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Abstract

We describe a strategy for the analysis of experimentally derived gene expression signatures

and their translation to human observational data. Sparse multivariate regression models are used

to identify expression signature gene sets representing downstream biological pathway events fol-

lowing interventions in designed experiments. When translated into in vivo human observational

data, analysis using sparse latent factor models can yield multiple quantitative factors character-

izing expression patterns that are often more complex than in the controlled, in vitro setting. The

estimation of common patterns in expression that reflect all aspects of covariation evident in vivo

offers an enhanced, modular view of the complexity of biological associations of signature genes.

This can identify substructure in the biological process under experimental investigation and im-

proved biomarkers of clinical outcomes. We illustrate the approach in a detailed study from an

oncogene intervention experiment where in vivo factor profiling of an in vitro signature generates

biological insights related to underlying pathway activities and chromosomal structure, and leads

to refinements of cancer recurrence risk stratification across several cancer studies.

KEYWORDS: pathway, breast cancer, factor, module, signature, gene expression, latent factor

models, sparse regression

∗Research partially supported by National Science Foundation (DMS-0342172) and National In-

stitutes of Health (NCI U54-CA-112952). Any opinions, findings and conclusions or recommen-

dations expressed in this work are those of the authors and do not necessarily reflect the views of

the NSF or NIH.



1 Introduction

The routine use of gene expression microarrays in experimental studies on cul-
tured human cells and cancer cells lines has escalated the ability to generate
data on changes in genome-wide expression levels of genes under widely vary-
ing conditions. In vitro intervention experiments are increasingly coupled with
studies to evaluate patterns of expression of resulting sets of genes within in

vivo contexts, such as human cancer data sets. The interest lies in linking the
biological pathways responding to in vitro interventions to real-world biological
variation and outcomes [e.g. 1, 5, 12, 17, 18]. A set of apparently differentially
expressed genes together with numerical summaries of the activation of those
genes is commonly referred to as a signature of the intervention. The trans-
lation of experimentally derived signatures to observational data can help to
establish links between the measured signature and observed phenotypes such
as disease status, drug responses, mutations, survival profiles, etc. [e.g. 1, 17].
However, effecting this translation raises challenging questions of calibration
of data between contexts, and of potentially major differences in the complex-
ity of biological activity between cells in culture and living organisms. The
highly controlled settings of designed experiments often result in narrow char-
acterization of biological activity that is unlikely to fully represent the various
sources of variability present in vivo. We have found utility in applying sparse
regression and latent factor models in an overall strategy to address this core
problem faced in many translational biomedical studies.

We focus here on cancer genomics, where gene expression biomarkers aris-
ing from experimental comparisons, whether in vitro laboratory studies or con-
trolled animal models, hold promise as biomarkers of oncogenic states in hu-
man populations. Sparse multivariate regression models are useful in the iden-
tification of signatures in controlled experiments. Flexible evaluation of the
complexity of patterns of association underlying signature genes when trans-
lated to observational contexts can then be carried out using non-Gaussian
sparse latent factor models [2]. This allows for evaluation of the potentially
increased structure evident in transcriptionally activated signature genes in the
in vivo context, as well as more extensive evaluations using additional genes
not identified in the in vitro signature but apparently linked into the broader
biological network of intersecting pathways playing roles in vivo. The latter
concept can be effectively addressed using iterative, evolutionary refinement
of latent factor models to successively explore and expand the analysis around
an initial signature gene set. Our detailed application involves translational
analysis of the signature of over-expression of the Myc oncogene, with data
arising from an earlier in vitro study of the effects of interventions to over-
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express several oncogenes in cultured cells [1, 13]. This example illustrates
the methodological strategy, and highlights the potential for in vivo factor
profiling of in vitro signatures to both improve the prognostic value of such
signatures as biomarkers of clinical outcomes and generate biological insights
in a cancer genomics context.

2 Example: Markers of Myc Overexpression

Our example study concerns the expression profiling of biological activities
related to the Myc gene, and we use this context here to convey the method-
ology using sparse statistical modeling for the integration of in vitro and in

vivo data and translational analysis. Myc is a transcription factor known to
be involved in numerous biological pathways including cell proliferation, cell
growth, apoptosis, cellular differentiation and stem cell renewal; it is also a
well-known oncogene involved in many types of human cancers [6, 20, 23]. Im-
proved understanding of the roles of Myc and its numerous influences in cancer
will rely in part on improved understanding of the Myc pathway – its tran-
scriptional target genes and the many genes involved in interacting biological
function downstream of Myc.

Studies of molecular pathways in cancer, as in other areas, increasingly
focus on experiments to define microarray-based expression signatures of ac-
tivation or deregulation of selected genes via targeted interventions on those
genes. In [1], Myc was one of 9 oncogenes investigated in such experiments on
cultured human mammary epithelial cells. In each single experiment, higher
than normal levels of one oncogene were induced; following a period of cell
growth gene expression profiles were generated on Affymetrix microarrays.
Each intervention was replicated several times, and several control samples
with no intervention were also generated; see [1] and [15] for further details
and some summary analyses.

For our purposes here, this study design is a nice example of a one-way lay-
out with replication and a multivariate response, for which sparse multivariate
regression analysis is appropriate (section 3). Further, given the importance
of Myc in breast cancer (among other cancers), we are naturally interested in
studying the translation of Myc pathway signatures into human breast data,
and have available a number of relevant expression data sets from breast cancer
to develop the translational analysis.
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3 Sparse Regression Modeling

3.1 General Framework

In an experimental context such as above, let xg,i be the measured expression
level (on a traditional log2 scale) of gene g = 1, . . . , p on sample i = 1, . . . , n,
assumedly independent across the n samples. The multivariate regression
model for the p× 1 vector xi = (x1,i, . . . , xp,i)

′ is

xi = µ+Bhi + νi i = 1 : n, (1)

where µ is the p−vector of baseline expression levels µg, hi is the r×1 vector of
known covariates, B is the p×r matrix of regression coefficients with elements
βg,j and νi is the p−vector of gene-specific noise terms νg,i with individual
normal error variances ψg. Note that by fitting the entire vector xi jointly,
rather than an independent analysis for each, we are able to learn about the
underlying distribution of the βg,j. In the case of sparse regression, this allows
us to fit the probability that any particular βg,j = 0 based on the overall rate
of zero coefficients.

The two key types of covariates most relevant here are dummy variables
reflecting the experimental design (section 3.2) and observed values of expres-
sion variables that are often useful to adjust for experimental artifacts (section
3.3).

3.2 Regression with Design Factors

In a context such as the oncogene experiment example of section 2, each hi

contains dummy variables indicating design factors. One example in the study
in [27] concerns a cross-classified design with multiple interactions of interest,
while the oncogene experiment is a simple one-way layout. In the oncogene
example, take j = 1, . . . , 9 to indicate the 9 oncogene design factors, with
Myc being j = 1. Then, βg,1 is the average change in expression of gene g
due to Myc over-expression, and hi,1 = 1 for samples i that received the Myc
over-expression intervention, with hi,1 = 0 otherwise.

3.3 Covariates for Normalization and Artifact Control

Gene expression data often shows evidence of both marked and subtle study or
data collection effects (such as time of data collection, chip batch, small effects
of variations in experimental conditions, etc). If the microarray used has built-
in control gene sequences, such as in the case of Affymetrix housekeeping gene
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sets or spiked-in genes on custom arrays, the resulting expression readouts of
such probe sequences can often be useful to assess variation that can then
be attributed, primarily, to experimental artifacts. For example, [15] and
[2] use several principal components from the expression data on multiple
housekeeping and spiked-in genes as covariates for this purpose, and give some
examples of their utility. This fits into the general model of equation (1) where
hi now contains values of these assay artifact correction covariates, and the
corresponding βg,j represent the impact of these control terms on expression
of each gene.

3.4 Sparsity Priors

In experiments such as the oncogene example, the vast majority of genes are
not expected to show changes in expression at all as a response to any particu-
lar intervention. Any subset that does show significant changes will represent
a signature gene set for that intervention, but the biological expectation is that
such subsets will represent only a small part of the tens of thousands of genes
in the data. This is reflected in standard Bayesian variable selection priors, or
sparsity priors [15] that explicitly allow many zero values among the βg,j. In
particular, the analysis adopts priors under which:

• Each βg,j may be zero, controlled by some uncertain base-rate of non-
zero values that is related to the design factor or covariate j, and the
posterior analysis estimates that base-rate to assess the overall sparsity
of effects on covariate j.

• Non-zero βg,j values come from a prior N(0, τj) that is also specific to
covariate j, and with an inverse-gamma prior on τj that governs the likely
scale of actual effects on expression of gene g.

• Posterior analysis produces inferences on sparsity and gene-specific effect
via, among other things, posterior estimates of the sparsity probabilities

π∗

g,j = Pr(βg,j 6= 0|X) (2)

where X = (x1, . . . , xn) is the observed data. Importantly, analysis
automatically induces shrinkage effects that shrink each π∗

g,j towards
the estimated underlying base-rate for covariate j, thus naturally and
automatically adjusting for the multiple tests that are implicitly being
made.
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• Posterior analysis produces inferences on non-zero coefficients in terms of
summaries of p(βg,j|X, βg,j 6= 0) for each g, j, including posterior means
β∗

g,j = E(βg,j|X, βg,j 6= 0).

• Posterior analysis produces inferences on other model parameters includ-
ing the residual variances ψg = V (νg,i).

Full mathematical details are given in [15] and also [2].
The probabilities π∗

g,j are simply central to investigating the implications
of an analysis. In the oncogene intervention experiment example, identifying
genes g for which π∗

g,1 is large (if any) focuses on candidates for Myc signature
genes – genes that are apparently significantly changed in expression as a result
of Myc over-expression. Choosing a threshold on these probabilities allows us
to select a smaller group of signature genes for translational analysis. The β∗

g,j

then allow study of the relative impact of the covariate on expression changes
gene by gene within any selected signature set.

3.5 Signature Scores

A signature score is a single numerical summary of the gene expression re-
sponse of a set of signature genes in an experimental context such as above.
In the oncogene experiment, each intervention oncogene generates a signature
gene set – some selected subset of genes showing significant expression changes
– and an average of the expression values on that set provides a simple overall
measure of the level of activation of the underlying pathway. Thus, for exam-
ple, we can estimate Myc signature scores on each of a set of breast cancer
samples. The dominant principal component of signature gene sets (earlier re-
ferred to as a metagene) has been widely used, as have simple equally weighted
averages. [e.g. 5, 12, 17, 33]. This direct projection of signature scores has
been fundamental to studies of pathway deregulation in vivo and also emerging
drug response studies [e.g. 1].

Our over-riding goal in this paper is to promote a broader view of the
statistical complexity of this enterprise of signature translation from in vitro

to in vivo contexts, and the importance of a refined statistical strategy. As
part of this, projected signature scores are needed for comparison with the
results of the refined statistical approach. The specific choice of weighting of
genes to define a score is a minor consideration; we use a definition arising
from the sparse regression model used to analyze the experimental data.

In the model of equation (1) applied to the one-way layout of the oncogene
experiment, consider an hypothetical further sample x∗ and ask about the
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level of Myc pathway activation that sample seems to reflect. A comparison
of whether x∗ appears to be a Myc upregulated sample compared to a normal,
control sample would involve comparison of corresponding covariate vectors
h∗ with h∗,1 = 1 compared to h∗,1 = 0, and for which h∗,j = 0 for the other
design factors j 6= 1. Probabilistic assessment involves the likelihood ratio
p(x∗|h∗ = (1, 0, . . .)′)/p(x∗|h∗ = 0) which turns out to be an increasing function
of

∑p
g=1 βg,1xg,∗/ψg, a natural weighted average of expression across genes. This

leads to the general definition of signature score for each design factor j as

s∗j =
p∑

g=1

π∗

g,jβ
∗

g,jxg,∗/ψ
∗

g (3)

using posterior mean estimates of parameters, i.e., E(βg,j|X) = π∗

g,jβ
∗

g,j and
ψ∗

g = E(ψg|X). In practice, it is typical that many of the sparsity probabilities
π∗

g,j are, for any design factor j, very small, so that restricting the sum in
equation (3) to only a smaller, selected signature gene set for which probabil-
ities exceed some high threshold will suffice. Note also that, in models with
other covariates that are not part of the intervention – such as the experimen-
tal assay artifact terms discussed above – the above definition will be applied
to adjusted data that replaces xg,∗ in equation (3) with corrected values ob-
tained by subtracting the regression on those covariates with corresponding
β∗

g,j coefficients.

4 Nonparametric Latent Factor Models

4.1 General Framework

Latent factor models [14, 32], either alone or as components of more elaborate
latent factor regression models [2, 15] have found use in representing multiple,
interacting patterns of association among genes in observational expression
data sets in a number of studies. In considering the expression patterns in an
observational setting, sparse latent factor models can: (a) represent all signif-
icant aspects of covariation in the data, (b) identify interconnections between
subsets of genes through estimated gene-factor relationships, with opportu-
nity to relate these statistical relationships to underlying biological pathways,
and (c) identify genes that are simply not expressed, or not apparent, in vivo,
among other things. These models provide a means to address the core ques-
tion of interest in this paper: increasing the understanding of concordance, or
lack of concordance, of an experimentally defined expression biomarker with
expression patterns realized in vivo.
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Consider an observational expression data set such as expression profiles
on a series of human breast tumors. A general latent factor regression model
[2] extends equation (1) to

xi = µ+Bhi + Aλi + νi (4)

where the k × 1 vector λi = (λ1,i, . . . , λk,i)
′ represents the realized values of k

latent factors, and A is the p× k factor loadings matrix A = {αg,j}.
Sparse factor models arise when A has many zero elements, and this is

developed using the same Bayesian variable selection priors as for the sparse
regression model in section 3.4. That is, each column of the factor loading
matrix A has its own base-rate of non-zero entries, that base-rate being esti-
mated in the analysis to generate an overall assessment of sparsity of loadings
on that factor. The analysis then delivers posterior distributions that include
summaries π∗

g,j, α
∗

g,j = E(αg,j|X), now related to the regression on latent fac-
tor j rather than the known covariates as earlier. Model fitting using Markov
chain Monte Carlo (MCMC) methods are nowadays standard; see [2] and the
software implementation in [30]. Note also that the model of equation (4)
allows the incorporation of known covariates, and the use of assay artifact
control covariates, as in section 3.3, is often particularly relevant when ana-
lyzing observational data sets.

4.2 Non-Gaussian Factors

The potential for, and expectation of, non-Gaussian structure evident in ob-
servational gene expression data underlies the use of nonparametric Bayesian
models for the distributions generating latent factors λi. This uses the stan-
dard Dirichlet process model [8, 34] that is flexible and will adapt to arbitrary
non-Gaussian structure. The specific class of models used is such that, for any
set of m samples Λm = (λ1, . . . , λm) from the latent factor distribution, we
predict a new factor vector λ = λm+1 via the theoretically implied conditional
distribution

(λ|Λm) ∼ (1 − am)N(λ|0, Ik) + am

m∑

i=1

δλi
(λ), (5)

where δe(·) is the Dirac delta function representing a point mass at e and
am = 1/(α+m) and where α > 0 is the precision parameter of the underlying
Dirichlet process. Model fitting is effectively standard using MCMC methods,
now including learning about the uncertain Λ1:n and α; see [2] and [30].

A key interest is predicting factor structure on new samples. Suppose a
specified model of the form of equation (4) has been fitted to the sample of n
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observations. Equation (5) at m = n defines the prior for the factor vector on
the new sample. Then, on observing the data vector x = xn+1 on that sample
we can deduce the implied conditional distribution for λ as follows. Let ◦
represent all model parameters including Λn. Further, define z = x−µ−Bhi,
and d = DA′Ψ−1z with D−1 = I + A′ where Ψ = diag(ψ1, . . . , ψp). Then

(λ|x, ◦) ∼ c0N(λ|d,D) +
n∑

i=1

ciδλi
(λ) (6)

where c0 ∝ αN(z|0, AA′ + Ψ) and, for i = 1, . . . , n, ci ∝ N(z|Aλi,Ψ) subject
to c0, . . . , cn having unit sum. Given full posterior samples of the model pa-
rameters – now including Λ1:n and α – based on the observed data X, we can
evaluate the terms defining this predictive distribution for the new λ. Approx-
imations based on fixing parameters at estimated posterior means yield point
estimates such as the directly projected vector

λ∗ = c∗0d
∗ +

n∑

i=1

c∗iλ
∗

i (7)

in an obvious notation.

5 Signature Factor Profiling Strategy

The strategy is as follows. For a single experimental pathway under inves-
tigation, assume an in vitro study has generated data analyzed via sparse
regression modeling. This is not strictly required, as one may start with any
coherent set of probes, such as a pathway list from online databases. Suppose
design factor j to be the intervention of interest. Translate to an in vivo data
set for analysis using sparse factor model profiling of the signature gene set as
follows.

• In the experimental context, select some subset of significant genes by
thresholding the π∗

g,j above a cutoff. The point here is not to focus on
specific genes, but a larger subset of differentially expressed genes that
coordinately reflect the pathway response and will define an initial gene
set for in vivo analysis. Suppose this selects q genes (in some of our
examples, q runs between several tens and several hundreds).

• Fit a sparse latent factor model to these q genes using the observational
data; this allows evaluation of relevant values of the number of factors
k, among other things, with larger values of k reflecting higher levels of
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heterogeneity of the patterns of expression evident among the genes in

vivo. Thus a single, one-dimensional signature of coordinate up/down
expression of these genes in the controlled experimental context becomes
refined to a k−dimensional estimated set of what might be referred to
as in vivo subpathway signatures.

• Using theory from [2] as implemented in the BFRM software [30], it-
eratively refine the analysis and expand the gene set. At each refine-
ment step, this first projects and approximately evaluates values of the
gene-factor association probabilities π∗

g,j for all genes g not in the cur-

rent model, for each of the current factors j = 1, . . . , k. Large values
of these probabilities identifies (any) genes whose expression variation
across samples seems to relate to the currently estimated factors; that
is, genes that seem to tie-in to the current subpathway structure evident
from the current factor analysis. With a view to exploring the likely
increased biological complexity of the in vivo setting, we can now add
in some of the most highly scoring genes, and rerun the factor analysis.
Having added in some more genes, this may well lead to an increased
number of factors at the next model analysis step, with additional fac-
tors needed to reflect additional patterns of covariation in the expanded
gene set.

Our biological focus is reflected in this stochastic search strategy: we are
initially concerned with the expression signature of intervention on a single
biological pathway, typically from an experiment on a single cell type under
highly controlled and hence potentially artificial circumstances. Involvement
of multiple other, intersecting biological processes will generally be evident in
the observational data set. Thus (i) we will be able to identify other genes
that show related expression patterns; and (ii) as we include these genes in
the analysis, we are either including genes that are part of the initial pathway,
but not expressed in the cell line in which the signature was defined, or in-
cluding genes in intersecting pathways. This leads to the need for additional
latent factors to reflect the newly observed patterns. The evolutionary model
refinement process is repeated, stopping after a select number of steps or using
thresholds to control the numbers of genes added, the number of factors fit-
ted, or on the inclusion probabilities π∗

g,j at each stage [2]. By restricting the
termination requirements, we can control how closely the final list of factors
remains to the initial set of probes, or how rich it can in principle become by
exploring the biological “neighborhood” of the original in vitro response.
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6 Myc Signature Profiling in Breast Cancer

6.1 Data and Signature Identification

The oncogene expression data set of [1] was analyzed using sparse regression
analysis as described above; the data uses Affymetrix u133 microarrays and
generated data on p = 22215 gene probesets across n = 118 samples; full
details of prior specifications and MCMC analysis, including input and output
text files from the analysis using the BFRM software, are recorded in the
supplementary web-based material.

Our interest here is in translational analysis of the Myc signature in tissue
samples excised from breast cancer patients in the normal course of therapy.
One of the known etiologies for the over-expression of Myc in breast cancer
is duplication of the Myc gene. For this reason, we chose to study variation
in expression of the genes in this signature in a breast cancer data set from
[4] which also has comparative genomic hybridization (CGH) data; the latter
data allows us to examine relationships between gene copy number variation
(CNV) and estimated factors, in addition to relationships between factors
and various clinical phenotypes. Because the data from [4] was generated on
u133a Affymetrix chips, we restrict our analysis to the probes on this chip.
From among these, we identify those gene probes g for which π∗

g,1 > 0.95 and
π∗

g,j < 0.25 for all j = 2, . . . , 9. This identifies a signature gene set of q = 190
genes, each apparently strongly associated with the in vitro Myc pathway
response while apparently not responding to interventions on any of the other
8 oncogenes.

6.2 Evolutionary Sparse Factor Analysis in Breast Data

The analysis evolved through a series of iterations, at each stage bringing in at
most 20 additional genes most highly related to the “current” latent factors,
and then exploring whether or not to add additional latent factors and re-fit
the model. As with the analysis of in vitro data, details of prior specification
and additional details of the evolutionary MCMC analysis, including input
and output text files from the analysis using the BFRM software, are recorded
in the supplementary web-based material. Thresholding the π∗

g,j probabilities
at 0.75 was used for both new gene inclusion and new factor inclusion; an
additional factor was added to the model only when at least 15 genes showed
π∗

g,j > 0.75. The evolutionary analysis was run in the context of allowing ex-
pansion to no more than 700 genes and 20 factors. This led to a final model
with 700 genes and k = 12 factors Based on this model on genes most proxi-
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mally related to the Myc pathway, we can then also assess the relationships of
all remaining thousands of genes with the estimated factors via the estimated
π∗

g,j values for all genes not included in the 700 model genes. In what follows,
when then draw on this full set of probabilities over all p = 22215 genes in
investigating those genes apparently related to one or more of the 12 fitted
factors. These probabilities are key to exploring aspects of the fitted factor
analysis and its relationships to underlying biological pathways. We refer to
posterior means λ∗j,i as, simply, factor j or, the value of factor j, on sample
i. Referring to the full vector of factors on sample i implicitly denotes the
approximate posterior mean λ∗i . In discussing genes related to a specific fac-
tor, we refer to genes being involved in the factor, associated with the factor
and/or significantly loaded on the factor, based on π∗

g,j > 0.99.

6.3 Factors Related to Breast Cancer Survival

Gene expression biomarkers of risk and progression are increasingly evident in
clinical cancer research. To explore the possibility that some of the 12 Myc
factors may have prognostic value in connection with malignancy reflected in
survival outcomes, we used the 12 estimated factors as candidate covariates in
Weibull survival regression models as used in early survival studies in cancer
genomics [7, 26]. This used Bayesian regression model search and averaging
[25] to explore the space of subset regression models, via the shotgun stochas-
tic search approach [10]. Among other things, this produces estimated relative
probabilities over all models as well as individual and pairwise inclusion prob-
abilities for the 12 factors.

Figure 1(a) shows the stratification of the survival data into two groups,
plotting the empirical survival curve for women deemed low versus high risk
based on the fitted model. Specifically, we identified the median survival time
in the overall, model averaged predictive survival function from the mixture
over Weibull regression models; the data set was then split at this value, and
the resulting Kaplan-Meier survival curves drawn for illustration. Since this is
from the model fitted to this data set, we need to explore the robustness and
broader validity in prediction of additional test data. We did this using three
separate and, in terms of the populations sampled and clinical characteristics,
heterogeneous data sets: those from [17], [22] and [31]. For each patient in
each of these samples, estimated factors were predicted using equation (7), and
these covariate values then used split each data set into two using precisely the
same predictive median survival time from the training data analysis; results
are in Figures 1(b-d). We see that the predictor consistently stratifies patients
into high and low risk groups based solely on these subfactors of the Myc
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Figure 1: A model averaged Weibull survival model built on the Myc factors
5 and 10 is able to differentiate high and low risk breast cancer patients. (a)
shows performance on the training data set from Chen et al. (2006) (b-d) show
predictive performance on three separate validation data sets from Pawitan et
al. (2005), Wang et al. (2005) and Miller et al. (2005) respectively.

signature.
The Weibull regression model with the highest posterior probability in-

volves only factors 5 and 10 (λ5 and λ10); all of the top 20 models, ordered by
posterior probability, contain these two factors. Each of these factors involves
π∗

g,j > 0.99 for a large number of genes – over 1000 probes from the full set
of 22215. We use the GATHER [3] biological annotation analysis in exploring
such gene lists by factor; this provides an automated method for searching for
associations between a given list of genes and subsets of genes from a number
of databases including Gene Ontology, Medline Keywords, Medical Subject
Headings, KEGG Pathways, Protein Binding, miRNA targets, Transfac and
Chromosomal locations. This analysis indicates that genes in factor 5 show
very high association with both protein biosynthesis and cellular metabolism
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Figure 2: Myc factor 5 is highly related to Paxillin (PXN) while factor 10
is related to Vinculin (VCL). Paxillin and Vinculin are known to be binding
partners, and Paxillin is known to be related to Myc through a number of in-
termediaries. This pathway graph represents known, biochemical interactions
between genes and is generated from the Ingenuity pathway analysis system.

functions (Gene Ontology database). This is supported by additional associ-
ations with ribosomal proteins (Medical Subject Headings database) and this
factor contains 45 of the approximately 120 genes listed in the Entrez Gene
(protein binding, [16]) database as interacting with the protein paxillin that is
known to exhibit transcriptional over-expression in some breast cancers [29].

Gene ontology is a collection of functional and structural units from cel-
lular biology, along with lists of genes associated with them and relationships
between them. Examining the gene ontology of genes in factor 10, we find
relationships with G-protein coupled receptor protein signalling as well as cel-
lular metabolism. Additionally, using GATHER to compare this factor to the
gene lists in the Entrez Gene database, shows association with Vinculin which
is a binding partner of the Paxillin protein already noted in association with
factor 5. There are many known low-order biochemical interactions between
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Paxillin, Vinculin, and Myc, as shown in Figure 2. Thus, we suggest that
these factors represent aspects of the interaction between Myc and the protein
Paxillin, along with its binding partners and genes downstream.

Figure 3: Scatter plot of Myc factors 6 and 7 in the breast cancer data set
used for the sparse factor analysis. Tumors are coded by subtype: Luminal B
type as o, Basal type as + and all others as points. These two factors separate
Luminal B and Basal type tumors from all others.

6.4 Factors Related to Breast Cancer Subtypes

Breast cancer is an extremely heterogeneous disease, with many cancers being
resistant to any one of the many existing chemotherapies due to either a lack or
excess of activation of the corresponding target pathways. To date, one main
focus in breast cancer genomics has been on increasing understanding about
classes of cancers – breast cancer subtypes – that are related to substantial
molecular differences involving key hormonal pathways. A now traditional
view is that of five broad, intersecting types referred to as Basal, Luminal A,
Luminal B, ERBB2, and Normal-Like [24], with typing related to levels of
activation of estrogen receptor (ER) and epidermal growth factor (especially
Erb-b2) pathways. This broad classification is very high-level, in that any
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one tumor may generate molecular data that is compatible with more than
one of these five subtypes; the classification is a really an aggregated view
of underlying continuous variation in activation levels of multiple, interacting
pathways. Since Myc plays multiple roles in processes of cell growth and
proliferation pathways that ER and Erb-b2 also influence, it is natural to
expect some relationship between Myc factors and these subtypes; indeed,
Figure 3 shows two of the 12 Myc factors which clearly relate to subtypes
defined in this data set by Perou et al. Factor 7 shows a strong association
with the basal subtype of breast tumor. One feature of this tumor subtype
is the over-expression of the nestin gene [21], which is believed to be directly
regulated by Myc [28]. This factor then appears to represent the activity of
the Myc-Nestin pathway, downstream of Myc, as evident in gene expression.
A further relationship is with factor 6 that has a strong association with the
Lumina B subtype as well as a strong correlation with CNV in the tail of the
long arm of chromosome 8; in fact, this is precisely the chromosomal region
the Myc gene is located. There have been no previous associations between
Myc duplication and the luminal B subtype, and this combination of links in
both expression (related to gene function) and chromosomal location seem to
point to a significant role for Myc in relation to this subtype. We explore this
further in the next sections.

6.5 Factors Related to Gene Copy Number

This breast cancer expression data set [4] has accompanying data on compet-
itive hybridization (CGH) levels that measure gene CNV across the genome.
Measurement of CNV compares measured florescence levels of gene sequences
in normal (control) versus tumor tissues on microarrays, using a technologi-
cal process similar to that measuring mRNA expression. CGH measurements
are on a continuous scale representing levels of apparent abundance of gene
sequences across all chromosomes. We can therefore investigate whether CNV
bears any relationship to expression patterns represented by the Myc factor
profile.

Figure 4 shows strong association between factor 6, as implicated above,
and CNV at CGH clone “RP11-125O21”. This clone is located on chromosome
8 in band 22 of the long arm (position 8q22). Figure 5 provides a visual
display of measures of association between levels of expression of factor 6 and
copy number across the genome. CNV across all of the tail of the long arm
of chromosome 8 demonstrate clearly interesting association with the factor.
Additionally, examining the collection of genes in this factor using GATHER,
we find that a disproportionate number are from regions 8q22 and 8q24 (BF
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Figure 4: Scatterplot of Myc factor 6 and the CGH data identified by clone
“RP11-125O21” in region 8q22 of the genome.

47 and 30 respectively). One well-known feature of many breast cancers is the
presence of increased copies Myc; indeed, this is a key reason that the Myc
oncogene was a target of study in [1] as well as here. That Myc is itself located
in the 24th band of the long arm of chromosome 8 strong supports the view that
the identified factor 6 is reflecting pathway activation linked to Myc and now
potentially also driven by upregulation through chromosomal amplification,
and certainly warrants further detailed investigation. One statistical next-
step is to further explore factor 6 by additional analysis of the genes on which
it highly loads, as we now discuss.

6.6 Factor Refinement

Figure 5 indicates an apparently wide range over which associations with chro-
mosome 8 and factor 6 – that we can now refer to as the Myc duplication

expression biomarker – appear to be significant. There are 1011 probes in this
factor (at π∗

g,6 > 0.99), corresponding to 877 named genes (some genes are rep-
resented via multiple distinct probe sequences on the microarray). This large
number of genes raises challenges from the perspective of assigning relevance
in terms of the activities of biological pathways. One refinement of the overall
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Figure 5: Association score of Myc factor 6 with CHG levels at 2149 locations
across the entire genome, computed in the breast tumor data analysis. The
horizontal axis labels indicate chromosomes (22 is present but unlabeled), with
each label placed at approximately the middle of the set of clones within
that chromosome. The association score is simply a summary measure of
concordance between the estimated factor 6 and the pointwise CGH levels;
this is computed as −log(p) where p is the p-value of the Pearson test of
correlation of factor 6 and CNV. Clones from chromosome 8 are drawn with
+ to highlight the relationship between the tail of this chromosome and Myc
factor 6.

strategy for evolutionary factor analysis as a tool in exploring substructure in
gene expression is to focus in on selected subsets of genes and develop further
factor analysis at a more focused level. This was done here to narrow the focus
to these 1011 probes and model them separately. Specifically, we extracted the
data on just these p = 1101 probes and for analysis using a sparse factor model
but now restricted to just these probes, i.e., precluding inclusion of additional
probes through evolutionary search.

This analysis indicates relevance of 12 subfactors of the Myc duplication
biomarker. Among these, two subfactors (those numbered 4 and 12) appear
to relate to duplications of two distinct regions of chromosome 8. The upper
frame of Figure 6 illustrates the relationship of subfactor 12 to the genome-
wide CHG data and also to a shorter sequence in the tail of chromosome 8;
the strength of relationship to CHG patterns in a small clonal region of the
chromosome is even more apparent in the first frame of Figure 7. Refining the
focus to the tail region of chromosome 8, we see that both subfactors 4 and
12 are specific to two different regions of the chromosome; see Figure 8.

To explore the broader validity of this apparent relationship between Myc
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Figure 6: Genome-wide association scores of Myc factor 6/subfactor 12 with
CHG levels, in a format and with definitions as in Figure 5. The upper frame
is from the analysis of the breast tumor data set, and the lower frame the
associations after direct prediction of the subfactor 12 levels in the breast cell
line data set. Chromosome 8 values are indicated by +. The plots indicate
strong association of this expression biomarker of downstream Myc pathway
activation with CNV at the tail of the long arm of chromosome 8.

expression subfactors and chromosomal structure, we studied a separate data
set consisting of a collections of breast cancer cell lines [19]. This data set
contains both gene expression and CGH data generated on each of 51 individ-
ual breast cancer cell lines. We can map the subfactor structure to this data
set precisely as described in equation (7). The lower frame of Figure 6 and
the second frame of Figure 7 show the remarkable concordance of the results
of this with those in the primary breast cancer data; that is, subfactor 12 is
predictive of duplication of the same Myc-related chromosomal region. This

18

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 11

http://www.bepress.com/sagmb/vol8/iss1/art11

DOI: 10.2202/1544-6115.1436



Figure 7: Scatterplots of the association measures from Figure 6 for those
genome locations within the last CGH clone on chromosome 8 (this is also the
clone with the strongest correlation to Myc factor 6/subfactor 12 in both data
sets).

is particularly remarkable since, in cancer genomics more widely, it is quite
common to find major differences in expression patterns between cell lines and
tumor tissue samples; tissue samples have substantially higher levels of biolog-
ical noise (such as due to heterogeneity of cell types and inclusion of normal
tissue) as well as technical noise (such as due to noise induced through sam-
ple handling in tumor resection and subsequent pathological analysis), which
sometimes leads to difficulty translating between factors generated from the
two types of data.

Finally, it is of interest to tie-back to the exploration of expression patterns
across breast cancer subtypes now with these refined subfactors of the key Myc
duplication factor. In direct exploratory data analysis and in more formal
binary regression models drawing on the subfactors as candidate predictors of
the Luminal subtype, it is clear that two of the subfactors – number 8 and
the subfactor 12 already identified in connection with CGH – are markers of
Luminal Type B breast cancer. We have already seen that factor 12 is specific
to CNV at location 8q24. Examining the collection of genes that are most
highly loaded on factor 8 and using the Entrez Gene database, we find a high
degree of association with genes that are known to be binding partners of
PLK1 gene. This relates to a previous study [9] that defined an expression
signature which distinguishes luminal breast cancers with poor prognosis based
on a collection of sixteen kinases, one of which is PLK1. Using Ingenuity to
examine the two sets of genes shows a high degree of inter-relatedness as well
as a high degree of relatedness with Myc; see Figure 9.
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Figure 8: Association scores of subfactors 4 (+) and 12 (o) of the Myc factor
6 with CNV data across chromosome 8. The graphs are for the tumor data
analysis (left frame) and using predicted factors in the breast cancer cell line
data set (right frame). Subfactor 4 (+) has a higher association with 8q22
relative to subfactor 12 (o), whereas the latter shows a stronger association
with 8q24. Elucidation of the genes involved in each of these two factors
corroborates this association.

7 Additional Comments

While there are many studies focused on either tissue samples from cancer
patients, or on in vitro studies of cancer cell lines, it is generally difficult to
translate results between the two types of experiments. Often, the patterns of
expression observed in vitro are simply not present in in vivo samples. This
is due to the heterogeneity of tissue samples, and arises from many technical
and biological factors. This loss of fidelity makes direct translation between
the two difficult. We have described a technique, using sparse latent factors,
for translating a signature built in a controlled, in vitro study that allows for
the discovery and elucidation of closely related pathways in tissue samples.

The factor modules resulting from our analysis contain subsets of genes
with common expression patterns and generally common biological activities.
These expression patterns are quantified, leading to estimates of the activities
of each of the samples for the relevant biological pathways. The analysis may
be thought of as a dimension reduction technique, in that the resulting factor
scores are usable as explanatory variables in any arbitrary model. We have
demonstrated their use and robustness with a survival model, and have exam-
ined correlations with known phenotypic variables, but their use is general.

In our example, we used sparse latent factor models for the exploration of
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Figure 9: An Ingenuity pathway analysis containing about half of the genes in
subfactor 8 of Myc factor 6. Also included are 15 of the 16 kinase genes in the
set underlying the expression signature of Finetti et al (2008) that is linked
to poor prognosis in patients with Luminal type breast cancer (drawn with
pentagons) and 6 genes added by Ingenuity by a pathway search (drawn with
triangles). Finally, Myc itself is shown as a square in the center with incoming
and outgoing edges as solid lines. The high density of known biochemical
relationships between the genes in subfactor 8 and the kinases in the Finetti
et al signature suggest that this signature and Myc factor 6/subfactor 8 are
measuring the activity of the same pathway.
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the Myc signature in breast cancer. The analysis has led to a number of obser-
vations regarding the activity of Myc and closely related pathways in breast
cancer, many of which are already corroborated in the literature. Addition-
ally, the analysis has generated the hypothesis that Luminal B tumors may be
characterized by Myc duplication together with PLK1 upregulation. This can
be directly tested in cell lines or xenographs by specifically upregulating these
genes and testing for conversion to the Luminal B subtype.

Our approach provides a general technique for the generation of pathway
signatures that are related both to known biology (Myc and its subpathways
in our case) and clinical phenotypes (such as disease free survival). While we
have focused on the Myc pathway for this paper, the procedure is generally ap-
plicable and we expect to be of broad interest to researchers in gene expression
genomics in cancer and other applied contexts.

Supplementary Materials

Further details of model and prior specifications, and of controls and sam-
ples sizes for MCMC analyses of sparse regression and factor models in the
application study here, are available at the web site at http://ftp.stat.

duke.edu/WorkingPapers/08-30.html. This includes all the text files used
for data and model specification for the sparse regression and factor analyses
reported, using the BFRM software, and all corresponding text files of analysis
summaries. That sites also includes links to the freely available software for
model implementation.
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