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ABSTRACT

This paper proposes new methodology for sequential state and parameter estimation within the ensemble

Kalman filter. The method is fully Bayesian and propagates the joint posterior distribution of states and

parameters over time. To implement the method, the authors consider three representations of the marginal

posterior distribution of the parameters: a grid-based approach, a Gaussian approximation, and a sequential

importance sampling (SIR) approach with kernel resampling. In contrast to existing online parameter esti-

mation algorithms, the new method explicitly accounts for parameter uncertainty and provides a formal way

to combine information about the parameters from data at different time periods. The method is illustrated

and compared to existing approaches using simulated and real data.

1. Introduction

Data assimilation refers to sequential inference on the

state of a system by combining observations with a nu-

merical model describing the evolution of the system

over time. This is a ubiquitous task in many fields, in-

cluding atmospheric science, where the system is typi-

cally high dimensional and consists of one or more

spatial fields evaluated on a fine grid. From a statistical

perspective, data assimilation is equivalent to filtering

inference in a state-space model. In many applications,

the evolution model and other parts of the state-space

model are not fully known and are, instead, functions of

parameters. Data assimilation then requires combined

inference on the (temporally varying) system state and

on (temporally static) model parameters. This setting is

the focus of this article.

Sequential Monte Carlo methods, also known as particle

filters (Gordon et al. 1993; Pitt and Shephard 1999; Doucet

et al. 2001), are widely used for sequential estimation in

general state-space models. Although there is an enormous

literature on pure state estimation, there are fewer papers

that consider sequential estimation of both states and pa-

rameters. The existing references include Kitagawa (1998),

who proposed augmenting the state vector to include the

static parameter and then estimating the augmented

state using the particle filter. Liu and West (2001) pro-

posed another state-augmentation approach that uses

kernel density estimation of the parameter distribution

within an auxiliary particle filter (Pitt and Shephard

1999) framework. Storvik (2002) suggested analytical

updating of sufficient statistics, but this approach only

applies to parameters with conjugate priors. Andrieu

et al. (2005) proposed recursive and batch maximum-

likelihood estimation (MLE) methods. These methods

have all been shown to work well in nonlinear and non-

Gaussian models, when the state dimension is fairly

small, say, fewer than 10 dimensions. However, these

particle filters rely on reweighting or resampling of

particles, which results in filter collapse when the state

dimension is high (e.g., Snyder et al. 2008). Hence, these
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particle-filter-based methods are not suited for the high-

dimensional systems of interest here.

The ensemble Kalman filter (EnKF; Evensen 1994)

is a sequential Monte Carlo algorithm designed for

combining high-dimensional space–time models with

observations. Several reviews of and tutorials on the

EnKF are available (e.g., Wikle and Berliner 2007;

Evensen 2009; Katzfuss et al. 2016; Houtekamer and

Zhang 2016). While the EnKF is closely related to the

Kalman filter (KF; Kalman 1960), it handles non-

linearities in a more flexible manner than analytic line-

arization schemes such as the extended Kalman filter

(e.g., Grewal and Andrews 1993, chapter 5). Although

much work has been done to improve EnKF estimation

of state variables, little work has focused on estimation

of model parameters. Anderson (2001) proposed adding

the unknown parameters to the state vector and updat-

ing the augmented state using a standard EnKF scheme.

Other state-augmentation schemes include the dual

EnKF (Moradkhani et al. 2005) and iterative EnKF (Gu

and Oliver 2007) and the related Kalman ensemble

generator (Nowak 2009). But these state-augmentation

approaches do not work well for parameters that exhibit

small (linear) correlation with the state vector. For ex-

ample, Stroud and Bengtsson (2007) and DelSole and

Yang (2010) show that the augmentation method fails

for variance parameters.

Here, we consider parameter inference in the EnKF

based on the likelihood, which is the distribution or

density of the observed data conditional on the param-

eters, viewed as a function of the parameters. Offline

maximum likelihood (ML) estimation in the EnKF

framework has been considered usingNewton–Raphson

(DelSole and Yang 2010; Stroud et al. 2010) as well as

grid-based (Ueno et al. 2010) and expectation-

maximization (Tandeo et al. 2015; Dreano et al. 2017)

optimization techniques. ML estimation of parameters

from an online perspective was considered by Mitchell

and Houtekamer (2000), whose method combines ML

estimates at each time point in a statistically inconsistent

way [see section 3b(2) later]; by Ueno and Nakamura

(2014), who estimate parameters in the noise covariance

matrix via online expectation-maximization algorithm;

and by De (2014), who proposed a method for sequen-

tially updating the unknown parameters at each time

point to find a stochastic approximation to the ML es-

timator in stationary systems.

The likelihood can also be used to conduct Bayesian

inference on the parameters. Stroud and Bengtsson

(2007) provide a Bayesian method for parameter in-

ference within the EnKF, but their approach is limited

to a scalar variance parameter describing the magnitude

of additive evolution-model error. Frei and Künsch

(2012) propose Bayesian inference on parameters by

combining an EnKF for state inference with a particle

filter to approximate the parameter distribution, but

their focus is on temporally varying observation error co-

variance parameters. Vrugt et al. (2005) propose an offline

Bayesian approach for model parameter estimation.

Brankart et al. (2010) find the maximum a posteriori

(MAP) estimators of temporally varying parameters, while

Ueno and Nakamura (2016) focus onMAP estimation for

parameters in the noise covariance matrix with temporal

smoothing via online expectation maximization (EM).

Here, we propose a fully Bayesian method for se-

quential (i.e., online) inference on states and parameters

within the EnKF framework. Our algorithms are

designed to be applicable to temporally static parame-

ters in nonlinear, high-dimensional systems. Unlike

some of the other approaches (e.g., Mitchell and

Houtekamer 2000), our method combines information

about the parameters from data at different time points

in a formal way using Bayesian updating. In contrast to

the ML and MAP approaches discussed above, we

quantify uncertainty in the parameters through analytic

propagation of the entire filtering distribution of the

parameters. Further, our approach is suitable for static

parameters in various parts of the state-space model,

including in the evolution-error and noise covariance

matrices. To implement our algorithm, we propose three

approximate methods: one based on a parameter grid,

another is based on a normal (Laplace) approximation,

and another is based on a particle approximation to the

parameter distribution.

Note that there is also an extensive literature on es-

timation of specific tuning parameters in the EnKF, such

as inflation and localization parameters (e.g., Wang and

Bishop 2003; Anderson 2007a,b; �Smídl and Hofman

2011). Here, we focus instead on inference on general

parameters that explicitly appear in the statistical

model, and we regard the tuning parameters as known.

The remainder of the paper is outlined as follows. In

section 2, we introduce the state-space model under

consideration. In section 3, we motivate and introduce

our proposed methodology. In section 4, we present

numerical comparisons of our methods to existing ap-

proaches using simulated and real data. We conclude in

section 5.

2. Additive Gaussian state-space models

Let yt denote themt 3 1 observation vector and xt the

n 3 1 state vector. We consider the following class of

additive Gaussian state-space models:

Observation: y
t
5H

t
(u) x

t
1 v

t
, v

t
;N [0,R

t
(u)], (1)
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Evolution: x
t
5M

t
(x

t21
;g)1w

t
, w

t
;N [0,Q

t
(u)], (2)

for t5 1, 2, . . . , where the observation matrix Ht and the

covariance matrices Rt and Qt may depend on a vector of

unknown parameters u, and the possibly nonlinear

evolution operator Mt(�) may depend on a separate set

of parameters g. For now, we will focus on inference for

u and consider g to be fixed and known [and so we

simply write Mt(xt21)], but we will describe in section 3d

how our algorithm for inference on u can be combined

with a state-augmentation approach to perform inference

on g. The model is completed with a prior on the initial

state p(x0jY0) 5 N (a0, P0) and a prior distribution of the

parameters p(ujY0), where Y0 denotes the initial in-

formation. In applications where the relationship between

the observations and the state is nonlinear, we take Ht in

(1) to be the linearization of the nonlinear mapping.

3. Sequential Bayesian inference on state and
parameters

The Bayesian filtering problem requires computing

the joint posterior distribution p(xt, u jYt) of the current

state and the parameters at each time t5 1, . . . ,T, where

Yt 5 {Y0, . . . , y1, . . . , yt} denotes the information avail-

able at time t, and Y0 is the initial information. This joint

posterior encodes all available information about the states

and parameters contained in the data, and it is typically

summarized through marginal distributions, posterior

means, standard deviations, or credible intervals. As we

will see, Bayesian inference has two advantages over fre-

quentist or more ad hoc methods: it allows accounting for

parameter uncertainty, and information about the pa-

rameters can be naturally combined over time following a

consistent probabilistic framework.

Except in very special cases (see Stroud and

Bengtsson 2007), the joint posterior distribution is un-

available in closed form, so Monte Carlo methods must

be used to approximate the distribution. In what follows,

we propose a method for combined state and parameter

estimation that scales to high-dimensional states.

Our approach relies on the decomposition of the joint

posterior distribution of the state and parameters into

two terms: the conditional posterior distribution for the

states given the parameters and the marginal posterior

distribution for the parameters:

p(x
t
, ujY

t
)5 p(x

t
ju,Y

t
) p(ujY

t
) . (3)

In the following subsections, we describe how p(xt, ju,Yt)

can be obtained via the EnKF (section 3a), we examine

the marginal parameter posterior p(u, jYt) (section 3b),

we propose three approximation methods for p(u, jYt)

(section 3c), and, finally, we describe the full algorithm

that combines these ideas and results (section 3d).

a. EnKF for state inference

The first term on the right-hand side of (3) is the fil-

tering distribution of the state, given the parameters.

Because our algorithm must be implemented sequen-

tially, it is useful to write this distribution in recursive

form:

p(x
t
ju,Y

t
)} p(y

t
jx

t
, u)

ð
p(x

t
jx

t21
, u)p(x

t21
ju,Y

t21
) dx

t21
,

(4)

that is, the observation density times the state forecast

density p(xt, ju, Yt21), which is defined by the integral.

In a linear Gaussian model, these recursions can be

computed analytically using the Kalman filter (provided

the dimension of the state is not excessively large).

Here, we are interested in high-dimensional systems

with possibly nonlinear evolution (see section 2), for

which we instead employ an EnKF. Throughout the

paper, the superscripts p and f refer to the predictive and

forecast distributions, the superscript i is the ensemble

index, and N is the ensemble size.

Assume we have an ensemble of states fxit21gNi51 rep-

resenting the filtering distribution at time t 2 1. The

EnKF then propagates each state vector forward,

xpit 5M(xit21), i5 1, . . . ,N and estimates the covariance

matrix from the prior ensemble. Inmost applications, we

have n � N, and some form of regularization of this

covariance matrix is necessary. Denoting the prior en-

semble mean as âpt 5
1
N
� N

i51x
pi
t , we assume here that

P̂p
t 5C+

�
1

N2 1
� N

i51(x
pi
t 2 âpt )(x

pi
t 2 âpt )

0
�

(5)

is given by an elementwise product of the empirical

covariance matrix with a sparse tapering correla-

tion matrix C (e.g., Houtekamer and Mitchell 1998;

Anderson 2007b; Furrer and Bengtsson 2007). The es-

timated Kalman gain is a function of u:

K̂
t
(u)5H

t
(u) P̂f

t (u)Ht
(u)0 Ŝ

t
(u)21 , (6)

where P̂f
t (u)5 P̂p

t 1Qt(u), and

Ŝ
t
(u)5H

t
(u)P̂f

t (u)Ht
(u)0 1R

t
(u) (7)

is the innovation covariance matrix. Then, after gener-

ating the forecast ensemble by setting xfit 5 xpit 1wi
t,

where wi
t ;N [0, Q(u)], i 5 1, . . . , N, and simulating

observation errors as vit ;N [0, Rt(u)], i 5 1, . . . , N, we

can obtain the posterior ensemble at time t based on
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parameter value u using the analysis scheme of Burgers

et al. (1998):

xit 5 xfit 1 K̂
t
(u)[y

t
1 vit 2H

t
(u) xfit ].

b. The marginal posterior of parameters

The second term on the right-hand side of (3) is the

marginal posterior for the parameters. It can be written

recursively via Bayes’s theorem as

p(ujY
t
)} p(ujY

t21
) p(y

t
ju,Y

t21
). (8)

The above formula is crucial, as it defines a recursion

for the parameter distribution over time. Note that the

first term on the right side is the posterior distribution

for u at the previous time t 2 1 (which serves as the

prior with respect to yt). The second term is the likeli-

hood at time t. Recall that Yt 5 {Yt21, yt}. Then, if we

ignore Yt21 in the conditioning sets, Eq. (8) can be

written as p(ujyt) } p(u) p(ytju), which can easily be

recognized as Bayes’s theorem.

Note that under a flat initial prior for the parame-

ters (i.e., p(u jY0) } 1), the marginal posterior for u in (8)

is exactly proportional to the cumulative likelihood

Lt(u)5P
t

j51p(yj ju, Yj21) that is often considered in

frequentist (i.e., non-Bayesian) inference.

1) ACCUMULATION OF EVIDENCE OVER TIME

The recursion in (8) provides a natural way to prop-

agate information about the parameter over time, as op-

posed to the ad hoc methods used by Dee (1995) and

Mitchell and Houtekamer (2000). To illustrate this, we

replicated a static model example presented in Mitchell

and Houtekamer (2000). The model assumes that (scalar)

observations yt ; N (0, 2 1 a) are generated in-

dependently from a Gaussian distribution with mean zero

and variance (2 1 a), where a is an unknown variance

parameter, and the goal is to estimate a sequentially as

new data arrive. Mitchell and Houtekamer (2000) con-

sidered the cumulative mean and median of the single-

stageML estimates ât5 argmaxap(yt ja), where p(yt ja) is
the likelihood considering only the data at time t. Because

a is a variance parameter and, thus, must be nonnegative,

the estimates are given by ât5 max(0,y2t2 2).

The results of a simulation using a true parameter

value a* 5 0.3 are shown in Fig. 1. The majority of the

individual estimates ât are equal to zero, and the dis-

tribution of the estimates is heavily right-skewed.

FIG. 1. For the static model in section 3a, (top) individual maximum likelihood estimates

and (bottom) cumulative inference on the parametera over time. The true parameter value is

a*5 0.3. In the bottom panel, the blue (cyan) line represent the cumulative mean (median)

of the individual estimates as proposed byMitchell andHoutekamer (2000), while the red and

green lines and the gray band represent summaries of the posterior distribution of a.
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Hence, as in Mitchell and Houtekamer (2000), we find

an upward bias in the cumulative mean with respect to

the true value a*, while the cumulative median is zero.

Moreover, after 10 000 observations, the estimates did

not converge to a*, indicating statistical inconsistency of

the estimators. In contrast, the posterior distribution of

a from (8) can be seen to become more concentrated

over time and to converge to the true value of a*.

Corresponding point estimates, such as the posterior

mode and posterior mean, do converge to the true value.

Thus, it is desirable to use the recursive expression for

the posterior distribution of the parameters from (8) for

rigorously combining information about the parameters

from data at different time points.

2) FEASIBLE LIKELIHOOD APPROXIMATION FOR

HIGH-DIMENSIONAL STATES

For high-dimensional models, evaluation of the like-

lihood p(yt ju, Yt21) } in (8) is computationally infea-

sible. Given that we use an ensemble representation for

the state distributions in section 3a above, it is natural to

use the same ensemble representation in order to ap-

proximate the likelihood. Specifically, given that the

filtering distribution at time t 2 1 is a discrete distribu-

tion with equal weights at the filtering ensemble

fxit21gNi51, an approximation of the likelihood (called the

‘‘discrete’’ likelihood approximation here) is given by

p
disc

(y
t
ju,Y

t21
)5

1

N
�
N

i51

N [y
t
jH

t
(u)xpit ,Ht

(u)Q
t
(u)H

t
(u)0

1R
t
(u)].

However, as illustrated in Fig. 2, this approximation can

break down when the data are informative (i.e., whenmt

and the signal-to-noise ratio are large relative to N).

Instead, we employ a likelihood approximation based on

the EnKF, which approximates the forecast distribution

by a multivariate Gaussian distribution (Mitchell and

Houtekamer 2000). This EnKF likelihood approxima-

tion is given by

p
enkf

(y
t
ju,Y

t21
)} jŜ

t
(u)j21

2 exp

�
2
1

2
ê
t
(u)0 Ŝ

t
(u)21 ê

t
(u)

�
,

(9)

where êt(u)5 yt 2Ht(u)â
p
t is the innovation mean vec-

tor, and Ŝt(u) is the innovation covariance matrix de-

fined in (7).

c. Approximations of the parameter posterior

Note that the likelihood penkf(ytju, Yt21) in (9) is a

complicated nonlinear function of u, which arises in both

the determinant and inverse of the mt 3 mt innovation

covariance matrix Ŝt(u). Thus, generally, no conjugate

prior is available for u, so the marginal posterior distri-

bution p(u jYt) in (8) is typically unavailable in

closed form.

To implement parameter learning in the Bayesian

framework, we need a representation of the parameter

distribution that allows for recursive updating. In what

follows, we consider three representations of the param-

eter distribution: a discrete (grid based) distribution,

aGaussian approximation, and a particle approximation

with kernel resampling. The first provides an exact re-

cursive updating method on a discretized parameter

space, while the second and third provide an approxi-

mate method over the full parameter space.

FIG. 2. Comparison of the likelihoods discussed in section 3b in a simple simulated example. Data are simulated at a single time point

from the prior covariance matrix Pp
t, with Q 5 aIn, H 5 In, R 5 0.1In. The true (solid black) a is 0.5. The observations are on a one-

dimensional spatial domain at locations 1, 2, . . . , n and Pp
t is based on an exponential covariance function with range parameter 3. We use

the same N 5 50 draws from the forecast distribution for the EnKF (dashed blue) and discrete (dotted red) approximations and

a Wendland taper with range 12 for the EnKF. The likelihoods are normalized to integrate to 1 and can, hence, be viewed as posterior

distributions for a under a uniform (flat) prior.
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1) GRID-BASED REPRESENTATION OF pðu jYT)

This approach treats the parameter space as dis-

crete. The parameter distribution is specified by a set

of points {u1*, . . . , uK* } and associated probability

weights {pt,1, . . . , pt,K} with normalization constraint

� K

k51pt,k 5 1. The discrete parameter distribution at

time t is defined by

p
grid

(ujY
t
)5 �

K

k51

d
uk*
(u)p

t,k
, (10)

where d(�) is the Dirac delta function. The initial prob-

ability weights at time t 5 0 are obtained by defining

p0,k } p(uk*jY0) for k5 1, . . . ,K, with weights normalized

to sum to 1. Samples from this distribution can be easily

generated at any time t by selecting ui with replacement

from the discrete set {u1*, . . . , uK* } with corresponding

weights {pt,1, . . . , pt,K}. With this representation for the

prior, the posterior is given as the product of the prior

and the likelihood, that is,

p
grid

(u jY
t
)} p

grid
(u jY

t21
) p

enkf
(y

t
ju,Y

t21
), (11)

where the EnKF likelihood function (9) is used instead

of the exact likelihood. The updating formula in (8) re-

duces to a recursion on the weights: pt,k }pt21,k 3
penkf(ytjuk*, Yt21) for k5 1, . . . ,K, where the weights pt,k

are normalized to sum to 1. Therefore, the computa-

tional cost of the update isK likelihood evaluations, one

for each grid point uk*.

To simplify implementation, we assume the parame-

ter grid is fixed over time. For example, the grid points

could be based on the initial prior distribution, with

equally spaced points between, say, the 1st and 99th

percentiles of the distribution. Or we could choose un-

equally spaced points based on evenly spaced percen-

tiles of the initial prior.

While the discrete approach is conceptually appeal-

ing, it has some limitations. First, the method does not

extend beyond a few parameters because the computa-

tional cost of the update step grows exponentially in the

dimension of the parameter space. Second, the grid of

parameter values is specified a priori and is not adaptive

over time. Thus, as the posterior becomes more con-

centrated over time, the posterior distribution eventu-

ally concentrates on a single grid point. This implies

falsely that there is no posterior uncertainty about u.

Finally, the initial grid may be poorly specified and may

not cover the high probability region of the posterior at

later time points. To alleviate these problems, we next

consider an adaptive method based on a Gaussian

approximation.

2) NORMAL APPROXIMATION TO pðu jYT)

Here, the parameter distribution at each time t is

approximated by a normal distribution with mean mt

and covariance matrix Ct. The posterior density is then

given by

p
norm

(ujY
t
)} exp

�
2
1

2
(u2m

t
)0C21

t (u2m
t
)

�
. (12)

The updating recursions for the posterior moments are

then derived as follows. Assume the parameter distri-

bution at time t 2 1 is normal with mean mt21 and co-

variance Ct21. The posterior is proportional to the

product of the prior and likelihood, that is,

exp[‘(u)]5 p
norm

(u jY
t21

)p
enkf

(y
t
ju,Y

t21
), (13)

whereweuse theEnKF likelihood function penk,f(ytju,Yt21)

in place of the exact likelihood. The function ‘(u) represents

the log posterior distribution, that is, ‘(u) 5 log(prior 3
likelihood). Because this posterior is not of a recognizable

form, a normal (or Laplace) approximation is used. We

define the normal approximation pnorm(u jYt) based on a

2nd-order expansion of ‘(u) at the mode. The posterior

mean and covariance matrixmt and Ct are defined by

m
t
5

argmax ‘(u)

u
and C

t
52

�
›2‘(u)

›u ›u0

�21

u5mt

. (14)

The posterior mean (mode) mt is obtained using a nu-

merical optimization scheme. In our applications, we

use a modified version of the Subplex algorithm

(Rowan 1990), a derivative-free method, implemented

using the SBPLX function in the NLopt package

(Johnson 2011). The starting value for the optimization

is the prior mean mt21. Because ‘(u) may not be

concave, a global optimum is not guaranteed. How-

ever, for our examples, we find the optimization to be

quite reliable, with convergence to a mode at nearly

every time step. After obtaining the posterior modemt,

the Hessian matrix C21
t is computed numerically

using finite differences. In nearly all of the simulations,

we found that C21
t was invertible. When it was

noninvertible, a small value was added to the diagonal

elements to make it invertible.

3) PARTICLE APPROXIMATION TO pðu jYT)

The third method, suggested by one of the referees,

uses a particle filter with kernel resampling to approxi-

mate the parameter distribution. Under a sampling im-

portance resampling (SIR) approach without kernel

resampling, the posterior distribution is approximated

by a discrete distribution:
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p
sir
(u jY

t
)5 �

N

i51

d
uit
(u)vi

t , (15)

where uit are the particles at time t, and vi
t are the cor-

responding weights normalized such that � N

i51v
i
t 5 1.

The algorithm is initialized by sampling particles from the

initial prior ui0 ; p(u jY0) and setting the initial weights to

vi
05 1/N for each i 5 1, . . . , N. For each subsequent

observation yt, the posterior is updated by first updating

the weights for each particle i 5 1, . . . , N via

vi
t }vi

t21 3 p
enk f

(y
t
juit21,Yt21

),

where the weights are normalized to� N

i51v
i
t 5 1. We

then sample each uit, i5 1, . . . , N from the discrete set

{uit21} (with replacement) with weights equal to {vi
t}.

After resampling N particles, the particle weights

are reset to vi
t 5 1/N for i 5 1, . . . , N. Unfortunately,

this SIR scheme suffers from the same degeneracy

problem as the grid-based method, that is, the sup-

port points are fixed, so as more data are collected,

the posterior eventually concentrates on a single

particle.

To mitigate this degeneracy problem, a kernel

resampling scheme, as in Liu and West (2001), can be

used to generate new parameter values at each time t.

Here, the posterior distribution is represented by a

kernel density estimate (mixture of normals) of the

form

p
kern

(u jY
t
)5�

N

i51

N [ujauit 1 (12 a)u
t
, (12 a2)V

t
]vi

t , (16)

where {uit} are the particles at time t, {vi
t} are the particle

weights normalized so that �N
i51v

i
t 5 1, ut 5�N

i51v
i
tu

i
t is

the posterior mean and Vt 5� N
i51v

i
t(u

i
t 2 ut)(u

i
t 2 ut)

0 is
the posterior variance-covariance matrix, and a 2 [0, 1]

is a smoothing parameter. Note that a / 1 implies a

discrete distribution, as in (15), while a 5 0 implies a

Gaussian approximation similar to (12). Liu and West

(2001) recommend choosing a between 0.975 and 0.995.

Estimation proceeds in a similar manner as the SIR

approach above. However, instead of resampling uit
from the discrete set {uit21}, we use a kernel resam-

pling approach. Here, we first resample ~uit from the set

{uit21} with weights {vi
t} and then generate posterior

samples as

uit ;N [a~uit 1 (12 a)u
t21

, (12 a2)V
t21

].

Thus, even if all of the resampled particles ~uit are iden-

tical, the posterior draws uit will be unique because they

are independently drawn from a normal distribution.

d. Combined state and parameter learning in
the EnKF

Given the developments above, an ensemble-based

algorithm is proposed to generate a sample from the

joint posterior distribution of the state and parame-

ters in (3) at each time point. At each t, we have an

analytical (discrete, normal, or particle) representa-

tion of the parameter distribution p̂(u jYt), along with

an ensemble of states and parameters (xit, u
i)
N

i51 from

p(xt, u jYt).

To implement our algorithm, wemake the assumption

of forecast independence between the states and pa-

rameters, that is, M(xt21), and u are independent con-

ditional on Yt21. This implies that the joint forecast

distribution can be written as

p[M(x
t21

), u jY
t21

]5 p[M(x
t21

) jY
t21

]p(u jY
t21

) .

The advantage of this assumption is that it allows

us to use a single ensemble for both states and

parameters, that is, we do not need a separate state

ensemble for each member of the parameter en-

semble. This provides enormous computational

savings, and we find that the assumption is quite ac-

curate in our examples. We note that Frei and

Künsch (2012) also made the assumption of forecast

independence and justified it based on asymptotic

independence arguments. However, they considered

only unknown parameters in the observation error

covariance matrix R(u), and they assumed forecast

independence of xt and u.

Our approach is closely related to that of Mitchell

and Houtekamer (2000), but it includes steps to up-

date and simulate from the parameter distribution

rather than obtaining u through maximum likeli-

hood. Our approach naturally quantifies uncertainty

in the parameters and takes this uncertainty into

account when obtaining the filtering ensemble of

the state.

Algorithm 1: The algorithm is initialized by drawing

from the initial prior: ui ; p(u jY0) and xi ;N (a0, P0) for

i5 1, . . . ,N. Each assimilation cycle t5 1, 2, . . . proceeds

as follows:

1) Propagate each state vector forward: x
pi

t
5

M(xit21), i5 1, . . . , N.

2) Approximate the likelihood function using the

prior ensemble as in (9) by p̂enkf(ytju,Yt21)}
jŜt(u)j21/2exp[2(1/2) êt(u)0Ŝt(u)

21êt(u)].

3) Update the analytical parameter distribution

using the grid, normal, or particle approximation

[section 3c(1), 3c(2), or 3c(3), respectively]: p̂(ujYt)}
p̂(ujYt21)p̂enkf(ytju, Yt21).
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4) Draw parameters from the updated posterior

distribution: ui ; p̂(ujYt), i5 1, . . . , N.

5) Generate the forecast ensemble by setting xfit 5
xpit 1wi

t, where wi
t ;N [0, Q(ui)], i5 1, . . . , N.

6) Draw a posterior ensemble using the analy-

sis scheme of Burgers et al. (1998): xit 5 xfit 1
K̂t(u

i)[yt 1 vit 2Ht(u
i)xfit ], where vit ;N [0, Rt(u

i)], i5
1, . . . , N, and the estimated Kalman gain K̂t(u

i) is

given in (6).

Depending on which approximationmethod is used in

step 3 of this algorithm, we refer to it as EnKF-Grid,

EnKF-Normal, or EnKF-Particle.

MERGING OUR METHOD WITH EXISTING

APPROACHES

Note that our algorithm works best when the number

of unknown parameters in u is small. Hence, we rec-

ommend combining our algorithm with other ap-

proaches as much as possible.

For example, it can be combined with state aug-

mentation (Anderson 2001), which works well for pa-

rameters (g, say) that have a strong correlation with

the state [e.g., parameters in M as introduced in (2)].

In the algorithm above, this means replacing the state

xt with the augmented state (x0t, g
0)0 and Ht with the

matrix (Ht, 0). The transition of the parameters g is

typically assumed to be constant, although it is also

possible to treat g as a time-varying parameter gt with

small artificial evolution noise (e.g., Kitagawa 1998;

Liu and West 2001). Equivalently, we could use co-

variance inflation for the parameters, which has a

similar effect.

The EnKF-Grid method can also be combined with

the approach of Stroud and Bengtsson (2007) to

make inference on a scalar multiplicative parameter

that appears in both Qt and Rt. If this parameter

has an inverse-gamma prior distribution, its mar-

ginal posterior distribution is also inverse gamma

and available in closed form. Stroud and Bengtsson

(2007) provide an EnKF algorithm to update the

hyperparameters of the inverse-gamma distribution

at each time point and sample from the joint filtering

distribution of the state vector and the scalar

parameter.

4. Numerical comparison and applications

a. Linear evolution

We first consider a linear dynamic spatiotemporal

model from Xu and Wikle (2007). The model is a

vector autoregression plus noise, where the state

vector xt 5 (xt1, . . . , xtn)
0 corresponds to n equally

spaced locations {1, 2, 3,. . . , n} along a spatial transect.

Following the notation in (1) and (2), the evolution

mean function is linear, M(xt21) 5 Mxt21 where the

propagator matrix is tridiagonal with parameters

g 5 g1, g2, g3:

M(g)5

0
BBB@

g
1

g
2

0

g
3

g
1

⋱
⋱ ⋱ g

2

0 g
3

g
1

1
CCCA .

The evolution errors are spatially correlated with co-

variance Q(u) 5 s2
hC(t), where C(t) is defined by the

exponential correlation function c(d; t) 5 exp(2td),

and d is the distance between locations. The initial state

distribution is given by p(x0ju)5N (0,s2
«I) . For the data

model, we assume that observations are taken at each

location yt 5 (yt1, . . . , ytn)
0 and the observation matrix

and error covariance matrix are given by H5 I and

R 5 s2
«I. The signal-to-noise ratio is denoted by

b5s2
h/s

2
«.

We consider two relatively low-dimensional examples

here, which (along with the assumption of linear evo-

lution) allows us to compute the true posterior distri-

bution of u at each time using the Markov chain Monte

Carlo (MCMC) procedure of Carter and Kohn (1994)

and to compare ours and other approaches to the true

posterior distribution.

1) SIMULATION

First, we simulated observations from the true model

with dimensions n5m5 20 forT5 100 time points. The

true parameters were taken to be g 5 (0.3, 0.6, 0.1),

b5 5, t5 1, and s2
«5 1. For this simulation, we assumed

that g and s2
« were known, so that u 5 (b, t)0 were the

unknown parameters with independent prior distribu-

tions b ; N1(5, 10) and t ; N1(2, 0.16), where N1

denotes a truncated normal distribution on the positive

real line.

We obtained the posterior distribution of the pa-

rameters u for each time t5 1, . . . , T using algorithm 1

with N 5 100 ensemble members and no tapering or

covariance inflation. The results are shown in Fig. 3.

As we can see, the posterior distributions, as ap-

proximated by our EnKF-Norm and EnKF-Grid

procedures from algorithm 1, are very close to

the true posterior distribution obtained via MCMC,

and they seem to converge to the true values of

s2
h(5b s2

«) 5 5 and t 5 1. This is in contrast to the

approximation of the posterior obtained by state

augmentation. The flat bands for both parameters

indicate that the augmentation approach does not

work in this case, likely because the relationship
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between the covariance parameters and the observa-

tions is not linear.

2) CLOUD DATA

Next, we apply the proposed methods to the cloud

motion data of Wikle (2002). The data are cloud in-

tensities at n 5 60 equally spaced locations along a

transect at T5 80 time periods. Wikle (2002) used non-

Gaussian spatiotemporal kernel models to analyze the

data. Here, because the original data zti are counts with a

large number of zeros, we work with the transformed

observations yti 4 5 log(1 1 zti). Using again the model

of Xu and Wikle (2007) described above, we now treat

all parameters u 5 (g0, b, t, s2
«)

0 as unknown with the

following prior distributions: gjs2
« ; N [(0.3, 0.3, 0.3)0,

0.01s2
«I], b ; N1(1.0, 0.01), t ; N1(0.1, 0.0004), and

s2
«; IG(25, 2).
We applied our algorithm 1 to the data using N5 100

ensemble members and no tapering or covariance

inflation. While the model includes six unknown

parameters in total, the autoregressive parameters

g were included in the state and handled with state

FIG. 3. For the simulated data using a linear state-space model described in section 4a(1), true posterior

distributions (filtered mean and 95% bands) over time of the parameters (left)s2
hand (right) t (in black)and the

corresponding approximations (colored lines) using the (top) EnKF-Grid , (middle) EnKF-Norm, and (bottom)

EnKF with state augmentation.
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augmentation, and the technique of Stroud and

Bengtsson (2007) was used for inference on s2
« (see

section 3d). This leaves us with the parameter vector

u 5 (t, b)0, to which we apply our method.

In Fig. 4, the results are compared to the true posterior

distribution, as obtained by an MCMC procedure, and to

Liu and West (2001)’s particle filter with state augmenta-

tion using N 5 10000 particles and a tuning parameter

d 5 0.98 (see appendix). As we can see, the EnKF-Grid

posterior does well and is close to the true posterior. The

results for EnKF-Normal (not shown) are similar. Despite

the very large ensemble size, the APF does not perform

well, in that the means are way off, and the posterior un-

certainty appears to be strongly underestimated.

b. The Lorenz-96 model

We now consider the 40-variable system of

Lorenz (1996), commonly referred to as the

Lorenz-96 model, which mimics advection at equally

spaced locations along a latitude circle. The differ-

ential equations defining the time evolution of the

system are given by

_x
t,k
5 (x

t,k11
2 x

t,k22
) x

t,k21
2 x

t,k
1F,

for k5 1, . . . , n5 40, with periodic boundary conditions.

We note that the system equations contain quadratic

nonlinearities that define a nonlinear transition function

M(�) and also that Q 5 0 [cf. Eq. (2)]. Here, we set the

FIG. 4. As in Fig. 3, but for the cloud data in section 4a(2), using the EnKF-Grid (blue dashed lines) and the particle

filter (gray bands) of Liu and West (2001).
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forcing parameter F 5 8 and the time step d 5 0.25,

resulting in a forwardmap with significant nonlinearities

yielding distinctly non-Gaussian forecast distributions

(see Fig. 2 in Bengtsson et al. 2003). A numerical solver

is used to propagate the system over time.

We simulate the true value x0* of the initial state from a

long run of the Lorenz-96 model. At each time dt, t5 1,

2, . . . , 250 we takem5 n noisy observations according to

(1) with H 5 I. We assume spatially correlated obser-

vation errors, with R 5 R(u) defined by the Matérn co-

variance model

K(d; u)5
s2

2n21G(n)

�
d

l

�n

K
n

�
d

l

�
,

where s2 is the sill parameter, l is the spatial range

parameter, n is the smoothness parameter, and the dis-

tance d between xt,i and xt,j is defined as min{ji2 jj, 402
ji 2 jj}. Data are simulated using the parameter values

(s2, l, n) 5 (1, 1, 0.5). We take the initial state distri-

bution to be x0 ; (x0*, 0.25I) and assume the following

independent prior distributions for the parameters: s2;
IG(5, 5), l ; N1(1.0, 0,64), and n ; N1(0.25, 0.25).

Using the method of Stroud and Bengtsson (2007) to

handle s2, we applied our EnKF-Grid algorithm for

inference on l and n to the resulting simulated data with

20 grid points per parameter, N 5 100 ensemble mem-

bers, and aGaspari andCohn (1999) taper with range 12.

The marginal posterior distributions of the three pa-

rameters over time are shown in Fig. 5. As we can see,

the posterior distributions again seem to be converging

to the true values. The EnKF-Grid also produces esti-

mates of the joint posterior distribution of the parame-

ters. Figure 6 shows the strong posterior dependence

between l and n at several time points.

5. Conclusions

We have presented new algorithms for sequential

state and parameter estimation that combine

information about the parameters from data at

different time points in a consistent, probabilistic

framework. The algorithms obtain the marginal pos-

terior distribution of the parameters at each time

point using a grid, normal, or particle approximation,

while the distribution of the states, given the parameters, is

obtained by theEnKF. Themethods can also be combined

with existing approaches for parameter estimation in the

EnKF, such as state augmentation. We have shown in

several numerical examples that the posterior distribution

of the parameters, as approximated by our methods, is

close to the true posterior, converges to the true parame-

ter value, and strongly outperforms popular existing

approaches.

While the current software implementation of our

approach is not suitable for applications with truly high-

dimensional states, we expect our methods to work in

high dimensions as well, as long as the embedded EnKF

is well suited and well tuned to the application if the

parameters are known.

A separate question is how our method will scale to

high-dimensional parameter vectors (i.e., a large num-

ber of unknown parameters). The computational cost of

the EnKF-Grid approach is exponential in the number

of unknown parameters, and this approach is, hence,

most suitable when the number of parameters (minus

the parameters that can be handled by state augmenta-

tion and other methods) is in the single digits. The

computational cost of the EnKF-Normal approach

is cubic in the number of parameters and should,

thus, scale to moderately high parameter dimensions,

FIG. 5. For data simulated from the Lorenz-96 model (see section 4b), the marginal posterior distributions (filtered mean and 95% bands)

of the parameters over time: (left to right) s2, l, and n.
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although the cost of the optimization procedure to find

the posterior mode at each time point might become

prohibitive. The EnKF-Particle approach is also cubic in

the number of parameters due to the mixture of normals

approximation.

Note that our methods ‘‘break’’ the dependence

between the parameter approximations at successive

time points and are, in their present form, unable to

approximate the joint dependence structure in the

posterior distribution of the parameters at different

time points. This could potentially be remedied

using a shift-based update to the parameters. In the

case of the normal approximation, this shift would be

similar to the one used for the state update in the

EnKF, while in the grid-based approximation, a shift

based on a piecewise linear approximation (cf.

Anderson 2010) to the parameter density might be

possible.
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FIG. 6. For data simulated from the Lorenz-96 model (see section 4b), contours of the joint posterior distribution

of the parameters l and n at time points: (top left) 0, (top right) 5, (bottom left) 15, and (bottom right) 100. The

contour values are normalized to yield a maximumposterior density of 1 at each time point. The true value of (l, n)5
(1, 0.5) is indicated by the red dot.
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APPENDIX

Liu and West’s Particle Filter

Wedescribe the particle filter algorithm of Liu andWest

(2001) for sequential state and parameter estimation for a

state-space model with transition density p(xt11jxt, u) 5
N [M[(xt), Q(u)] and measurement density p(ytjxt, u) 5
N [H(u)xt, R(u)]. The algorithm uses state augmenta-

tion and generates samples [x
(i)
t , u

(i)
t ] ; p(xt, ujYt) for

each time t5 0, 1, . . . , T. The main idea is to use kernel

density estimation to approximate the parameter

distribution

p(ujY
t
)5

1

N
�
N

i51

N [ujau(i)t 1 (12 a)u
t
, (12 a2)V

t
],

where u
(i)
t are the parameter samples (particles) at time t,

ut is the posterior mean, Vt is the posterior variance-

covariance matrix for the particles at time t, and a is a

tuning parameter between 0 and 1. The joint posterior

distribution for the states and parameters is defined re-

cursively as

p(x
t11

, ujY
t11

)} p(y
t11

jx
t11

, u)

ð 
p(x

t
, ujY

t
)p(x

t11
jx

t
, u)dx

t
.

The algorithm is as follows:

1) Start with samples [x
(i)
0 , u

(i)
0 ], i 5 1, . . . , N from

p(x0, u j Y0).

2) For each observation, time t 1 1 5 1, . . . , T:

(i) Generate state and parameter forecasts:

m
(i)
t11 5M[x

(i)
t ] and m

(i)
t 5 au

(i)
t 1 (12 a)ut.

(ii) Compute first-stage weights: p[yt11jm(i)
t11, m

(i)
t ].

(iii) Sample the index ki from {1, . . . , N} with

probabilities proportional to fl(i)t11g.
(iv) Draw ~u

(i)
t11 from a normal density ~u

(i)
t11 ;

N [m
(ki)
t , (12 a2)Vt].

(v) Draw ~x
(i)
t11 from the transition density ~x

(i)
t11 ;

N [m
(ki)
t11, Q(~u

(i)
t11)].

(vi) Compute the second-stage weights:v
(i)
t11 }

p[yt11j~x(i)t11,
~u
(i)
t11]/p[yt11 jm(i)

t11, m
(i)
t ].

(vii) Resample [x
(i)
t11, u

(i)
t11] from f[~x(i)t11,

~u
(i)
t11]g with

weights proportional to [v
(i)
t11].

Step 2(vii) provides samples from the joint posterior

distribution p(xt11,u j Yt11), as desired. The algorithm

requires the choice of a discount factor d 2 (0, 1), which

determines the smoothing parameters as a5 (3d 2 1)/2d.

The discount factor controls the degree of smoothing in the

parameter distribution p(x, u jYt), with large values corre-

sponding to less smoothing and small values to more

smoothing. Typical values of d are between 0.95 and 1. For

all of the examples in section 4, we use a value of d5 0.98.
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mation in general state-space models. Proc. 44th IEEE Conf.

on Decision and Control/2005 European Control Conf., Seville,

Spain, IEEE, 332–337, https://doi.org/10.1109/CDC.2005.1582177.

Bengtsson, T., C. Snyder, andD.Nychka, 2003: Toward a nonlinear

ensemble filter for high-dimensional systems. J. Geophys. Res.,

108, 8775, https://doi.org/10.1029/2002JD002900.

Brankart, J.-M., E. Cosme, C.-E. Testut, P. Brasseur, and

J. Verron, 2010: Efficient adaptive error parameterizations for

square root or ensemble Kalman filters: Application to the

control of ocean mesoscale signals.Mon. Wea. Rev., 138, 932–

950, https://doi.org/10.1175/2009MWR3085.1.

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis

scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126,

1719–1724, https://doi.org/10.1175/1520-0493(1998)126,1719:

ASITEK.2.0.CO;2.

Carter, C. K., and R. Kohn, 1994: On Gibbs sampling for state

space models. Biometrika, 81, 541–553, https://doi.org/

10.1093/biomet/81.3.541.

De, D., 2014: Essays onBayesian time series and variable selection.

Ph.D. thesis, Texas A&M University, 83 pp., http://

oaktrust.library.tamu.edu/bitstream/handle/1969.1/152793/

DE-DISSERTATION-2014.pdf?sequence51.

Dee, D. P., 1995: On-line estimation of error covariance parame-

ters for atmospheric data assimilation. Mon. Wea. Rev., 123,

1128–1145, https://doi.org/10.1175/1520-0493(1995)123,1128:

OLEOEC.2.0.CO;2.

DelSole, T., and X. Yang, 2010: State and parameter estimation in

stochastic dynamical models. Physica D, 239, 1781–1788,

https://doi.org/10.1016/j.physd.2010.06.001.

Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001: Sequential

Monte Carlo Methods in Practice. Springer, 582 pp.

Dreano, D., P. Tandeo, M. Pulido, B. Ait-El-Fquih, T. Chonavel,

and I. Hoteit, 2017: Estimating model-error covariances in

nonlinear state-spacemodels usingKalman smoothing and the

expectation-maximization algorithm. Quart. J. Roy. Meteor.

Soc., 143, 1877–1885, https://doi.org/10.1002/qj.3048.

Evensen, G., 1994: Sequential data assimilation with a nonlinear

quasi-geostrophic model using Monte Carlo methods to

forecast error statistics. J. Geophys. Res., 99, 10 143–10 162,

https://doi.org/10.1029/94JC00572.

——, 2009: Data Assimilation: The Ensemble Kalman Filter. 2nd

ed. Springer, 307 pp.

Frei, M., and H. Künsch, 2012: Sequential state and observation

noise covariance estimation using combined ensemble Kalman

and particle filters. Mon. Wea. Rev., 140, 1476–1495, https://

doi.org/10.1175/MWR-D-10-05088.1.

Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional

prior and posterior covariance matrices in Kalman filter

JANUARY 2018 S TROUD ET AL . 385

Unauthenticated | Downloaded 08/09/22 06:33 AM UTC

https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1111/j.1600-0870.2006.00216.x
https://doi.org/10.1111/j.1600-0870.2006.00216.x
https://doi.org/10.1016/j.physd.2006.02.011
https://doi.org/10.1175/2010MWR3253.1
https://doi.org/10.1175/2010MWR3253.1
https://doi.org/10.1109/CDC.2005.1582177
https://doi.org/10.1029/2002JD002900
https://doi.org/10.1175/2009MWR3085.1
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://doi.org/10.1093/biomet/81.3.541
https://doi.org/10.1093/biomet/81.3.541
http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/152793/DE-DISSERTATION-2014.pdf?sequence=1
http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/152793/DE-DISSERTATION-2014.pdf?sequence=1
http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/152793/DE-DISSERTATION-2014.pdf?sequence=1
https://doi.org/10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
https://doi.org/10.1016/j.physd.2010.06.001
https://doi.org/10.1002/qj.3048
https://doi.org/10.1029/94JC00572
https://doi.org/10.1175/MWR-D-10-05088.1
https://doi.org/10.1175/MWR-D-10-05088.1


variants. J. Multivar. Anal., 98, 227–255, https://doi.org/

10.1016/j.jmva.2006.08.003.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation

functions in two and three dimensions. Quart. J. Roy. Meteor.

Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel

approach to nonlinear/non-Gaussian Bayesian state estima-

tion. IEE Proc., 140, 107–113, https://doi.org/10.1049/ip-f-

2.1993.0015.

Grewal, M. S., and A. P. Andrews, 1993:Kalman Filtering: Theory

and Practice. Prentice Hall, 368 pp.

Gu, Y., andD. S. Oliver, 2007: An iterative ensemble Kalman filter

for multiphase fluid flow data assimilation. SPE J., 12, 438–

446, https://doi.org/10.2118/108438-PA.

Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation

using an ensemble Kalman filter technique. Mon. Wea.

Rev., 126, 796–811, https://doi.org/10.1175/1520-0493(1998)

126,0796:DAUAEK.2.0.CO;2.

——, and F. Zhang, 2016: Review of the ensembleKalman filter for

atmospheric data assimilation. Mon. Wea. Rev., 144, 4489–

4532, https://doi.org/10.1175/MWR-D-15-0440.1.

Johnson, S. G., 2011: The NLopt nonlinear-optimization package.

Accessed 10 January 2018, https://nlopt.readthedocs.io/en/

latest/.

Kalman, R. E., 1960: A new approach to linear filtering and pre-

diction problems. J. Basic Eng., 82, 34–45.
Katzfuss, M., J. R. Stroud, and C. K. Wikle, 2016: Understanding

the ensemble Kalman filter. Amer. Stat., 70, 350–357, https://

doi.org/10.1080/00031305.2016.1141709.

Kitagawa, G., 1998: A self-organizing state-space model. J. Amer.

Stat. Assoc., 93, 1203–1212.

Liu, J., and M. West, 2001: Combined parameter and state es-

timation in simulation-based filtering. Sequential Monte

Carlo Methods in Practice, A. Doucet, J. de Freitas, and

N. Gordon, Eds., Statistics for Engineering and Information

Science Series, Springer, 197–223, https://doi.org/10.1007/

978-1-4757-3437-9_10.

Lorenz, E., 1996: Predictability: A problem partially solved. Proc.

Seminar on Predictability, Reading, United Kingdom,

ECMWF, 1–18, https://www.ecmwf.int/sites/default/files/elibrary/

1995/10829-predictability-problem-partly-solved.pdf.

Mitchell, H. L., and P. L.Houtekamer, 2000:An adaptive ensemble

Kalman filter. Mon. Wea. Rev., 128, 416–433, https://doi.org/

10.1175/1520-0493(2000)128,0416:AAEKF.2.0.CO;2.

Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser,

2005: Dual state–parameter estimation of hydrological models

using ensemble Kalman filter. Adv. Water Resour., 28, 135–

147, https://doi.org/10.1016/j.advwatres.2004.09.002.

Nowak, W., 2009: Best unbiased ensemble linearization and the

quasi-linear Kalman ensemble generator.Water Resour. Res.,

45, W04431, https://doi.org/10.1029/2008WR007328.

Pitt, M. K., and N. Shephard, 1999: Filtering via simulation: Aux-

iliary particle filters. J. Amer. Stat. Assoc., 94, 590–599, https://

doi.org/10.1080/01621459.1999.10474153.

Rowan, T., 1990: Functional stability analysis of numerical algo-

rithms. Ph.D. dissertation, University of Texas at Austin,

218 pp.
�Smídl, V., and R. Hofman, 2011: Marginalized particle filtering

framework for tuning of ensemble filters.Mon.Wea. Rev., 139,

3589–3599, https://doi.org/10.1175/2011MWR3586.1.

Snyder, C., T. Bengtsson, P. Bickel, and J. L. Anderson, 2008: Ob-

stacles to high-dimensional particle filtering.Mon.Wea. Rev., 136,
4629–4640, https://doi.org/10.1175/2008MWR2529.1.

Storvik, G., 2002: Particle filters for state-space models with the

presence of unknown static parameters. IEEE Trans. Signal

Process., 50, 281–289, https://doi.org/10.1109/78.978383.
Stroud, J. R., and T. Bengtsson, 2007: Sequential state and variance

estimationwithin the ensembleKalman filter.Mon.Wea. Rev.,

135, 3194–3208, https://doi.org/10.1175/MWR3460.1.

——,M. L. Stein, B.M. Lesht, D. J. Schwab, andD. Beletsky, 2010:

An ensemble Kalman filter and smoother for satellite data

assimilation. J. Amer. Stat. Assoc., 105, 978–990, https://

doi.org/10.1198/jasa.2010.ap07636.

Tandeo, P., M. Pulido, and F. Lott, 2015: Offline parameter esti-

mation using EnKF andmaximum likelihood error covariance

estimates: Application to a subgrid-scale orography parame-

trization. Quart. J. Roy. Meteor. Soc., 141, 383–395, https://
doi.org/10.1002/qj.2357.

Ueno, G., and N. Nakamura, 2014: Iterative algorithm for

maximum-likelihood estimation of the observation-error co-

variance matrix for ensemble-based filters. Quart. J. Roy.

Meteor. Soc., 140, 295–315, https://doi.org/10.1002/qj.2134.

——, and ——, 2016: Bayesian estimation of observation-error

covariance matrix in ensemble-based filters. Quart. J. Roy.

Meteor. Soc., 142, 2055–2080, https://doi.org/10.1002/qj.2803.

——, T. Higuchi, T. Kagimoto, and N. Hirose, 2010: Maximum

likelihood estimation of error covariances in ensemble-based

filters and its application to a coupled atmosphere–ocean

model. Quart. J. Roy. Meteor. Soc., 136, 1316–1343, https://

doi.org/10.1002/qj.654.

Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M.

Verstraten, 2005: Improved treatment of uncertainty in hy-

drological modeling: Combining the strengths of global opti-

mization and data assimilation. Water Resour. Res., 41,

W01017, http://doi.org/10.1029/2004WR003059.

Wang, X., and C. H. Bishop, 2003: A comparison of breeding

and ensemble transform Kalman filter ensemble forecast

schemes. J. Atmos. Sci., 60, 1140–1158, https://doi.org/10.1175/

1520-0469(2003)060,1140:ACOBAE.2.0.CO;2.

Wikle, C. K., 2002: A kernel-based spectral model for non-

Gaussian spatio-temporal processes. Stat. Modell., 2, 299–

314, https://doi.org/10.1191/1471082x02st036oa.

——, and L. M. Berliner, 2007: A Bayesian tutorial for data

assimilation. Physica D, 230, 1–16, https://doi.org/10.1016/

j.physd.2006.09.017.

Xu, K., and C. K.Wikle, 2007: Estimation of parameterized spatio-

temporal dynamic models. J. Stat. Plan. Inference, 137, 567–

588, https://doi.org/10.1016/j.jspi.2005.12.005.

386 MONTHLY WEATHER REV IEW VOLUME 146

Unauthenticated | Downloaded 08/09/22 06:33 AM UTC

https://doi.org/10.1016/j.jmva.2006.08.003
https://doi.org/10.1016/j.jmva.2006.08.003
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.2118/108438-PA
https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1175/MWR-D-15-0440.1
https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/
https://doi.org/10.1080/00031305.2016.1141709
https://doi.org/10.1080/00031305.2016.1141709
https://doi.org/10.1007/978-1-4757-3437-9_10
https://doi.org/10.1007/978-1-4757-3437-9_10
https://www.ecmwf.int/sites/default/files/elibrary/1995/10829-predictability-problem-partly-solved.pdf
https://www.ecmwf.int/sites/default/files/elibrary/1995/10829-predictability-problem-partly-solved.pdf
https://doi.org/10.1175/1520-0493(2000)128<0416:AAEKF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0416:AAEKF>2.0.CO;2
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.1029/2008WR007328
https://doi.org/10.1080/01621459.1999.10474153
https://doi.org/10.1080/01621459.1999.10474153
https://doi.org/10.1175/2011MWR3586.1
https://doi.org/10.1175/2008MWR2529.1
https://doi.org/10.1109/78.978383
https://doi.org/10.1175/MWR3460.1
https://doi.org/10.1198/jasa.2010.ap07636
https://doi.org/10.1198/jasa.2010.ap07636
https://doi.org/10.1002/qj.2357
https://doi.org/10.1002/qj.2357
https://doi.org/10.1002/qj.2134
https://doi.org/10.1002/qj.2803
https://doi.org/10.1002/qj.654
https://doi.org/10.1002/qj.654
http://doi.org/10.1029/2004WR003059
https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
https://doi.org/10.1191/1471082x02st036oa
https://doi.org/10.1016/j.physd.2006.09.017
https://doi.org/10.1016/j.physd.2006.09.017
https://doi.org/10.1016/j.jspi.2005.12.005

