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Tutorial

A Bayes tour of inversion: A tutorial

Tadeusz J. Ulrych∗, Mauricio D. Sacchi‡,
and Alan Woodbury∗∗

INTRODUCTION

It is unclear whether one can (or should) write a tutorial
about Bayes. It is a little like writing a tutorial about the sense of
humor. However, this tutorial is about the Bayesian approach
to the solution of the ubiquitous inverse problem. Inasmuch as
it is a tutorial, it has its own special ingredients. The first is that
it is an overview; details are omitted for the sake of the grand
picture. In fractal language, it is the progenitor of the complex
pattern. As such, it is a vision of the whole. The second is that
it does, of necessity, assume some ill-defined knowledge on the
part of the reader. Finally, this tutorial presents our view. It
may not appeal to, let alone be agreed to, by all.

Our presentation relies heavily on the work of others, and
there is a wealth of literature on the subject of Bayesian inver-
sion. Fortunately for us, this is not a review, and we are there-
fore less obligated to quote the literature. There are, however,
must-read papers and books. We highly recommend Scales and
Tenorio (2001), which contains many excellent references. Two
articles by Duijdnam (1988a,b) are an excellent introduction
and reference to seismic applications. Edwin Jaynes (1996) is
one of our published heroes. We also frequently refer to works
by Lupton (1993) and Sivia (1996).

An inherent feature of any inverse problem is randomness.
As we will see, randomness may be associated with various
parts of our quest, but there can certainly be no doubt that
noise always associated with the observations is indeed ran-
dom. Thus, our approach must be statistical in nature. Statistics,
to many, imply probabilities. Probabilities, at least to us, imply
Bayes. This is not the only view; in fact, we consider two quite
different views. In the first, we consider the model parameters
to be a realization of a random variable. In the second, we treat
the parameters as nonrandom.
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The concept of probability, for reasons that are most prob-
ably associated with early education, instill fear into the most
lionhearted. In fact, it is probably not probability, per se, but the
dreaded word statistics that is at the source, conjuring pictures
of dreadfully complicated and never-ending mathematical for-
mulae.

Probability theory and statistics are different. The former
refers to the quest of predicting properties of observations
from probability laws that are assumed known. The latter is,
in a sense, the inverse. We observe data and wish to infer the
underlying probability law. In general, inverse problems are
more complex to solve than forward problems. They are of-
ten ill posed or nonunique. (In fact, Jaynes teaches us that all
inverse problems that are overdetermined are badly posed.)

Having said this, we firmly believe that statistical fear is ill
founded. After all, we use statistics and probability every day.
Every decision we make has an element of chance or arbitrari-
ness involved. In fact, it is our thesis that we live our lives while
implementing Bayes’ theorem. His theorem is our algorithm
of decision-making.

A bit about Bayes

Thomas Bayes was born in London in 1702 into a religious
atmosphere. His father, the Rev. Joshua Bayes, was one of the
first six Nonconformist ministers to be ordained in England.
Like his father, Thomas was ordained a Nonconformist minis-
ter and assisted his father until the late 1720s when he became
a Presbyterian minister.

Bayes’ theory of probability appeared posthumously in “Es-
say Towards Solving a Problem in the Doctrine of Chances,”
published in the Philosophical Transactions of the Royal Society
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of London in 1764. Thomas Bayes died in England in 1761,
misunderstood by many but on a probabilistic par with an im-
mortal, Pierre Simon Marquis de Laplace.

THE THEOREM

Consider two events, A and B. Let us designate the dis-
crete probability of each event happening by P(A) and P(B).
The probability of both A and B happening, designated as the
joint probability P(A, B) [or P(A and B)], is given by

P(A, B) = P(A | B)P(B) = P(B | A)P(A), (1)

where P(A | B) and P(B | A) are conditional probabilities. In
other words, P(A | B) is the probability of A happening, given
that B has already happened. From equation (1) we obtain
Bayes’ theorem in its simplest form.

P(B | A) =
P(A | B)P(B)

P(A)
. (2)

There is no controversy whatsoever regarding equation (2).
It follows logically, and so does Bayes’ theorem, from the ac-
cepted axioms of probability theory. To gain deeper insight
both into the controversy that we will elaborate on and into
the use of this theorem, let us state it in a more general fash-
ion. Let mT = (m1, m2, . . . , m N ) be a column vector of model
parameters of length N . We make M observations concern-
ing this model and obtain a data vector dT = (d1, d2, . . . , dM ).
We write Bayes’ theorem [equation (2)] in terms of probability
distributions [or probability density functions (pdf)] as

p(m | d) =
p(d | m)p(m)

p(d)
. (3)

We now discuss some salient points concerning equation (3).
First, p(m | d) is the pdf we desire. It is the distribution of the
model parameters posterior to the data d, or the probability
that the model is correct given a data set d. In other words, solv-
ing for p(m | d) will answer the fundamental question, “What
is the probability that the model is correct, given a certain set
of observations (data)?”

Second, since the data have been measured, the denominator
of equation (3)—the probability that data d is observed—is a
constant and can be written as p(d) =

∫

p(d | m)p(m) dm to
ensure that p(m | d) integrates to one as all legitimate pdf’s
should.

The value p(d | m) deserves special attention. It is called the
likelihood function and has a long and important history in
stochastic estimation problems. Before d has been observed,
p(d | m) represents the pdf associated with possible data re-
alizations for a fixed parameter vector. After observation,
p(d | m) has a very different interpretation: it is the likelihood
of obtaining the realization actually observed as a function
of the parameter vector m. Some authors call this function
L(d | m); we call it L(m) for short. It has the same form as
p(d | m), but the interpretation is that d is fixed and m is vari-
able. Examples follow.

Finally, p(m) is at the center of any disputes that have arisen
concerning the use of Bayes’ theorem. It is the prior probabil-
ity of the model vector. Possible questions that arise are “How
do we convert any prior information that we might have (i.e.,
background geological information about an area such as logs,
core samples, etc.,) into a pdf, and what are the ramifications as-

sociated with the particular choice?” More later. At this stage,
we emphasize that the Bayesian approach is one where the
model parameters are considered to be random and a prior
probability is therefore appropriate if one has a Bayesian dis-
position.

A LITTLE ABOUT PRIORS

We will have much to say concerning priors throughout this
article; but at the outset, we consider the important quest for
priors that express complete ignorance so our estimates will
not be biased by uncertain knowledge. We quote from Jeffreys
(1939):

Our first problem is to find a way of saying that the
magnitude of a parameter is unknown, when none
of the possible values need special attention. Two
rules appear to cover the commonest cases. If the
parameter may have any value in a finite range, or
from −∞ to +∞, its prior probability should be
taken as uniformly distributed. If it arises in such a
way that it may conceivably have any value from 0
to ∞, the prior probability of its logarithm should
be taken as uniformly distributed.

We have incorporated this quotation for three reasons: (1)
because of Jeffreys’ enormous contributions and stature, (2)
because the uninformative prior is central in our problem,
and (3) because the second part of this quotation defines the
Jeffreys prior. Jeffreys, in considering the prior for the stan-
dard error σ , which can never be negative, invoked the un-
informative prior 1/σ that is in standard use. Certainly, the
notion of the uniform prior to describe complete ignorance for
a parameter that can assume all values—the so-called location
parameter—does not require detailed justification [although
subtle arguments exist; c.f. Scales and Tenorio (2001)]. The
case for the Jeffreys prior is perhaps less obvious. Sivia (1996)
gives the following clear justification. Consider a parameter σ

that can assume only positive values, often called a scale pa-
rameter. Let σ , for example, represent standard deviation. We
are interested in assigning a pdf of p(σ | I ), where I represents
complete prior ignorance with respect to σ . Clearly, our pdf
must be invariant to the units of measurement of σ . For this to
be so, it is required that

p(σ | I ) dσ = p(ασ | I ) d(ασ ) = p(ασ | I )α dσ,

where α is a scale factor. For equality to hold, we must have

p(σ | I ) ∝
1

σ
, (4)

since only then

k
1

σ
dσ = k

1

ασ
αdσ,

where k is a constant of proportionality.
A somewhat different but interesting derivation can be ob-

tained as follows. Since σ ≥ 0, we write

σ = eβ, (5)

where β is a parameter that can assume all values in (−∞, +∞)
with uniform probability. To find the pdf of σ , we compute the
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Jacobian of the transformation and write

p(σ ) =
p(β)

eβ

∣

∣

∣

∣

β=ln σ

.

Assuming a uniform distribution for β,

p(σ ) ∝
1

σ
.

Following equivalent logic, we deduce that

p(log σ | I ) = constant,

confirming our intuition that magnitudes involve logarithms.
We notice immediately that the prior does not represent a

proper pdf in the sense that it cannot be normalized. We con-
sider this fact in more detail below; but at this stage we can
state with confidence that this characteristic is of little concern,
and we now have an uninformative prior for many important
applications.

A SIMPLE EXAMPLE OR TWO

Let’s illustrate the discussion thus far with examples based
on some in Lupton (1993).

Consider the almost canonical problem of estimating the
mean from n observations drawn from a Gaussian distribution
designated by N(µ, σ 2), where µ is the actual mean and σ 2 the
actual variance, assumed known. John Scales would call such an
example a toy example (Scales and Tenorio, 2001). The beauty
of toy examples is that they teach us much about the general
problem in a very simple setting.

To use equation (3), we must first assign a prior density p(m).
We do this in the conventional manner by assuming that all
mean values µ are equally probable and assign a uniform pdf.
The likelihood function is the probability of obtaining the ob-
served sample if we know that the mean was some particular
value of µ. If the observations are independent and normally
distributed, we obtain

p(d | m) =
1

(2π)n/2σ n

∏

i

e−(di −µ)2/2σ2
. (6)

Substituting our uniform prior into equation (3), it is clear
that p(m | d) ∝ p(d | m). Taking logarithms of p(m | d) to make
life easier, differentiating, and setting the resulting expression
to zero in the usual manner obtains the maximum a posteriori
(MAP) estimate as

µ̂ =
1

n

∑

i

di .

Lupton (1993) continues with this example, and we continue
with him. Specifically, we now consider the estimation of the
variance, assuming this time that µ is known. With equivalent
assumptions on the prior distribution of σ 2, just a little algebra
shows that

σ̂ 2 =
1

n

∑

i

(di − µ)2. (7)

Here, however, is the first point of contention. Equation (7)
was derived under the hypothesis of a uniform prior, but vari-
ance cannot be negative. A possible prior in such a case is
the Jeffreys prior we developed. Substituting equation (6) into

equation (3) and proceeding as before yields

σ̂ 2 =
1

n + 1

∑

i

(di − µ)2. (8)

This result may appear somewhat disconcerting. After all,
the estimator is biased (the denominator is n + 1 rather than n

for known µ). We will look at this result in more detail later
when we introduce the concept of risk. For now, let’s itemize
and discuss our findings.

1) From a Bayesian perspective, the parameter vector is a
realization of a random variable. As such, we can asso-
ciate with it a prior probability that is essential in applying
Bayes’ theorem to find the posterior probability. Once we
have computed p(m | d), we have computed everything
we wish to know about the model.

2) The uniform prior (in some particular range) expresses
our maximal ignorance concerning a variable that occu-
pies that range. When positivity constraints apply to that
variable, the uniform prior may no longer be justifiable
and the Jeffreys prior should be considered.

3) Equation (8) shows clearly that the influence of the prior
decreases with sample size. Lupton (1993) puts it nicely:
the greater amount of information in the sample drowns
out the information in the prior.

4) The role and the meaning of the likelihood are para-
mount. Certainly, the likelihood L(m) has a meaning and
use quite apart from the function it plays in Bayes’ theo-
rem. We will explore this issue next.

LIKELIHOOD AND THINGS

Likelihood explains the data, the fixed set of observations d

actually obtained. In L(m), m represents a vector of parameters
that could have given rise to the observed data. If m is consid-
ered a random variable, it is naturally associated with a prior
pdf. If it is not considered random, p(m) plays no part and,
having only L(m) at our disposal, we obtain the well-known
maximum likelihood estimates. In other words, if we adopt the
view that the model vector is not random, Bayes’ theorem does
not apply. There is danger in using anything indiscriminately;
this certainly applies to the use of the Bayesian approach.

The best vision of the likelihood function comes from its
relationship to the ubiquitous method of least squares. The ob-
served data d are modeled as the superposition of true signal s

corrupted by additive noise n, i.e., d = s + n, where s is related to
m by f (m) = s and f represents some functional relationship.
The likelihood function is constructed by taking the difference
between observed data and the signal. This difference is the
noise to which we can assign the most uninformative pdf that is
consistent with the available information. The well-supported,
common practice is to assign the Gaussian pdf. This assign-
ment follows from the central limit theorem as well as from the
principle of maximum entropy (Jaynes, 1982) that we describe
later. Further, supposing that the noise values (n1, n2, . . . , nN )
are independent, we obtain

L(m) =
N

∏

i=1

[

1
√

2πσ 2
exp −

(

n2
i

2σ 2

)]

= σ−N exp

(

1

2πσ 2

N
∑

i=1

[di − f (mi )]2

)

. (9)
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Finding the model parameters that minimize the sum in the
exponent of equation (9) is the ubiquitous method of least
squares. Of course, in the underdetermined case we must
use the singular value decomposition that allows construc-
tion of the smallest model (see related issues in Farqhuarson
and Oldenburg, 1998). The procedure that, in the case of the
Gaussion p.d.f. is equivalent, is to maximize L(m), and repre-
sent the method of maximum likelihood. We see immediately
that the latter method is much more flexible since it does not
depend on assigning a Gaussian pdf.

Nonrandom model vector

Let us look in more detail at the fixed model vector approach.
A logical thing to do might be to modify the Bayes procedure
to eliminate the expectation (or average) over p(m) since m is
now a constant. For a start, we consider a mean squared error
(MSE) criterion, written as

MSE(m) =
∫ +∞

−∞
(m̂ − m)2 p(d | m) dd, (10)

where we have taken expectations over the only random vari-
able in the problem that is d. We see immediately that a mini-
mum MSE(m) is obtained when m̂ = m. True but hardly useful.
We want to obtain an unbiased estimate, E[m̂] = m, that at the
same time has minimum variance. The way most people do that
is to maximize the likelihood L(m) [or, more often, the natural
logarithm of L(m), called l(m)] with respect to m to obtain the
maximum likelihood estimate we mentioned previously. The
literature abounds with details of the properties of the maxi-
mum likelihood estimator, its bias and variance for various
probability distributions, and its relationship to the method
of least squares. The important conclusion to be drawn in the
present discussion stems from the relationship between the
MAP and maximum likelihood estimators. Taking logarithms
in equation (3), differentiating, and setting the result to zero,
we obtain

∂

∂m
l(m)

∣

∣

∣

∣

m=m̂

=
∂

∂m
ln p(d | m)

∣

∣

∣

∣

m=m̂

+
∂

∂m
ln p(m)

∣

∣

∣

∣

m=m̂

= 0. (11)

Clearly, the maximum likelihood estimator is equivalent to the
MAP estimator when lnp(m) = 0. This implies that, in prac-
tice, a random hypothesis for the model parameters coupled
with a uniform prior density is equivalent to the fixed vector
hypothesis.

THE CONTROVERSY

The controversy that exists between the Bayesian and clas-
sical approaches arises because, as so eloquently stated by
Frieden (1982), these are fundamentally different. The clas-
sical approach is not wrong. [J. R. Oppenheimer, paraphrased
by Frieden (1982), states that “The word ‘Classical’ means only
one thing in science: it’s wrong!”] Both views are important,
and both give answers to the problems that concern us.

The main aspect to the controversy lies in the use of prior
information. The classical, or frequentist, view is that prior in-
formation makes no sense since probabilities can only be mea-

sured and not assigned. In this regard, the result obtained in
equation (8) may indeed be gratifying to the frequentists. Here
is an estimate of variance that differs from the accepted maxi-
mum likelihood estimate. But is it worse? Trade-offs exist in all
walks of life. In parameter estimation, the most famous is the
trade-off between bias and variance, expressed by the relation

mean square error = variance + bias2
.

It is interesting to see how this expression arises.
Writing �̂ to be an estimate of a parameter θ and using the

definitions of bias (B) and variance Var[ · ],

B = E[�̂] − θ,

Var[�̂] = E[(�̂ − E[�̂])2],

we anticipate the expression for MSE by computing the sum

Var[�̂] + B2 = E[(�̂ − E[�̂])2] + (E[�̂] − θ)2

= E[�̂2] − (E[�̂])2 + (E[�̂])2

−2E[�̂]θ + θ2

= E[�̂2] − 2E[�̂]θ + θ2

= E[(�̂ − θ)2]

= MSE. (12)

One oft-cherished compromise between variance and bias is
to minimize the MSE. Let us now look at the MSE(σ̂ 2) associ-
ated with the Jeffreys prior.

We consider n normally distributed variates with known
mean µ where µ = 0. In this example, we are concerned with
the estimation of the variance for known mean, not the estima-
tion of the sample variance. The estimator σ̂ 2 is computed as

σ̂ 2 =
1

k

n
∑

i=1

x2
i , (13)

where k = n for the maximum likelihood estimator and k =
n + 1 for the Jeffreys estimator. The simplest procedure to com-
pute MSE(σ̂ 2) is via the characteristic function φ(t), defined as

φ(t) = E[ei t x ]

=
∫ +∞

−∞
ei t x p(x) dx .

If x is an N(0, 1) variate, the characteristic function of x2 is
(Lupton, 1993)

φ
x2(t) = E

[

ei t x2]

=
1

√
2π

∫ +∞

−∞
ei t x2−x2/2 dx

=
1

(1 − 2i t)1/2
.

The characteristic function of the estimator in equation (13),
when x is distributed as N(0, σ 2), is consequently

φ
σ̂2(t) =

1

(1 − 2i tσ 2/k)n/2
. (14)

To find the mean and variance of the corresponding distri-
bution, we remember that the moments about the origin µ′

r are
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obtained from

µ′
r =

drφ

d(i t)r

∣

∣

∣

∣

t=0

.

Using equation (14) and performing the necessary algebraic
steps, we obtain

E[σ̂ 2] = µ′
1 =

n

k
σ 2

and

Var[σ̂ 2] = µ′
2 − µ2 = 2σ 4 n

k2
.

Using these relations, we compute MSE(σ̂ 2) as

MSE(σ̂ 2) = 2σ 4 n

k2
+

(

n

k
σ 2 − σ 2

)2

. (15)

Minimizing equation (15) with respect to k obtains k = n + 2.
The minimum MSE estimator for this Gaussian example with
known mean is

σ̂ 2 =
1

n + 2

n
∑

i=1

x2
i . (16)

So, the maximum likelihood estimator is unbiased, the es-
timator of equation (16) is minimum MSE, and the Jeffreys
estimate is somewhere in between. Not a bad choice, perhaps.

Our main reason for using the Bayesian philosophy is be-
cause it provides a particularly flexible approach to solving our
underdetermined inverse problem. Bayes allows us to con-
struct objective functions that provide particularly desirable
flavors to the solutions we seek. Before describing our ap-
proach, let’s review the steps required to achieve a Bayesian
solution to an inverse problem.

INVERSION VIA BAYES

We use our previous notation to state the inverse problem.
We have

f (m) = d = s + n,

where f (m) could represent a linear or nonlinear function.
The likelihood, in light of the earlier discussion, is assumed
Gaussian. We also assume some knowledge of the data covari-
ance matrix Cd in terms of the data variances:

Cd =















σ 2
d1 0 . . . 0

0 σ 2
d2 . . . 0

...
...

. . .
...

0 0 . . . σ 2
d N















Denoting the determinant of Cd by |Cd |, we obtain the likeli-
hood as

p(d | m) =
1

(

(2π)N |Cd |
)1/2

exp −
[

1

2
(d − f (m))T

× C−1
d (d − f (m))

]

. (17)

Now comes the question of assigning the prior probability of
our model. We suppose in this example that we know the model
is smooth in a first derivative sense. Clearly, this would be an

inappropriate supposition for a problem concerning the earth’s
reflectivity. However, it might be appropriate if the problem
were to find a source wavelet. For the smooth prior, we define
p(m) by

p(m) =
(

η

2π

)(M−1)/2

exp

[

−
η

2
mT DT Dm

]

, (18)

where D is the derivative matrix and is represented by

D =





















0 0 0 . . . 0

−1 1 0 . . .
...

0 −1 1 . . .
...

...
...

...
. . .

...

0 . . . . . . −1 1





















The parameter η, known as a hyperparameter, characterizes
the distribution in that 1/η corresponds to the variance of the
prior distribution. We now call upon Bayes:

p(m | d) =
p(d | m)p(m)

∫

p(d | m)p(m) dm

. (19)

Although, the denominator of equation (19) is nothing more
than a normalization factor, it plays an important role in the
inversion. Specifically, we define 
(d | η) as


(d | η) =
∫

p(d | m)p(m | η) dm, (20)

where p(m) is rewritten as p(m | η) to indicate its dependence
on η. In general, the inverse problem will be cast in terms of
a vector η of hyperparameters. The value 
(d | η) is known
as the Bayesian likelihood, and we will see how it is used in
the inversion. For the time being, we compute the following
form for the posterior distribution from equations (17), (18),
and (19):

p(m | d) =
1

(

(2π)N |Cd |
)1/2

(

η

2π

)(M−1)/2

exp −
[

1

2
�(m, η)

]

,

where

�(m, η) =‖C−1(d − f (m))‖2 +η ‖Dm‖2 (21)

and represents the objective, or cost, function for the problem.
Inasmuch as the MSE is a trade-off between bias and vari-
ance, so our cost function is a trade-off between resolution and
smoothness—a trade-off that is noise dependent.

We have built our first Bayesian objective function. We will
see in the next section more examples of objective function
building, an extremely useful approach in diverse applications.
As is clear from equation (21), the hyperparameter η plays a
central role. As its function would suggest, determining it is not
an easy task. If η were known, the likeliest model parameters
represented by mMAP may be found by minimizing �(m, η).

Since the problem of minimizing �(m, η) is nonlinear, it is
linearized around a starting model and the minimization pro-
ceeds iteratively. We do not consider details here. We will, how-
ever, spend a little time looking into determining η.
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Determining the hyperparameters

The approach we describe is based on the work of Hirotugu
Akaike (1980) and on the Akaike’s Bayesian information cri-
terion (ABIC). The ABIC, in turn, is based on the Akaike
information criterion (AIC). [For details, see Sakamoto et al.
(1986) and Matsuoka and Ulrych (1986).] In essence, the AIC
is based on the Kullback-Liebler information measure. Denot-
ing the true model by mt and the estimated model by m̂, the
Kullback-Liebler measure defines the distance in probability
space between the data distributions p(d | mt ) and p(d | m̂). In
developing the AIC, Akaike transforms this measure into

AIC = −2 · ln[p(d | m̂)]max

+ 2 · (number of parameters).

The first term in this expression is related to the sample vari-
ance and decreases with the number of parameters. The sec-
ond is related to the fact that the error of fitting the parameters
increases with their number. The minimum of the AIC lets us
compute the appropriate number of parameters, a quest partic-
ularly arduous in problems such as fitting time series models.
The ABIC is similar to the AIC in form and is computed in
terms of the Bayesian likelihood defined in equation (20):

ABIC = −2 · ln[
(d | η)]

+ 2 · (number of hyperparameters). (22)

The correct hyperparameters are evaluated at the minimum
value of the ABIC.

The full Bayesian inversion proceeds as follows.

1) Evaluate the Jacobian matrix for the starting model vec-
tor mk .

2) Minimize �(m | η) for a given value of η.
3) Evaluate the ABIC.
4) Repeat steps 2 and 3 until the optimum value of η that

minimizes the ABIC is reached.
5) If convergence properties are satisfied, stop. Otherwise,

return to step 1 with the updated model vector mk+1.

The convergence properties in step 5 are related to data un-
certainties. An approach is to consider the rms misfit, given by
√

‖C−1(d − f (m)‖2/N .

PARAMETER ERRORS: CONFIDENCE

AND CREDIBILITY INTERVALS

It is always important to say something about the confidence
with which the model parameters that follow from our inverse
computation are reported. Two issues need to be explored. The
first entails the probability associated with the particular model
we are seeking, given a perfectly noiseless set of observations.
The second entails the confidence region for the parameters
which results from the noise in the observations. Regarding
the first issue, there are infinite possible solutions to our under-
determined inverse problem. Are all possible solutions equally
probable? Certainly not. As an example, we consider the die
problem, made famous by Jaynes, that has served us so well.
This example is particularly suitable because it also allows us
to introduce the concept of entropy.

Part I—Model probabilities

Here we consider that part of the problem not associated
with errors in the observations. Some models that fit the data
are more probable than others. Here is our view of why and
how to obtain some measure of such probabilities. First, the
canonical die problem.

The die problem.—This problem, originally proposed by
Jaynes (1968), is an excellent illustration of underdetermined
inversion, or inference, and clearly points out the role of model
likelihood. A die of unknown prior probabilities x1, x2, . . . ,

xM (M = 6, of course, but we leave it at M for general use
later) is thrown N times. The average number of spots n̄,
where n̄ = (n1 + 2n2 + · · · + MnM )/N , N =

∑M

i=1 ni , is recor-
ded (the individual occurrence numbers n1, n2, . . . , nM are not
known). Our problem is to estimate qT = (q1, q2, . . . , qM ) =
(n1/N , n2/N . . . , nM/N), the vector of frequencies which de-
scribes the experiment.

From elementary principles, we can write the number of ways
we can obtain the distribution (n1, n2, . . . , nM ). This number,
W , is called the multinomial coefficient or multiplicity and is
given by

W =
N !

n1!n2! . . . nM !
. (23)

There is a direct relationship between multiplicity and en-
tropy. We obtain it by means of Stirling’s approximation for
ln N !:

ln N ! =
(

N +
1

2

)

ln N − N +
1

2
ln(2π) +

N

12
.

This approximation is extraordinarily accurate. Even for N = 2,
for example, it is only in error by 0.05%. Using this relationship
in the logarithm of equation (23), we obtain

ln W = −N
∑

M

ni

N
ln

ni

N
+

1

2

(

ln N −
∑

M

ln ni

)

+
i − M

2
ln 2π +

1

12

(

1

N
−

∑

k

1

ni

)

. (24)

Defining H(q) to be the entropy associated with the distribu-
tion q, (qi = ni/N), we see that the first term in equation (24) is

−N
∑

M

qi ln qi = N H(q).

As N increases, the multiplicity W increases exponentially as
eN H(q), and the remaining terms in equation (24) very quickly
become negligible. Clearly, if we are looking for a distribution
that can be realized in the greatest number of ways, we should
maximize the multiplicity. For large N , we should maximize
the entropy; hence, the principle of maximum entropy. The
principle of maximum entropy can be argued in a much more
intuitive manner, beginning with the definition of information
[see Jaynes (1982) for a review]. This development allows us to
talk about probabilities of solutions in quantitative fashion.

Let us return to the die example. We use the principle of
maximum entropy to solve the problem of estimating the un-
known frequencies qi , i = 1, 6 given the constraint that n̄ = 4.5
(this is not a fair die, for which the value is 3.5). There is also
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the constraint that
∑6

i=1 qi = 1. We obtain the solution

qME = (0.0543, 0.0788, 0.1142, 0.1654, 0.2398, 0.3475)

with entropy HME = 1.6136, where ME is maximum entropy.
Of course, the maximum entropy solution is not the only one
possible. Consider another solution, qAS , that also exactly fits
our constraints:

qAS =
(

3

10
, 0, 0, 0, 0,

7

10

)

,

where qAS has entropy HAS = 0.6110. The question we posed
above is, are both solutions equally plausible? Clearly not.
Since when does throwing a die result in no fives coming up?
We have deliberately chosen a solution that is implausible to
stress the point.

But let us look at another possible solution for a more sub-
tle comparison. We obtain this solution, qMRE, by means of
the principle of minimum relative entropy, which is an impor-
tant extension of the principle of maximum entropy by Shore
and Johnson (1980). [See Woodbury and Ulrych (1998) for a
review of this versatile approach to the solution of underde-
termined problems.] The qMRE solution is, for a uniform prior
with a lower bound of zero and an unconstrained upper bound
(Ulrych et al., 1990),

qMRE = (0.0712, 0.0851, 0.1059, 0.1399, 0.2062, 0.3918),

with entropy HMRE = 1.6091.
On the other hand, if the upper bound is constrained to the

reasonable value of one (Woodbury and Ulrych, 1998), we ob-
tain the minimum relative entropy solution

qMRE = (0.0678, 0.0826, 0.1055, 0.1453, 0.2232, 0.3755),

with entropy HMRE = 1.6091. This solution, interestingly
enough, is close to the maximum entropy solution.

Now the question is, how probable is qMRE compared to the
maximum entropy solution? We can quantify the results by
means of the entropy concentration theorem (Jaynes, 1982).

The entropy concentration theorem.—Considering the ran-
dom experiment described, let C be the subclass of all possible
outcomes that could be observed in N trials which are compat-
ible with the m linearly independent constraints:

M
∑

i=1

A j i qi = d j 1 ≤ j ≤ m and m < M. (25)

A certain fraction F of outcomes in C will have entropy in the
range

Hmax − �H ≤ H(q1 . . . qM ) ≤ Hmax, (26)

where Hmax is obtained by maximizing equation (25) subject
to equation (26). The entropy concentration theorem, formu-
lated and proved by Jaynes (1982), states that, asymptotically,
2N�H is distributed in C as χ 2

k with k, the number of degrees
of freedom, equal to M − m − 1. Specifically, denoting χ2

k at the
100P percent significance level by χ 2

k (P), we obtain

2N�H = χ2
k (1 − F) . (27)

Equation (27) is a remarkable expression. It informs us of the
percentage chance that the observed frequency distribution
will have an entropy outside of the interval computed from

equation (27). As shown by Jaynes (1982) in a number of ex-
amples, for large N the overwhelming majority of all possible
distributions will have an entropy very close to Hmax.

We now use the entropy concentration theorem to judge the
maximum entropy and maximum relative entropy solutions
of the die problem. According to the entropy concentration
theorem in an experiment consisting of 1000 trials, 99.99% of all
outcomes allowed by the constraints have entropy in the range
1.609 ≤ H ≤ 1.614 (Jaynes, 1982). Although maximum entropy
is the more probable solution in terms of multiplicities, HMRE is
certainly well within the range of the most probable solutions.

We can also compare the multiplicities of the two solutions.
For a large number of trials, say, N = 1000, we use our approx-
imation to compute the ratio of multiplicities:

WME

WMRE
= eN(HME−HMRE) = e10.2 = 26 903.

This ratio tells us that for every way the maximum relative en-
tropy solution can be realized, the maximum entropy solution
can be realized in approximately 30 000 ways.

What does all this have to do with real earth inverse prob-
lems? We can repeat the die experiment 1000 times, but we do
not have that luxury in dealing with the real earth. We do, how-
ever, have the luxury of imagination. If we imagine the earth
from a random rather than a fixed viewpoint, we can think of
the outcome of a measurement on the earth as the outcome of a
random experiment. We measure our n̄ and deduce the prob-
ability associated with the parameters that gave rise to our
observation. We can then deduce all manner of model char-
acteristics. We contend that a probabilistic approach is much
more flexible than the fixed vector approach. In our view, we
can and should say something about the likelihood of possible
solutions.

A bit more about prior information.—We have addressed
the probability of a particular outcome for an underdetermined
problem. In obtaining the maximum relative entropy solution,
we used a uniform prior to express our ignorance concerning
the unknown distribution. We could have assumed some dif-
ferent prior distribution. Our point is that, having chosen a
prior, there is no point in talking about the probability of the
prior probability. If we are uncertain about the prior, we use
the most uninformative, innocuous one we can. A prior should
express knowledge that is not in doubt, e.g., density is positive,
compressional wave velocity <10 000 m/s in our survey area,
the Sun is bigger than Mars. If we are looking for a buried
pipe, it seems appropriate to constrain the gravity inversion
with a prior that expresses this structure. If we wish to regu-
larize our inversion by computing the truncated singular value
decomposition solution, we should—providing that we have a
good a priori reason for choosing the smallest model as the
appropriate solution.

Part II—Parameter uncertainties

We now come to the second issue involved with uncertain-
ties of the inverse solution. All observations have errors. These
errors propagate through the inversion and attack our param-
eters. We examine the behavior of such errors both in the fixed
and random views that we have introduced.

Since, at this stage, we believe we have chosen an approach to
the inversion that gives us the most probably correct result, we
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consider the treatment of data errors only. For the fixed vector
approach, the customary statistic is χ 2. It is well known, so we
will not review it here. We do, however, examine the concept of
confidence regions. Once again, we delve into Lupton (1993).

The frequentist approach to confidence intervals—for exam-
ple, for determining the intervals associated with an estimate
of µ when the sample is drawn from an N(σ 2, µ) population—
is to compute the estimated mean x̄ and to assign probabil-
ity bounds such as |x̄ − µ| < 1.96σ/

√
N at the 95% confidence

level. In this statement, µ is fixed and x̄ is the random vari-
able. Bayesians take a different view. Here, µ is the random
variable. Given a uniform prior for µ, we can compute p(µ | x)
using equation (3) and, hence, the associated confidence re-
gions. In the Gaussian case, we get the same result as we do by
means of the conventional approach, but the view is different.

We now complicate the situation by considering the case
when σ 2 is unknown. Again, using equation (3) we compute
the posterior pdf p(µ, σ | x) assuming a Gaussian likelihood, a
uniform prior for µ, the Jeffreys prior for σ , and independence
of µ and σ . To simplify matters, let s2 indicate the sample vari-
ance, computed as

s2 =
1

N

N
∑

i=1

(xi − x̄)2,

where x̄ is the maximum likelihood estimate of the mean. By
direct substitution, we can verify that

s2 + (x̄ − µ)2 =
1

N

N
∑

i=1,n

(xi − µ)2.

Hence, substituting into equation (3) we obtain

p(µ, σ | x) ∝ σ−(N+1) exp −

[

N(s2 + (x̄ − µ)2)

2σ 2

]

.

We are interested in obtaining the distribution for p(µ | x).
To do this, we integrate over σ . This is called marginalization.
Integrating, we obtain

p(µ | x) =
∫ ∞

0

p(µ, σ | x) dσ

∝
∫ ∞

0

e−N(s2+(x̄−µ)2)/2σ2
dσ.

Following the procedure outlined in Lupton (1993),

p(µ | x) ∝

[

1 +
(

t2

ν

)

]−(ν+1)/2

,

where ν = N − 1 and t2 = (N − 1)[(x̄ − µ)2]/s2. This is the well-
known t distribution. We are now free to evaluate any type of
confidence regions for µ that we wish.

The procedure of obtaining the marginal density involves
integration over the parameter that we are not interested in.
Such parameters are called nuisance parameters and are dealt
with in more detail below.

The title of this subsection contains the word credibility. We
credit Press (1989) with this description and adopt it with a sigh
of relief. Credibility intervals are to Bayesian estimation what
confidence intervals are to likelihood estimation. We need this
differentiation because, as we have seen, what is considered to
be fixed and random in the two approaches differs completely.
From now on, we consider parameter credibility regions.

A little about marginals.—We return to equation (1) with a
modification that better encapsulates what we are doing. We
considered events A and B; now let us substitute H for B and
call it a hypothesis. Then we substitute D for A and call it data
(d will be a realization from D). We now write Bayes’ theorem
[equation (2)] as

P(H | D) =
P(D | H)P(H)

P(D)
. (28)

One other modification that extends the simple formulation is
to introduce I into equation (28), where I is prior information:

P(H | D, I ) =
P(D | H, I )P(H | I )

P(D)
.

We now have a more complete probabilistic assignment. Thus,
for example, P(H | D, I ) is the probability of our hypothesis
given the data and some prior information.

We now imagine a hypothesis of the form (Bretthorst, 1988)

H ≡ f (x) =
m

∑

i=1

aiφ j (x, {kx }),

where f (x) is some function of the spatial parameter x

that is modeled in terms of the decomposition into m com-
ponents consisting of m amplitudes and basis functions ai

and φi , i = 1, 2, . . . , m. Each φi in turn depends on a set of
parameters—wavenumbers, for example—that we have des-
ignated as {kx }. Imagine that, in our problem, what is of conse-
quence to uncover is the set of wavenumbers {φi }. The ampli-
tudes are of less relevance. The Bayesian approach allows the
formulation of the posterior probability so that it is indepen-
dent of the ai , or nuisance parameters. To see how this is done,
we begin with a very simple problem with two parameters: kx is
desired, and a is the nuisance. In other words, we wish the pos-
terior density p(kx | D, I ). We first compute the joint posterior
pdf of both kx and a using Bayes’ theorem:

p(kx , a | D, I ) =
p(D | kx , a, I )p(kx , a | I )

P(D | I )
.

We now integrate a out of the equation to obtain the marginal
posterior pdf for kx ,

p(kx | D, I ) =
∫

p(kx , a | I ) da,

which expresses the information contained about kx in the data
and the prior information, regardless of the value of a. This ap-
parently somewhat miraculous result is easily explained. Con-
sider the joint pdf p(x, y) of two random variables x and y. The
value p(x)�x is the probability of observing x in the interval
(x, x + �x). The value of y is immaterial and may lie anywhere
in the interval (−∞, +∞). Hence,

lim
�x→0

p(x)�x

= probability(x < x ≤ x + �x), (−∞ < y ≤ +y)

= lim
�x→0

∫ x+�x

x

∫ +∞

−∞
p(x, y) dx dy

= lim
�x→0

∫ x+�x

x

[ ∫ +∞

−∞
p(x, y) dy

]

dx .



Bayes and Inversion—A Tutorial 63

The integral inside the brackets is a function of x and is constant
over the interval (x, x + �x) since �x → 0. Hence,

lim
�x→0

p(x)�x =
[ ∫ +∞

−∞
p(x, y) dy

][

lim
�x→0

∫ x+�x

x

dx

]

= �x

∫ +∞

−∞
p(x, y) dy. (29)

Therefore,

p(x) =
∫ +∞

−∞
p(x, y) dy.

We have illustrated the computation of a marginal distribution
from a joint distribution of two variables. The strength of this
approach is that it is quite general.

Parameter credibility intervals.—We have dealt with mar-
ginal distributions, nuisance parameters, and credibility inter-
vals. It is time to put all this together for a more general treat-
ment. We assume that, following the outline presented above,
we have computed the a posteriori pdf for our model. We now
wish to present credibility intervals associated with each pa-
rameter of the model.

The Bayesian approach has led us to an a posteriori pdf that,
given the prior distribution, has allowed us to determine a com-
plete statistical description of our model. To obtain the credibil-
ity intervals associated with individual model parameters, we
obtain the marginal pdf’s as follows. For a given parameter mi ,

p(mi ) =
∫

m1

· · ·
∫

mi−1

∫

mi+1

· · ·

×
∫

m M

p(m | d) dm1 . . . dmi−1dmi+1 . . . dmM .

We now obtain the means and variances of each marginal to
characterize the statistics of the individual model parameters.
Of course, as pointed out by Tarits et al. (1994), if the marginal
pdf is not unimodal, the interpretation of the moments of the
pdf is not simple.

COMPUTATIONAL TRACTABILITY AND MINIMUM

RELATIVE ENTROPY

As pointed out by Tarits et al. (1994), the full Bayesian solu-
tion may not be tractable for a large number of model param-
eters, so the common practice is to settle for maximum likeli-
hood or asymptotic solutions. We have developed a Bayesian-
like approach: minimum relative entropy, introduced by Shore
and Johnson (1980) and extended to the general linear inverse
problem by Ulrych et al. (1990). Considerable advance in de-
veloping and applying this approach has been made and is sum-
marized in Woodbury and Ulrych (1998). A very brief intro-
duction is presented here for completeness.

We denote the posterior probability of the model by q†(m)
[to be differentiated from p(m | d)] that we wish to determine
from p(x) and information in the form of some expected value
constraints

∫

q†(m) f j (m) dm = f̄ j , (30)

where f j (m) and f̄ j , j = 1, 2, . . . , M are assumed known.

The constraints of equation (30) do not uniquely determine
q†(m), but they do restrict the allowable densities. The goal
is to construct an estimate q(m) of q†(m) which satisfies the
constraints, takes into account p(m), and satisfies the axioms
of consistent inference. The solution (Shore and Johnson, 1980)
is to minimize H(q, p), the entropy of q(m) relative to p(m),
where

H(q, p) =
∫

q(m) ln

[

q(m)

p(m)

]

dm, (31)

subject to the constraints.
The gist of the maximum relative entropy approach is to

use first-moment constraints. Thus, in application to a linear
problem where the data equations are d = Fm̂, we treat the
model estimate m̂ as the expectation of m. Our data equations
become

d =
∫

q(m)[Fm] dm

and take the place of f̄ j in equation (30). By the same token, we
treat the prior model parameters as expectations over the prior
pdf that is determined by adopting the principle of maximum
entropy. The maximum relative entropy approach is, in our
opinion, very flexible and computationally much less demand-
ing than the full Bayesian approach, yet it allows the incorpora-
tion of probabilistic constraints. Woodbury and Ulrych (1998)
and Jacobs and van der Geest (1991) compare the Bayesian and
maximum relative entropy approaches. The basic difference is
that, as expressed by the latter authors, the maximum rela-
tive entropy posterior pdf is obtained from the minimization
of the entropy functional constrained not by the full equation
d = Fm but by the first moments E[d = Fm]—a weakened form
of the constraints. In fact, the maximum relative entropy so-
lution coincides with the Bayesian solution when H(q, p) in
equation (31) is minimized over the M moments of the data.

A LAST WORD ABOUT PRIORS, INCLUDING RISK

We have seen the pivotal role played by the prior in the
Bayesian inverse approach. It is therefore important to ex-
amine the effect of our choice on the answer. In particular,
following Scales and Tenorio (2001), we examine the issue of
the uninformative prior. To do this we must deal a little with
the risk associated with an estimator. Our definitions follow
Efron and Morris (1973), who inspired us to consider the issue
of risk in association with the Stein estimator (Ulrych et al.,
1999). First, we define loss and risk. For simplicity, we con-
sider M samples, xi , i = 1, 2, . . . , M of the random variable x

distributed as x|µ ind∼ N(µ, 1), and the associated maximum
likelihood estimator of µ:

δ 0(x) =
1

M

M
∑

i=1

xi .

The loss L may be defined in the usual way as

L(µ, µ̂) =
k

∑

i=1

(µ̂i − µi )
2,
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where µ̂ is the estimate of µ. The risk R(· , ·) in turn is formally
defined for the maximum likelihood estimator as

R(µ, δ 0) = Eµ

k
∑

i=1

(

δ 0(xi ) − µi

)2
,

where Eµ is the expectation over the distribution.
The value δ 0 is a very special estimator indeed. Statisticians

have shown that, given x|µ ind∼ N(µ, 1), δ 0 has lowest risk of
any linear or nonlinear unbiased estimator. We have previously
seen that δ 0 is the maximum likelihood estimator as well as the
Bayesian estimator obtained with a uniform prior.

We have already met the risk in the guise of the MSE. Specif-
ically, we dealt with the MSE associated with the Bayesian
estimation of variance using the Jeffreys uninformative prior.
Using the above notation, MSE(σ̂ 2) = R(σ2, σ̂2). Bayes with
the Jeffreys prior leads to an estimator that, at least for the
case considered here, constitutes a trade-off between bias and
variance.

Scales and Tenorio (2001) consider the following problem.
Given a datum d from N(µ, 1) and the prior information that
µ is bounded (−b, b), what are the risks associated with a
Bayesian and a frequentist approach to the estimation of µ

where the Bayesian prior is taken to be uniform (maximally un-
informative?) in (−b, b). The answer is that the risk of Bayesian
estimator is, in a certain range, lower than the lower bound
risk of the minimax estimator that incorporates the constraint
as a hard bound. Since the minimax risk is not based on any
distribution, we can conclude that the uniform pdf has intro-
duced information beyond the bounds. Putting it another way,
whereas the frequentist approach (at least in this case) is truly
noncommittal with respect to what we do not know, the
Bayesian method of introducing a uniform prior is not—a very
interesting observation.

BAYESIAN OBJECTIVE FUNCTIONS

The previous section drew attention to the information in the
prior. In this section, the prior model is used in a very different
sense. We will choose a set constrained to be of a certain quality
by the prior distribution. In this approach, we do not pay heed
to the truth of the prior. We choose it with an aim in mind—
what John Scales would perhaps call a post prior. We illustrate
the approach with the work of Sacchi et al. (1998), who consider
the objective of obtaining an aperture-free Fourier transform.

A common approach to signal analysis and decomposition
is based on mapping the data into a new domain where the
support of each signal is considerably reduced; consequently,
decomposition can be attained easily. This is applicable to the
discrete Fourier transform. Since we are always concerned with
a finite amount of data, the correct decomposition of events is
complicated by sidelobe artifacts.

Often, our problem may be posed as a linear inverse where
the correct regularization is crucial to the resolution of signals
when the aperture is below the resolution limit. The regulariza-
tion is obtained by incorporating into the problem a long-tailed
prior using Bayes’ rule.

For simplicity we start with the 1-D discrete Fourier trans-
form since extensions to higher dimensions are straightfor-
ward. Consider an N -sample time or spatial series x0, x1,

x2, . . . , xN−1. The discrete Fourier transform of the discrete

series is given by

Xk =
N−1
∑

n=0

xn e−i2πnk/N k = 0, . . . , N − 1.

Similarly, the inverse discrete Fourier transform is given by

xn =
1

N

N−1
∑

k=0

Xk ei2πnk/N n = 0, . . . , N − 1. (32)

We wish to estimate M spectral samples where M > N . A stan-
dard approach to solving this problem is by means of zero
padding. Defining a new time series consisting of the origi-
nal series plus a zero extension for n = N , . . . , M − 1, we can
estimate M spectral samples using the discrete Fourier trans-
form. This procedure helps to remove ambiguities resulting
from discretization of the Fourier transform. However, it does
not reduce the sidelobes created by the temporal/spatial win-
dow or improve the resolution. Let us therefore consider the es-
timation of M spectral samples without zero padding. In other
words, we want to estimate the discrete Fourier transform us-
ing only the available information. The underlying philosophy
is similar to Burg’s maximum entropy method (Burg, 1975),
except that in the maximum entropy method the target is a
power spectral estimate—a phaseless function.

To avoid biasing our results by the discretization, we also
impose the condition M ≫ N . Rewriting equation (32) as

xn =
1

M

M−1
∑

k=0

Xk ei2πnk/M n = 0, . . . , N − 1

gives rise to a linear system of equations

y = Fx,

where the vectors y ∈ RN and x ∈ CM denote the available infor-
mation and the unknown discrete Fourier transform, respec-
tively. We now have an underdetermined problem that must
be suitably regularized to impose uniqueness. We examine two
regularization strategies for clarity.

Zero-order quadratic regularization

In standard fashion, we assume data contaminated with noise
which is distributed as N(0, σ 2

n ). Sacchi et al. (1998) first as-
sumed that the samples of the discrete Fourier transform may
be modeled with a Gaussian prior. After combining the like-
lihood with the prior probability of the model by means of
Bayes’ rule, the MAP solution is computed by minimizing

JGG(x) = λ ‖x‖2
2 + ‖y − Fx‖2

2, (33)

where GG stands for the Gauss-Gauss model (Gaussian model
and Gaussian errors). The scalar is the ratio of variances,
λ = σ 2

n /σ 2
x . Equation (33) is the objective function of the prob-

lem. The first term represents the model norm, while the second
term is the misfit function. The hyperparameter λ enables us to
move our estimate along the trade-off curve. Taking derivatives
and equating to zero yields

x̂ =
(

FH F + λIM

)−1
FH y.
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Following some algebra, this equation may be rewritten as

x̂ =
(

1

M
+ λ

)−1

FH y. (34)

The result is the discrete Fourier transform of xn modified by
a scale factor. The solution expressed by equation (34) becomes

X̂k =
1

1 + λM

N−1
∑

n=0

xn e−i2πnk/(M−1). (35)

Equation (35) represents the discrete Fourier transform of the
windowed time series and is equivalent to padding with ze-
roes in the range n = N , . . . , M − 1. It is clear that the zero-
order regularization yields a scaled version of the conventional
discrete Fourier transform, and the associated periodogram
will show the classical sidelobes artifacts due to truncation. Of
course, this result is expected from our previous discussion of
likelihood and the method of least squares. We do not wish
to minimize the problem associated with choosing the appro-
priate value of λ. Estimating hyperparameters in a sensible
and robust manner remains a central problem in inversion. We
mention a nonoptimal approach below.

Regularization by the Cauchy-Gauss model

To obviate the sidelobe structure, Sacchi et al. (1998) pro-
pose a regularization derived from a pdf that mimics a sparse
distribution of spectral amplitudes. A heavy-tailed distribution,
like the Cauchy pdf, will induce a sparse model consisting of
only a few elements different from zero. If the data consist of
a few number of harmonics (1-D case) or a limited number
of plane waves (2-D case), a sparse solution will help to atten-
uate sidelobe artifacts. The Cauchy pdf is given by

p(Xk | σc) ∝
1

(

1 +
Xk X∗

k

2σ 2
c

) ,

where σc is a scale parameter. When we combine the Cauchy
prior with the data likelihood, the cost function becomes

JCG(x) = S(x) +
1

2σ 2
n

(y − Fx)H (y − Fx),

where the subscript CG stands for the Cauchy-Gauss model.
The function S(x), which is expressed by

S(x) =
M−1
∑

k=0

log

(

1 +
Xk X∗

k

2σ 2
c

)

,

is the regularizer imposed by the Cauchy distribution and is
a measure of the sparseness of the vector of spectral pow-
ers Pk = Xk X∗

k , k = 0, . . . , M − 1. The constant σc controls the
amount of sparseness that can be attained by the inversion.

Taking derivatives of JCG(x) and equating to zero yields

x̂ = (λQ−1 + FH F)−1FH y,

where λ = σ 2
n /σ 2

c and Q is an M×M diagonal matrix with ele-
ments given by

Qi i = 1 +
X i X∗

i

2σ 2
c

, i = 0, . . . , M − 1.

Sacchi et al. (1998) show that the solution may also be written
as

x̂ = QFH
(

λIN + FQFH
)−1

y. (36)

The hyperparameters of the problem are fitted by Sacchi et
al. (1998) by means of a χ 2 criterion. This approach is not opti-
mum, as we have pointed out, but it certainly requires a much
less intensive computational effort. Equation (36) is iteratively
solved with the initial model being the discrete Fourier trans-
form of the truncated signal. An excellent view of objective
functions without appeal to Bayes is the work of Farquharson
and Oldenburg (1998).

An example of this approach is illustrated in Figures 1–4. In
the first example we attempt to determine a highly resolved
power spectral estimate from irregularly sampled and noisy
data. Figure 1a shows the continuous data without noise (solid
line) and the noisy samples (squares) where the added noise
was Gaussian with a standard deviation of 0.4. The sampled
data clearly demonstrate a gapped appearance.

We used equation (32) to obtain the results illustrated in
Figures 1b, 1c, and 2a. The former shows the reconstituted data
(solid line) using the noisy, irregularly sampled input repeated
as squares. Figure 1c shows the error panel. The computed
high-resolution spectrum is shown in Figure 2a and is to be
compared with Figure 2b, which shows the periodogram of the
complete time series (the solid curve in Figure 1a).

Figures 3 and 4 illustrate the results of our Bayesian approach
in a 2-D example. Specifically, we are interested in computing
the 2-D spectrum of the vertical seismic profile shown in Fig-
ure 3.

Figure 4a illustrates the 2-D periodogram; Figure 4b demon-
strates the resulting power spectrum of the discrete Fourier
transform computed via the Cauchy-Gauss method. The en-
hancement in the resolution is very clear.

SUMMARY AND DISCUSSION

We have attempted to cogently summarize some of the con-
cepts central to the Bayesian approach to inverse problems.
Of course, the centerpiece is the prior distribution in function
as well as in controversy. We follow the conclusion of Scales
and Tenorio (2001), who pose the question “To Bayes or not
to Bayes?” and answer it with a careful yes. We would perhaps
be more affirmative and say yes by way of an honest appraisal
of what we really know.

The Bayesian approach may be applied hierarchically (pure
Bayes) or empirically (less pure Bayes). In the former, we are
concerned about the information content in the prior and its
effect upon our estimate. Thus, issues such as how informative
an uninformative prior is, the risk of a Bayesian estimate, etc.,
are uppermost. In the empirical approach, these questions are
less imperative.

Hierarchical issues

Let us return briefly to the Jeffreys prior. Certainly, 1/σ can
hardly be construed as a pdf. It is, in fact, known as an improper
prior since it is not normalizable. But how important is this fact?
In practice, σ is always bounded; it is certainly greater than
zero and less than infinity and can therefore be normalized.
In any case, since the prior gets multiplied by the likelihood
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FIG. 1. (a) Input data. (b) Reconstructed data. (c) Error.

FIG. 2. (a) High-resolution spectrum. (b) Periodogram.
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FIG. 3. Vertical seismic profile.

which certainly goes to zero as σ approaches zero or infinity,
the bounds are not really significant.

Scales and Tenorio (2001) discuss two interesting issues. The
first deals with the information contained in a seemingly unin-
formative prior which indicates that, from the point of view of
the risk associated with the minimax and Bayes estimators for a
particular problem, the Bayesian estimator is less noncommit-
tal than the frequentist estimator. This is worth pondering. It is
interesting that a uniform prior adds more information than a
hard bound, particularly since incorporating the constraint via
a distribution is referred to as softening the constraint. From a
practical view, given all other uncertainties involved in a real
data inversion problem, the differences incurred in the solu-
tion as a result of information possibly added because of the
above effect are, in all probability, insignificant.

The second issue discussed by Scales and Tenorio (2001) is
that of added difficulties when hard constraints are replaced
by probability constraints that occur in higher dimensions. This
topic is certainly worthy of further investigation.

Empirical issues

The idea behind the empirical Bayes approach is that the
prior is based on information contained in the input data. The
methodology for constructing objective functions from prior
pdf’s and Bayes’ rule is not exactly empirical, but it certainly
is not hierarchical. In this case, the truth of the prior is irrel-
evant. We use it to constrain the solution to a form that we
know to be desired. We have illustrated this by computing a
high-resolution discrete Fourier transform (Sacchi et al., 1998).
Another application with which we had considerable success is

the compensation of aperture effects in computing the Radon
transform (Sacchi and Ulrych, 1995). We look for the transform
that has a limited support in the Radon domain. The Bayesian
approach here is, in some sense, empirical, in that the data tell
us how sparse the model should be.

In our opinion, Bayes is to likelihood what likelihood is to
least squares (or singular value decomposition, in this case). No
one would argue that likelihood is not that much more flexible
an approach than least squares. So we argue that Bayes, when
used diligently, is much more flexible than plain old likelihood.
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