ¢ = amo, equation (2.16) becomes

(2.17)  P(n < m|R(a)) > (1 — &7™) (1 — &™) 2 1 — 4™,

where 0 < 6 < 1. Thus

(2.18) P(n > ne) < AS™,

which proves the lemma.

LemMA 3. For any positive constant a, E[m | R(a)] < «, where m is the length
of a cycle.

Proor. Again it suffices to show that E[n | R(a)] < «. In view of (2.18)
the series Y se1 P(n > k) is convergent. But

L) L)

@10)  TPe2R =33 Ph=k =3 Pa=))

k=1 j=k =0

which proves the lemma.
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LemMa 4. For any rule R with E(m | R) < «, I(R) = E[>_wwu:/E(m | R)],
where I(R) = limy_o EIn(R).

Proor. Let Wy be the number of completed cycles in the time period of length
N and Ly be their total length. A repeated application of the Strong Law of
Large Numbers shows that with probability 1 the following sequences approach
the indicated limits as N — oo

@ YL o, (0) 32— Bom);
N N

© & — Bm); @ [ 3 wiy]-o
(2.20) v . e

© E [IN(R) - 3w/ E(m»] ~0;

® E [;V:‘,: ui/(WNE(’m)):I —E [Zm)l u,-/E(m)].
Therefore,
(2.21) EIx(R) — E [2 u,-/E(m)] -0

as N — o, which completes the proof.

LemMma 5. If for any rule R, E(m |R) = o, then I(R) = E(V(z) | f2).

Proor. To prove this lemma it will suffice to show that the proportion of
time units in which the machine is in state 2 in N time units approaches 1 as
N — o, If as N — « there are only a finite number of cycles, then with prob-
ability 1 the machine will enter state 2 and remain in state 2 so that the lemma
is established. Assume that this is not the case.

Let s; ( = 1, 2, -+ -) be the number of time units required for the machine
to enter state 2 in the #th cycle if no stop rule were employed plus the number
of time units it stays in the repair shop. Then s, sz, - - are identically and
independently distributed variates with Es; < (1/¢Y + max (ns, ns). Let ¢; (# =
1, 2, - - -) be the length of the 7th cycle. Then ¢, &, - - - are identically and in-
dependently distributed variates with #; independent of s, sz, -++, Si-1,
Siy1, - Define

(222) A t; — 8 if t: > Siy

0 if t; S 8.

Then z; = number of time units in the 7th cycle that the machine is in state 2.
The fraction of time units that the machine is not in state 2 in the first » cycles
is given by

i _ Wt wet - 4w
(228) i ey N
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where
w; = if & < 85,

(2.24)
, = 8;if 8, > s;.

Combining (2.22) and (2.24) yields
(2.25) zi +ws = 1.

Now by (2.24) Ew; < Es; < (1/g) + max (n3, ns), and since by assumption
Ez; = o, it follows from (2.25) that Ei; = «. By (2.23) and (2.25),

w+ wy + - 4 wa

e N o TN R sy
(2.26) W.l_ir__ﬁﬂ
Tat e, Wit tw
n + n

so that by the Strong Law of Large Numbers, lim,—,« @, = 0 with probability 1.
Let

(2.27) _ﬁl (w; +2) < NLZ 2 (w; + 2).

Then the relative length of time that the machine is not in state 2 in N time
units is given by

{Wl Z; w; + length of time that it is not in state 2 between Z; (w; + 2)

nt1
(2.28) 2w

; (w; + 2)
with probability 1. This proves the lemma.
The above lemmas will now be used to prove Theorem 1.

By Lemma 5 the only rules B that need to be considered are those for which
E(m|R) < . Let

(2.20) K®) = E[ﬁ‘i (s — I(R(a*)):l.

The income function u — I(R(a*)) satisfies the conditions of Lemma 1. Hence
there exists a constant @ such that

"(2.30) K(R(a)) = max K(R(a)).
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Now by Lemma 4,

(2.31) K(R) = E(m | R)I(R) — I(R(a*))l.

Since by Lemma 3 E(m | B(a)) <« o, then for all B

(2.32) K(R) < K(R(a)) = E(m | R(a)) [I(R(a)) — I(R(a*))].

But by definition I(R(a)) < I(R(a*)). It follows therefore that K(R) < 0
so that by (2.31) I(R) — I(R(a*)) < 0, which proves the theorem.

By Lemma 3, a sequential procedure defined by the rule R(a) terminates with
probability 1. It is of interest to investigate under what conditions R(a) is a
truncated sequential procedure. The answer to this is given by

THEOREM 2. Let 1y be the least upper bound of numbers r such that P(y < r | fi) =
0. A necessary and sufficient condition that R(a) be a nontruncated sequential
procedure s that 1o < a(l — r).

Proor. Since y = fo(x)/((1 — g)fi(x)) > 0, it follows that ry > 0, so that if
the condition of the theorem is satisfied 7, must be less than 1. Assume that
ro < a(l — 7). Let 71 > 7, but still satisfying the condition r < a(1 — ).
Then P(y < 71| fi) > 0. Thus for any finite n whatever, there is a positive prob-
ability that (a) the machine is in state 1 during the n time units and (b) there
exists a sequence y; , - - - , ¥ such that y; < r for all 7. But for such a sequence
of y’s inspection cannot terminate since Z; < Z iari<aforj=1,---, n
Conversely if 7o > a(l — r,), the series 2 417¢ > a. Thus there exists an n, for
which 2. 2% r§ > a, which implies that P(n > no) = 0. This completes the proof
of Theorem 2.

3. Integral equations for the Markov process in the case of 1009, inspection.
In the previous section it was shown that the optimum quality control rule is
given by R(a) for ¢ = a*. The problem is to find a* for a given V(z), c; and ¢, .
Since a* is that value of a for which I(R(a)) = lim,_. Elx(R(a)) is a maxi-
mum, this problem will be solvable if I(R(a)) is determined for an arbitrary a.
But by (2.02) this is equivalent to finding for any a limy_.» mx (kK = 1, 2, 3, 4).
The solution to the latter problem will be given in this section.

The production model under consideration together with the stop rule R(a)
creates a Markov process with states and transitions which can be represented
schematically as follows:

(1, Z,): If Z, < a, take another observation; if Z, > a, go into [3, 1].

(2, Z,): If Z, < a, take another observation; if Z, > a, go into [4, 1].

B, k] = 3, k£ + 1] k =1, ,n3 — 1).
[3, mg): Take an observation.
[4)k]_)[41k+1] (k=1:"'7ni—1)-

[4, ng): Take an observation.
Here the symbol (2, E) 7 = 1, 2, stands for the joint event, the machine is in

state 7 and the event E occurred. The symbol [j, %], (] =3, 4k=1---,n),
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stands for the event, the machine is in the kth time unit of repair and prior to
repair has been in state j — 2. The arrows indicate transitions from one state
to another.

From the results of a paper by Erdos, Feller, and Pollard [2], it follows that
the probability that at time m the machine is either in state [3, ng] or [4, n4
approaches a limit, and hence the probability of the event (¢, Z, S a) or the
event (¢, Z, ¢ S) where S is any Borel set, approaches a limit.

While in the Markov process under consideration it was assumed that when
the machine leaves the repair shop Z, = 0 and pr = g, where p; (see (2.08))
is the a posteriori probability that item & -+ 1 will be produced in state 2, it is
found just as convenient to derive the integral equations for the limiting dis-
tribution for any arbitrary value for Z, and a correspondlng a, posteriori prob-
ability h.

Write Z for Z, , w for Zy—; and y for yx . Then Z = y(w + 1). For any x > 0
let P(¢, Z < z) stand for the probability of the event (7, Z < z).

LemMA 6. If P(y = « [fo) = 0, then

(3.01) P(2,Z < z) = % fo ) (14 ¢ dP(1, Z < t).

Proor. The truth of this lemma can readily be seen from the fact that if ¢
is written for Z; and p for pi then

P=_9 _@a+y,
¢ l—g

as can be verified from equation (2.13).

In what follows, it will be assumed that P(y = o« |f;) = 0. This will reduce
the problem to that of finding an integral equation only for P(1, Z < z) as will
be evident from the following equations:

P1,Z<z)=(1-—g) P(Q, 'w<a,y(w+1)<x)

+A-9 @@=k w+»PyZ+1) <z|l),
(3.03) PB,kl=p=P1,Z< ©)—PQ1Q,Z<a), ((*k=1,---,mn),
(3.04) P4, kl=v=P(2,Z< »)—P2,Z<a), (k=1,---,n),
(3.05) Pl,Z < ©)+ P(2,Z < ®©) + ngp + nyw = 1.
Let Gi(y) be the cumulative distribution of y given state 1. Then from (3.02)

(3.02)

P(,Z <z) = (1—g)fG1(1+t)dP(1Z<t)
(3.06)
‘ 01 = 0t = WG + 96 (2.



122 M. A. GIRSHICK AND HERMAN RUBIN
Interchanging order of integration yields

z/(1+4a)
P(1,Z <z) =(1—yg) I;/; - P(1, w < a) dGi(y)

(3.07) + [ POw< @) - dca(y)]

1+Z>

- (-0 [P0 w <6 (;25) + 0 = W+ 96 (12 ]

+a=g [ Plw< /) - 1) dGly).
z{(1+a)

- — WG+ v)Gl(

In terms of the quantities defined in (3.01) to (3.05) limy—omeny With A =
is given by

(3.08) }.i_l'l:gm:v =P(1,Z<a)+ 1 — g+,
(3.09) ,}1_1330 mow = P2, Z < a) + glu + »),
(3.10) ;&l_l.xi wIN = M3l

(3.11) 1.1;1..1.& TN = TNyv.

The computation of the quantities involved in (3.08) to (3.11) can be simpli-
fied by the following device.

Let p = p + ». Assign a value to p, say p’. Solve for P(1, Z < z) from either
(3.06) or (3.07). Call the solution P'(1, Z < z). Compute P'(2, Z < z) from
(3.01). Compute ' from (3.03) and » from (3.04). Compute

(3.12) D=P1,Z < o)+ P2,Z < =)+ nu + ny'.
Then

!
(3.13) P@z<@=52%iﬁ,
/
(3.14) Pz <z =TRZ<D
”/ )
(3.15) MmN = B, Vv = 5.

4. Optimum quality control rule when inspection costs are considered or
Wwhen tests are destructive. As was previously pointed out, in case inspection
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costs are taken into consideration, or when inspection is destructive, a quality
control rule R must not only specify when to stop inspection and put the ma-
chine in the repair shop, but it must also specify which items are to be inspected.
That is, B must be a contz‘nuousjnspection plan as well as a stop rule.

The income considerations involved in the present situation are somewhat
different from those in case 1. To begin with, the cost of inspecting an item has
to be specified. In addition, the income from an item may depend not only on
its quality but also on whether or not it has been inspected. This is obvious
if inspection destroys the item. But even if the tests are not destructive, throw-
ing away or repairing a defective item, for example, may involve a different
cost consideration from that of selling a possible defective item with a resulting
loss of good will, etc.

To distinguish between the two types of income-functions, let Vo(x) be the
income of an uninspected item of quality  and V(z) be the income of an in-
spected item of quality z. It may be assumed that inspection costs have already
been reflected in V(z). In addition let ¢; (j = 3, 4) be, as above, the cost of re-
pair when the machine is in state j. Again as above let Ix(R) represent the
average income per unit of time if the production process has been in operation
for N time units and the rule R is employed. Then

won EI(R) = woux E[Vo(x) | fil] + meen E[Vo(z) | fal + mx E[V(2) | fi]
4.01
+ mon E'[V(x) |f2] — m3NC3 — T4NCs,

where in the N time units mow (z = 1, 2) is the expected proportion of time
units in which items are not inspected and the machine is in state ¢, v (¢ =
1, 2) is the expected proportion of time units in which items are inspected and
the machine is in state ¢ and =;x (j = 3, 4) is the expected proportion of time
units the machine is in state j (i.e., repair).

A rule R* will be called Bayes if it yields maxg limy—. EIx(R).

Without going through the details of the argument, which are similar to the
case previously considered, the optimum rule R* is characterized as follows:

Let

fz(wn)
4.02 y =
(10 U = T— it
if in the nth stage of production the nth item is inspected, and let
1
(4.03) Yn = 1—:—9

if in the nth stage of production the nth item is not inspected. Let
(4.04:) Zy = Yn (1 + Zn_l), Zy = 0.

" Assume that when the machine leaves the repair shop the first item is not in-
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spected. Then for suitably chosen positive constants a* and b* with b* < a¥*,
R* is the rule which states that items are not inspected as long as Z, < b*.
Inspection begins as soon as Z, > b*, and inspection continues until either Z, <
b* or Z, > a*. In the former case groduction continues but inspection terminates,
in the latter case inspection terminates and the machine is put in the repair
shop.

It is to be noted that whenever for some 7, , Z,, < b*, the number of items to
be skipped is completely determined. For if %k is the number of items to be
skipped, then k& must satisfy the equation

k 1 j 1 k
= [ —_— *
(4.05) Zno+k ; (1 — g) + <1 — g) Zno 2 b .
Summing the above equation and solving for k yields
- e (7 55)/ ]
(4.06) k= [log (ano 1 log (1 — ¢) |,

where the symbol [¢] stands for the smallest integer greater than or equal to ¢.
The interesting fact is that R* prescribes that inspection or noninspection shall
occur in batches of items. ,

5. Integral equations for the Markov process in case inspection costs are
considered. The integral equations for the limiting distribution of the present
Markov process are understandably more complicated. They are obtained as

follows:

As in the previous case, let Z, be arbitrary and let 2 be the corresponding a
posteriori probability. Let Z = y(1 4 w), where y is defined by (4.02) and (4.03).
For any arbitrary a and b (a* and b* are obtainable by a maximization process),
let the symbols P(1, Z < z), P(2, Z < z), and P[i, k] have the same meaning
as in the previous case. Then

(5.01) P2, Z < z) =1—-":-g fo ) dP(1, Z < 1),

Pl,Z<z)=(1-—g¢g {P(l,w <b,-}——:|_-—iv <x)
(5.02) g

+P(L,b< w<ayw+ 1)< 2) + (1= B+ ) P(?fgl < x)}

(5°03) P[37k]=”=P(1’Z<°°)_P(17Z<a'), (k=1,2,~-~,n3),
(5.04) P4,kl=v=P2,Z< v)—P2,Z<a), (k=1,2,---,ny),
(5.05) P(l,Z < ©) + P2,Z < ©) + nu + ngv = 1.

' Let G1(y) be the cumulative distribution of y for an inspected item given that
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the machine is in state 1. Then the integral equation for P(1, Z < z) is given by
P(l,Z<z)=(1—-¢gmn[PQl,w<b)Plw<(l-—gz-—1)]

(5.06) + (1 - g)[ fe (1 2)dPU,w <
+ = WG+ (s =22 1)),

where 7 = 1 if argument is positive, n = 0 otherwise.
Equation (5.06) can also be written as

P(l,Z<z)=(1- g)[min (P(l,w < b),P(Lw < (1 — gz — 1))

+a_mm+m@-?;ﬁ]

(5.07)
+ 0 -9 [G’x (1 T )(P(l w<a) —P(,w < b))

z/(14b) z ) } ]
+ -[z/(1+a) {P (1’ w < v 1 P(1, w < b)p dGy(y) |.

The limiting probabilities involved in (4.01) for this process are

(5.08) }l_lg mow = P(1,Z <b) + (1 — g)(u +»),
(5.09) lim 7wy = P(2,Z < b) + gu + »),
(5.10) ;1_1‘1010 mw =P(,Z <a) —P(,Z<D),
(5.11) lim oy = P(2,Z < a) = P(2,Z < b),
(5.12) lim my = N, lim 7wy = ng.

N N

The previous remarks about computing the integral equation apply to this
case also.
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