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A Bayesian adaptive design for dose 
nding of a combination of two drugs in cancer phase I clinical trials that takes into account
patients heterogeneity thought to be related to treatment susceptibility is described.	e estimation of the maximum tolerated dose
(MTD) curve is a function of a baseline covariate using two cytotoxic agents. A logistic model is used to describe the relationship
between the doses, baseline covariate, and the probability of dose limiting toxicity (DLT). Trial design proceeds by treating cohorts
of two patients simultaneously using escalation with overdose control (EWOC), where at each stage of the trial, the next dose
combination corresponds to the � quantile of the current posterior distribution of the MTD of one of two agents at the current
dose of the other agent and the next patient’s baseline covariate value.	eMTD curves are estimated as function of Bayes estimates
of the model parameters at the end of trial. Average DLT, pointwise average bias, and percent of dose recommendation at dose
combination neighborhoods around the true MTD are compared between the design that uses the covariate and the one that
ignores the baseline characteristic. We also examine the performance of the approach under model misspeci
cations for the true
dose-toxicity relationship. 	e methodology is further illustrated in the case of a prespeci
ed discrete set of dose combinations.

1. Introduction

Despite the promise observed in preclinical experiments
and initial high response rates, a large number of targeted
drugs have not been successful in providing reproducible
improvements in survival in patients with cancer when
used as single agents. [1] In addition, targeted therapies do
not work for every patient since they rely on the presence
of the target. 	erefore, chemotherapy and radiotherapy
approaches are still the backbone of cancer treatment for
tumors a�er surgical excision. 	ese conventional cancer
therapies may be combined with targeted agents to enhance
treatment e�cacy.

Statistical methodologies for designing phase I clinical
trials for drug combinations have been studied extensively
in the past decade [2–13]. 	ese methods assume that the
patient population is homogeneous of treatment tolerance
and every patient should be treated at a dose combination
corresponding to a prede
ned target probability ofDLT (dose
limiting toxicity).	erefore, an additional layer of complexity

in specifying the dose-toxicity relationship given a baseline
covariate is needed for drug combinations.

Strategies of drug allocation that accommodate individ-
ual patient needs have been used in [14–18] for single agent
trials. Statistical designs allowing individualized maximum
tolerable dose (MTD) determination in single agent cancer
phase I trials have also been proposed and implemented in
real trials by a number of authors for two groupswith no prior
knowledge of ordering [19, 20], for two prior ordered groups
[21, 22] and two or more prior partially ordered groups [23,
24]. In general, ignoring the heterogeneity between groups
can lead to higher toxicities in the most severely impaired
group, statistical bias, and ine�ciency of the MTD estimate
for both groups.

In this work, we extend the design described by
Tighiouart et al. [25] using escalation with overdose control
(EWOC) principle [26], by treating cohorts of two patients
simultaneously and accounting for patient baseline binary
covariate. We assume that we do not have prior knowledge
of the ordering between groups, but they will be ordered in
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the sense that the probability of toxicity for one group is
always a constant shi� from the probability of toxicity for
the second group at the same dose. In this way, patients with
di�erent covariate values will have parallel MTD curves. 	is
assumption ismathematically convenient and allows us to use
parsimoniousmodels due to the small sample size constraints
in cancer phase I trials.

	is paper is organized as follows. Section 2 will describe
the dose-toxicity model and trial design for continuous dose
levels. In Section 3, we evaluate the performance of the
proposed method by assessing the safety of the trial design
and the e�ciency of the estimate of the MTD curve. 	e
methodology is extended for discrete dose combinations in
Section 4. Discussions will be presented in Section 5.

2. Model

2.1. Dose-Toxicity Model. We propose a parametric model to
identify tolerable dose combinations of two synergistic drugs� and � [10–12, 25, 27] given a patient with a binary baseline
covariate value of �:

Prob (� = 1 | �, 	, �) = � (� + � + �	 + �� + ��	) , (1)

where � is the indicator of DLT, (�, 	) are the continuous
dose levels of agents � and �, respectively, assuming values
in [����, ����]× [����, ����], � is a binary baseline covariate
value, and � is a known cumulative distribution function.

We assume partial ordering of the probability of DLT,
i.e., it is a nondecreasing function of the dose of any one of
the agents when the other one is held constant for � = 0, 1
and we also assume synergism between the two drugs. 	ese
assumptions are translated into constrains in the parameter
space given by , � > 0, and � ≥ 0, respectively. 	e MTD�� for a patient with covariate value z is de
ned as the set of
combinations (�∗, 	∗) such that

Prob (� = 1 | �∗, 	∗, �) = �. (2)

	e target probability of DLT, �, is set relatively highwhen the
DLT is a reversible or nonfatal condition, and low when it is
life threatening. Using (1) and (2), the MTD �� is

�� = {(�∗, 	∗) ∈ [0, 1]2 : 	∗

= �−1 (�) − � − �∗ − ��� + ��∗ } .
(3)

We reparametrize model (1) to allow amoremeaningful prior
elicitation. Assuming that [����, ����] × [����, ����] will be
standardized to be in [0, 1] × [0, 1], �000, the probability of
DLT at the minimum available doses of agents � and � for
a patient with covariate value � = 0; �100, the probability of
DLT when the level of drug � is ����, the level of drug � is���� and � = 0; �101, the probability of DLT when the level of
drug� is����, the level of drug � is ���� and � = 1; �010, the
probability of DLT when the level of drug� is����, the level

of drug � is ���� and � = 0; and the interaction parameter �.
It follows that

� = �−1 (�000)
 = �−1 (�100) − �−1 (�000)
� = �−1 (�010) − �−1 (�000)
� = �−1 (�101) − �−1 (�100) .

(4)

Notice that , � > 0 implies that �000 < min(�100, �010). 	e
MTD set given in (3) can be presented as

�� = {(�∗, 	∗) ∈ [0, 1]2 : 	∗

= � (�, �000) − (� (�100, �000)) �∗ − (� (�101, �100)) �� (�010, �000) + ��∗ } ,
(5)

where �(�, �) = �−1(�) − �−1(�).
Let �� = {(��, 	�, ��, ��), � = 1, . . . , �} be the data a�er

enrolling � patients in the trial.	e likelihood function under
the reparametrization is

 (�000, �100, �101, �010, � | ��)
= �∏
�=1

(" (�000, �100, �101, �010, �; ��, 	�, ��))	�

× (1 − "(�000, �100, �101, �010, �; ��, 	�, ��))1−	�
(6)

where

"(�000, �100, �101, �010, �; ��, 	�, ��) = � (�−1 (�000)
+ (�−1 (�100) − �−1 (�000)) ��
+ (�−1 (�010) − �−1 (�000)) 	�
+ (�−1 (�101) − �−1 (�100)) �� + ���	�) .

(7)

2.2. Prior and Posterior Distributions. We consider the pri-
ors �100 ∼ �&'�(�1, �1), �010 ∼ �&'�(�3, �3), �101 ∼�&'�(�2, �2), and conditional on �100, �010, �000/*��(�100,�010) ∼ �&'�(�0, �0), and � ∼ ��**�(�, �) with mean -(�) =�/� and variance var(�) = �/�2. As described in [25], vague�&'� priors are achieved by taking �
 = �
 = 1, 2 = 0, 1, 2, 3
while a vague Gamma prior is chosen with mean of 21 and
variance of 540. 	e posterior distribution is given by,

5 (�000, �100, �101, �010, � | ��)
∝ �∏
�=1

(" (�000, �100, �101, �010, �; ��, 	�, ��))	�

× (1 − " (�000, �100, �101, �010, �; ��, 	�, ��))1−	�
× 5 (�000 | �100, �010) 5 (�100) 5 (�101) 5 (�010) 5 (�) .

(8)

We used JAGS [28] to sample from the posterior distribution.
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2.3. Trial Design. 	e algorithm for dose escalation/deesca-
lation is similar to one discussed in [11, 25] with the additional
binary covariate information. It uses the EWOC principle
[26] where at each stage of the trial, we seek a dose of one
agent using the current posterior distribution of the MTD
of the agent given the current dose of the other agent and
the next patient’s baseline covariate value. For instance, if
agent � is held constant at level �, the dose of agent � is 	
such that the posterior probability that 	 exceeds the MTD
of agent � given the dose of agent � = � and covariate value7 = � is bounded by a feasibility bound �. Cohorts of two
patients are enrolled simultaneously receiving di�erent dose
combinations. Speci
cally, the design proceeds as follows.

(1) Let �2 = {(�1, 	1, �1, �1), (�2, 	2, �2, �2)} be the data
from the 
rst cohort of two patients such that each
patient receives the same dose combination (��, 	�) =(����,�, ����,�) = (0, 0) for � = 1, 2.

(2) In the second cohort of two patients, patient 3 receives
dose (�1, 	3) and patient 4 receives dose (�4, 	2). If�3 = �1 or �3 = �2, 	3 is the �th percentile of5(Γ�|�=�1,=�3 | �2). Otherwise, patient 3 receives the
minimum dose combination (����,�, ����,�) = (0, 0).
If �4 = �1 or �4 = �2, �4 is the �th percentile of5(Γ�|�=�2,=�4 | �2). Otherwise, patient 4 receives
the minimum dose combination (����,�, ����,�) =(0, 0). In general, the 
rst time a patient is assigned
to a given group de
ned by the binary covariate� always receives the minimum dose combination(����,�, ����,�) no matter how many patients have
been treated in the other group, as described in [20].
Here, 5(Γ�|�=�1,=�3 | �2) is the posterior distribution
of the MTD of agent � given that the level of agent �
is �1 and the baseline covariate value of patient 3 is�3, given the data �2. 5(Γ�|�=�2 ,=�4 | �2) is de
ned
similarly. Γ�|�=� and Γ�|�=� can be expressed in terms
of �000, �100, �101, and �010.

(3) In the �-th cohort of two patients,

(a) If � is even, patient (2� − 1) receives dose(�2�−3, 	2�−1) and patient 2� receives dose(�2�, 	2�−2), where y2�−1 = Π−1Γ�|�=�2�−3 ,�=�2�−1 (� |
�2�−2) and �2� = Π−1Γ�|�=�2�−2 ,�=�2� (� | �2�−2).
Here, Π−1Γ�|�=�,�=� (� | �) is the inverse

cumulative distribution function of the
posterior distribution, 5(Γ�|�=�,=� | �).

(b) Similarly, if � is odd, patient (2� − 1) receives
dose (�2�−1, 	2�−3) and patient 2� receives dose(�2�−2, 	2�), where �2�−1 = Π−1Γ�|�=�2�−3,�=�2�−1 (� |
�2�−2) and 	2� = Π−1Γ�|�=�2�−2 ,�=�2� (� | �2�−2).

(4) Repeat step (3), until � patients are enrolled in the trial
subject to the following stopping rule.

If the �th percentile of 5(Γ�|�=�,=� | �) or 5(Γ�|�=�,=� | �)
is less than 0 or greater than 1, the recommended dose for the
next patient is 0 or 1, respectively. In steps (2) and (3) above,

a dose escalation is further restricted to be no more than a
prespeci
ed fraction of the dose range of the corresponding
agent.

Stopping Rule. It is su�cient to evaluate a stopping rule for
safety at the minimum dose combination because of the
partial ordering assumption. 	e probability of DLT of all
doses for both agents will be higher than � if the probability
at the minimum dose is higher than �.We stop enrollment to
the trial if ?(?(DLT | (�, 	) = (0, 0), �) ≥ � + �1 | data) > �2,
i.e., if the posterior probability that the probability of DLT at
the minimum available dose combination in the trial exceeds
the target probability of DLT is high for � = 0, 1. 	e design
parameters �1 and �2 are chosen to achieve desirable model
operating characteristics. At the completion of the trial, an
estimate of the MTD curve for � = 0, 1 is obtained using (5)
as

�̂� = {(�∗, 	∗) ∈ [0, 1]2 : 	∗

= � (�, �̂000) − (� (�̂100, �̂000)) �∗ − (� (�̂101, �̂100)) �� (�̂010, �̂000) + ̂4�∗ } .
(9)

where �(�, �) = �−1(�) − �−1(�), �̂000, �̂100, �̂101, �̂010, and �̂
are the posterior medians given the data ��.
3. Simulation Studies

3.1. Simulation Set-Up and Scenarios. Wepresent four scenar-
ios for the true MTD curves as shown in Figure 1. 	e 
rst
scenario (a) is a case where the two true MTD curves for two
groups are parallel and close to the minimum doses with �010
and �100 equal to each other and slightly higher than �; the
second scenario (b) is a case where the two true MTD curves
for two groups are parallel but very close to each other; the
third scenario (c) is a case where two true MTD curves for
two groups are not parallel, and the last scenario (d) is a case
where the two true MTD curves are parallel but lie far apart
from each other and close to the maximum doses with �010
and �100 equal and largely lower than �.

In addition, toxicity responses are generated assuming
four link functions allowing us to evaluate misspeci
cation:

(i) logistic, �(D) = (1+ &−�)−1, (ii) probit, �(u) = Φ(D), whereΦ(⋅) is the c.d.f. of the standard normal distribution, (iii)
normal, �(D) = Φ(D/G) with G = 2, and (iv) complementary

log-log, �(D) = 1 − &−�	 , where the parameter values of �, ,�, �, and � were selected in such a way that they all have the
same true MTD curve.

For each scenario, 1000 trials were simulated with the
logistic link function as the working model, the target proba-
bility of DLT is 
xed at � = 0.33, the trial sample size is � = 40
patients with 20 patients in each group, �1 = 0.05 and �2 =0.8. Vague priors for the parameters (�000, �100, �101, �010, �)
were chosen. A variable feasibility bound � was started from
0.25 and increased by 0.05 each time when we compute the
dose for the next patient until � was reached 0.5 [29]. A dose
escalation is restricted to be no more than 20% of the dose
range of the corresponding agent.
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3.2. Design Operating Characteristics. In order to assess the
performance of this method when designing a prospective
trial, we evaluate its operating characteristics by comparing
the following three designs.

(i) Design using a covariate (WC): patients are accrued to
the trial sequentially and the dose combinations given
to the next cohort of patients are calculated assuming
model (1).

(ii) Design ignoring the covariate (IC): patients are
accrued to the trial sequentially and the dose com-
binations given to the next cohort of patients are
calculated assuming model (1) without the covariate,
i.e., as in [25].

(iii) Design using parallel trials (PT): in each group,
patients are accrued to the trial sequentially and

model (1) without the covariate is implemented in
each group.

We assume that we have balanced groups given a 
xed
sample size in which it is possible to carry out two separate
studies.

3.2.1. Safety and Efficiency. We evaluate operating character-
istics introduced by Tighiouart et al. (2014, 2017) [11, 25].
Safety is assessed through the average percent of DLTs across
all trials and the percent of trials that have a DLT rate
exceeding � + 0.1.

E�ciency is assessed using an overall MTD estimate,
pointwise average bias, and percentage of selection. 	e
overall MTD estimate is based on all trials:

�� = {(�∗, 	∗) ∈ [0, 1]2 : 	∗ = �−1 (�) − �−1 (�000) − (�−1 (�100) − �−1 (�000)) �∗ − (�−1 (�101) − �−1 (�100)) ��−1 (�010) − �−1 (�000) + ��∗ } . (10)

where � = 0, 1, �(⋅) is the logistic function and�000, �100, �101 , �010, and � are the average posterior medians
of the parameters �000, �100, �101, �010, and � from all 1000
trials, respectively.

	e pointwise average relative minimum distance from
the true MTD curve ��,���� to the estimated MTD curve for� = 0, 1 is de
ned as

K�(�,�) = *−1 �∑
�=1
K(�)�(�,�) (11)

wherein

K(�)�(�,�) = sign (	� − 	)
× min
{(�∗,�∗):(�∗,�∗)∈��,�}

√(� − �∗)2 + (	 − 	∗)2 (12)

for every point (�, 	) ∈ ��,����, 	� is such that (�, 	�) ∈ ��,�
for all (�, 	) ∈ ��,�r��, and ��,� is the estimated MTD curve
with binary covariate � for trial �.

	e percentage of selection for � = 0, 1 uses the
di�erences de
ned in (12):

?�(�,�) = *−1 �∑
�=1
N (OOOOOK(�)�(�,�)OOOOO ≤ QΔ � (�, 	)) (13)

where Δ �(�, 	) is the Euclidean distance between the mini-
mum dose combination (0, 0) and the point (�, 	) on the true
MTD curve for � = 0, 1 and 0 < Q < 1.

3.3. Results

3.3.1. Trial Safety. Table 1 shows that the overall average
percent of DLTs is always less than � = 0.33 varying between
16.84% and 30.42% for theWCdesign, and 21.55% and 30.10%
for the IC design across four scenarios. In the group with7 = 0, the average percent of DLTs varies between 5.63% and
21.68% for WC design, 2.89% and 19.07% for IC design, and
6.43% and 21.95% for PT design. Safety becomes a concern
when 7 = 1 for IC design because high values of average
percent of DLT are observed (varying between 32.37% and
46.15%). On the other hand, the average percent of DLT
for all scenarios goes between 28.04% and 39.17% for WC
design, and 14.54% and 29.55% for PT design. 	ese rates
are similar when using the true and misspeci
ed models. In
addition, the highest value of the percent of trials with an
excessive rate of DLT as de
ned by a DLT rate exceeding� + 0.1 is 0.1% for WC design, 0.4% for IC design, and 0.0%
for PT design in the group with 7 = 0 while this value
is higher for 7 = 1 is 31.5% for WC design, 65.8% for IC
design, and 1.8% for PT design. 	us, we conclude that the
methodology is safe for WC and PT designs, but not for IC
design. 	e other three misspeci
ed models are shown in
Table S1.

3.3.2. Trial Efficiency. Figure 1 shows the true and estimated
MTD curves for each group of patients under the four
scenarios (a)-(d) when using the three studied designs. 	e
estimated MTD curves were obtained using (10) and DLT
responses were simulated using the logistic link function.
	e estimated MTD curves are fairly close to the true MTD
curves when accounting for a signi
cant baseline covariate
(scenarios a, c, d) using the WC and PT designs. When
ignoring the covariate, the estimated MTD curve tends to
be in between the true MTD curves. 	is shows that when
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Figure 1: True and estimated MTD curves from* = 1000 simulated trials with designs using a covariate (WC), ignoring the covariate (IC),
and parallel trials (PT) under four scenarios (a)-(d).
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Table 1: Operating characteristics summarizing trial safety for designs using a covariate (WC), ignoring the covariate (IC), and parallel trials
(PT) considering continuous dose combinations, � = 0.33.
Scenario Design

Average % DLTs

(% Trials: DLT rate < � − 0.1; % Trials: DLT rate > � + 0.1)
Overall Z = 0 Z = 1

(a)

WC 30.42 (7.1; 0.5) 21.68 (56.6; 0.0) 39.17 (0.4; 31.5)

IC 30.10 (8.6; 0.4) 14.05 (86.7; 0.1) 46.15 (0.0; 65.8)

PT - 21.95 (56.6; 0.0) 29.55 (10.9; 1.8)

(b)

WC 24.34 (45.4; 0.0) 19.47 (73.8; 0.1) 29.21 (13.4; 1.8)

IC 25.72 (34.6; 0.0) 19.07 (68.1; 0.4) 32.37 (10.2; 11.7)

PT - 16.87 (88.3; 0.0) 19.04 (78.0; 0.0)

(c)

WC 24.15 (47.7; 0.0) 13.98 (93.6; 0.0) 34.32 (2.7; 11.0)

IC 24.90 (41.6; 0.0) 8.60 (97.3; 0.0) 41.21 (0.8; 42.6)

PT - 14.78 (96.5; 0.0) 22.21 (55.2; 0.1)

(d)

WC 16.84 (98.0; 0.0) 5.63 (100.0; 0.0) 28.04 (15.4; 0.0)

IC 21.55 (73.3; 0.0) 2.89 (100.0; 0.0) 40.22 (1.0; 36.8)

PT - 6.43 (100.0; 0.0) 14.54 (97.6; 0.0)

Scenario (�000 , �100 , �101 , �010 , �): (a) (0.01, 0.4, 0.8, 0.4, 10), (b) (0.005, 0.1, 0.2, 0.1, 10), (c) (0.005, 0.2, 0.7, 0.01, 10), and (d) (10−4 , 10−3 , 0.05, 10−3 , 10).

the two MTD curves are well separated, not accounting
for a baseline covariate results in suboptimal MTD curve
estimation for the group of patients with high tolerance
and a too toxic MTD curve recommendation for the other
group.

Figure 2 displays the pointwise average relative minimum
distance from the true MTD curve to the estimated MTD
curve as de
ned by (11) under the four scenarios (a)-(d)when
the DLT responses are simulated from the true and the other
three misspeci
ed models, respectively. 	is is a measure of
pointwise bias for the MTD estimate. In the 
rst scenario
(a), the maximum absolute pointwise bias is 0.101 for 7 = 0
and 0.099 for 7 = 1. For WC design, the pointwise bias
is negligible for low dose combinations and increases as we
move away from theminimumdose combinationwith higher
values when 7 = 0 then 7 = 1. For PT design, the pointwise
bias is almost constant when 7 = 0, such that it is lower
than for WC design at the edges of the MTD curve and
presents U-shape when 7 = 1 with higher values than for
WC design at the minimum dose combination and the edges
of the MTD curve. In scenario (b), the maximum absolute
pointwise bias is 0.069 for7 = 0 and 0.066 for7 = 1.WC and
PT designs show U-shape pointwise bias with higher values
for WC design than for PT design as we increase the dose
combinations in any direction when 7 = 0, 1. In scenario
(c), the maximum absolute pointwise bias is 0.181 for 7 = 0
and 0.155 for 7 = 1. For WC design, the pointwise bias is
negative for low dose combinations and approximates to zero
as we increase the dose combination in any direction; For PT
design, the bias is negative for low dose combinations and
becomes positive until reaching the same initial magnitude
when 7 = 1 and a plateau lower than the initial magnitude
when 7 = 0 as we increase dose combinations in any
direction. In scenario (d), the maximum absolute pointwise
bias is 0.21 for 7 = 0 and 0.139 for7 = 1. WC and PT designs
are similar to each other, with WC showing higher pointwise
bias for doses at the edge of MTD curve when 7 = 1. IC

design presents higher pointwise bias than for WC and PT
designs in all scenarios. 	e other three misspeci
ed models
are shown in Figure S1.

Figure 3 shows the pointwise percent of trials for which
the minimum distance from the true MTD curve to the
estimated MTD curve is no more than (100 × Q)% of the
true MTD for Q = 0.2 as de
ned by (13). 	is can be
interpreted as the percent of MTD recommendation for a
given tolerance Q. Under the 
rst scenario (a), the percent of
trials with correct MTD recommendation within 20% of the
true value of theMTD varies between 62.6% and 99.9%using
WC and PT designs, while it varies more widely between28.6% and 100% for the IC design when the toxicities are
generated from the true and misspeci
ed models. 	e WC
and PT design presents similar results to each other, withWC
design showing slightly lower values than for PT design at the
minimum dose combination. Under the second scenario (b),
the percent of recommendation is similar between all designs
varying between 84.9% and 97.6% for the WC design, 89.8%
and 99.3% for the IC design, and 79% and 100% for the PT
design. 	eWC design presents somewhat lower values than
for IC design when7 = 1 at the minimum dose combination
and at central part of the MTD curve when 7 = 0. Under
the scenario (c), the percent of recommendation is between69.0% and 95.1% for theWC design, 67.1% and 95.3% for the
PT design, while it is between 15.6% and 98.5% for IC design.
	e IC design is notably worse than WC and PT designs,
except at the minimum dose combination when 7 = 1; 	e
percent of recommendation is always lower for PT design
than for WC design when 7 = 0 and at the edges of the
MTD curve when 7 = 1. In scenario (d), the percent of
recommendation varies between 68.7% and 95.5% for WC
design, 88.2% and 98.0% for the PT design, 50.7% and 89.2%
for the IC design. As it was observed in the other scenarios,
IC design performs worse than WC and PT designs. 	e
PT design presents higher values than for WC design at the
minimum dose combination when 7 = 0 and at the edges of
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Figure 2: Pointwise average relative minimum distance from the trueMTD curve to the estimatedMTD curve with designs using a covariate
(WC), ignoring the covariate (IC), and parallel trials (PT) under scenarios (a)-(d).
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parallel trials (PT) under scenarios (a)-(d).
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Table 2: A selected dose limiting toxicity scenario with � = 0.33 for7 = 0, 1 considering discrete dose combinations. True MTDs are
shown in bold.

Dose level
Z = 0 Z = 1

1 2 3 4 5 1 2 3 4 5

5 0.25 0.33 0.40 0.48 0.70 0.45 0.53 0.60 0.68 0.90

4 0.20 0.26 0.33 0.43 0.55 0.40 0.46 0.53 0.63 0.75

3 0.13 0.16 0.24 0.33 0.39 0.33 0.36 0.44 0.53 0.59

2 0.05 0.13 0.18 0.28 0.33 0.25 0.33 0.38 0.48 0.53

1 0.001 0.05 0.13 0.20 0.27 0.201 0.25 0.33 0.40 0.47

the MTD curve when 7 = 0, 1. 	e other three misspeci
ed
models are shown in Figure S2.

4. Discrete Dose Combinations

In this section, we show how the proposed methodology can
be applied to a prespeci
ed discrete set of dose combinations.

4.1. Approach. Let (�1, . . . , ��) and (	1, . . . , 	�) be the doses
of agents � and �, respectively. Following the notation of
Section 2.1, ����,� = �1, ����,� = 	1, ����,� = ��, ����,� =	�, the doses are standardized to be in the interval [0, 1], and� is a binary baseline covariate. Trial design proceeds using
the algorithm described in Section 2.3 where the continuous
doses recommended in steps (2) and (3) are rounded to the
nearest discrete dose levels. At the end of the trial, a discrete
set Γ of dose combinations satisfying (i) and (ii) below is
selected as MTDs. Let ��,� be the estimated MTD curve for� = 0, 1 at the end of the trial and denote by K�((�
, 	�), ��,�)
the Euclidean distance between the dose combination (�
 , 	�)
and ��,� for � = 0, 1 as in (12).

(i) Let Γ�,� = ⋃��=1{(��, 	) : 	 =
argmin��K((��, 	
), ��,�) }, Γ�,� = ⋃��=1{(�, 	�) :� = argmin��K((�
, 	�), ��,�)}, and Γ�,0 = Γ�,� ∩ Γ�,�.

(ii) Let Γ� = Γ�,0\{(�∗, 	∗) : ?(|?(� X|(�∗, 	∗), �) − �| >�1|��) > �2}.
In (i), dose combinations closest to the MTD are selected by

rstminimizing the distances across the levels of drugA, then
across the levels of drug B. In (ii), we exclude MTDs from
(i) that either likely to be too toxic or too low. 	e design
parameter �1 is selected a�er consultationwith a clinician and
the parameter �2 is selected a�er exploring a large number of
scenarios for a given prospective trial. Following Tighiouart
(2017) [25], �1 = 0.1, �2 = 0.7.
4.2. Operating Characteristics. 	e performance of the
method is evaluated by calculating the percent of MTDs
selection introduced in Tighiouart (2017) [25] estimating the
probability that for a given scenario, a prospective trial will
recommend a set of dose combinations that are all MTDs:

PS� = 100 × 1*
�∑
�=1
I (Γ�,� ⊂ Γ�,	) , (14)

for � = 0, 1, where Γ�,	 = {(��, 	
) : |?(� X|(��, 	
), �) − �| <�} is the set of trueMTDs such that the threshold parameter �
is 
xed by a clinician. In the sameway, the percent of selection
at least Z dose combinations that are MTDs is

PS� − K = 100 × 1*
�∑
�=1
I (OOOOΓ�,� ∩ Γ�,	OOOO ≥ Z) , (15)

for � = 0, 1. In addition, the weighted average proportion of
the recommended set of dose combinations which are MTDs
discussed in [30] is given by

SΓ� = ∑��=1 OOOOΓ�,� ∩ Γ�,	OOOO∑��=1 OOOOΓ�,�OOOO , (16)

for � = 0, 1.
4.3. Illustration. We present one scenario as shown in Table 2
with _ = ` = 5 and the target probability of DLT is � = 0.33.
We simulated * = 1000 trials using the sample size of � =40 patients with 20 patients per group, and the same vague
priors for �000, �100, �101, �010 and � fromSection 3 to compare
the three designs with a covariate, ignoring the covariate, and
parallel trials.

Table 3 shows that the overall average DLT is 25.1% for
theWCdesign and 24.5% for the IC design. In the group with7 = 0, it is always far lower than � and close to � for the group
with 7 = 1. 	e percent of trials with an excessive DLT rate
is not noticeable for all designs where the highest values are
observed when using the IC design.

Table 4 shows that the design using parallel trials has
highest values for the percent of MTDs selection (PS),
percent of selection of at least 3 dose combinations (S-3),
2 dose combinations (S-2), and 1 dose combination (S-1),
and weighted average percent of the recommended set of
dose combinations (SΓ� ) statistics in the group with 7 =0, 1. 	e IC design shows the lowest values for all operating
characteristics in both groups; PT design presents smaller
values than for WC design when 7 = 0, while shows higher
values than for WC design when 7 = 1, except for PS� − 3.
5. Conclusion

We described Bayesian adaptive designs for cancer phase I
clinical trials using two drugs with continuous dose levels
in the presence of a binary baseline covariate. 	e goal is to
estimate the MTD curve in the two-dimensional Cartesian
plane for a patient’s speci
c baseline covariate value. 	e
methodology extends the single agent trial design with a
baseline covariate and two agents design without a covariate.
In each case, vague priors were used to quantify the toxicity
pro
le of each agent a priori. We used an algorithm for
dose escalation where cohorts of two patients are enrolled
simultaneously and the patients receive di�erent dose com-
binations. We studied design operating characteristics of the
method under four practical scenarios by comparing this
method with the design that ignores the baseline covariate
and design using parallel trials. In all simulations, we used a
sample size of � = 40 patients, 20 patients in each group. We
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Table 3: Operating characteristics summarizing trial safety for designs using a covariate (WC), ignoring the covariate (IC), and parallel trials
(PT) considering discrete dose combinations.

Design
Average % DLTs (% Trials: DLT rate < � − 0.1; % Trials: DLT rate > � + 0.1)

Overall Z = 0 Z = 1

WC 25.9 (31.9; 2.0) 17.3 (78.5; 3.0) 34.5 (7.2; 17.4)

IC 24.4 (48.0; 0.0) 14.2 (85.6; 0.0) 34.6 (7.7; 17.5)

PT - 15.0 (91.1; 0.0) 28.1 (24.0; 5.0)

Table 4: Operating characteristics summarizing trial e�ciency for7 = 0, 1with designs using covariate (WC), ignoring covariate (IC),
and parallel trials (PT) considering discrete dose combinations.

Covariate Design PS PS� − 3 PS� − 2 PS� − 1 SΓ�

Z = 0

WC 47.3 35.3 51.3 80.1 66.3

IC 19.6 14.9 23.0 51.6 37.9

PT 46.2 9.9 33.6 58.3 56.4

Z = 1

WC 55.3 25.7 72.5 85.5 71.6

IC 47.6 17.9 59.5 79.6 62.7

PT 81.6 16.2 71.4 88.0 88.9

found that in general, the methodology is safe in terms of the
probability that a prospective trial will result in an excessively
high number of DLTs when accounting for a signi
cant
covariate. We used several measures to assess the e�ciency
of the estimate of the MTD. In the presence of a practically
signi
cant baseline covariate, the design with a covariate had
a smaller pointwise average bias and a higher percent of
MTD recommendation relative to a design which ignores
the covariate and similar performance to parallel trials when
the groups were balanced. When the two true MTD curves
are very close, including a baseline covariate in the model
results in a slightly higher but still negligible bias and a small
reduction in percent of MTD recommendation relative to
the design that ignores this covariate. 	erefore, we stand to
lose little if we include a practically not important covariate
in the model. We further showed how this methodology
is adapted to the discrete dose combinations and proposed
statistics estimating the probability that a prospective trial
will recommend a set of dose combinations that are all MTDs
for a given scenario. 	e statistics are used in evaluating
the performance of the proposed design with a covariate as
compared to other designs ignoring the covariate and using
parallel trials.
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