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Abstract

Recent sequencing and computing advances have enabled phylogenetic analyses to expand to both entire genomes and large
clades, thus requiring more efficient and accurate methods designed specifically for the phylogenomic context. Here, we
present SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree. We
observe many improvements in reconstruction accuracy, achieved by modelingmultiple aspects of evolution, including gene
duplication and loss (DL) rates, speciation times, and correlated substitution rate variation across both species and loci. We
have implemented and applied this method on two clades of fully sequenced species, 12 Drosophila and 16 fungal genomes
as well as simulated phylogenies and find dramatic improvements in reconstruction accuracy as compared with the most
popular existingmethods, including those that take the species tree into account.We find that reconstruction inaccuracies of
traditional phylogeneticmethods overestimate thenumberofDL events by asmuchas 2–3-fold, whereas ourmethodachieves
significantly higher accuracy. We feel that the results and methods presented here will have many important implications for
future investigations of gene evolution.
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Introduction
Phylogenetic analysis has become an increasingly popular
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and fruitful approach for studying genomes (Hahn et al.
2005; Li et al. 2006; Hobolth et al. 2007; Wapinski et al.
2007; Butler et al. 2009). Methods for reconstructing phylo-25

genies from sequence data have a long history (Felsenstein
1981; Saitou andNei 1987; RannalaandYang 1996) andnew
methods are continually developed to address a wide range
of evolutionaryquestions. The question we approach in this
work is the study of gene family evolution,namely how each30

family of genes has expanded and contracted over evolu-
tionary time in a clade of related species. “Phylogenomics”
has been proposed (Eisen 1998) as a systematic approach
for studying gene families, where every gene family in several
fully sequenced genomes is reconstructed and compared35

with a common species tree to infer orthologs, paralogs, and
all evolutionary events, including gene duplications, losses,
and horizontal transfers (Zmasek and Eddy 2002; Li et al.
2006; Huerta-Cepas et al. 2007; Wapinski et al. 2007; Butler
et al. 2009; Vilella et al. 2009). However, as with any com-40

putational approach, the quality of the conclusions of phy-
logenomic studies are heavily dependent on the accuracy of
the underlying methodologies. Accordingly, there has been
much recent work on measuring and improving methods
for phylogenetic reconstruction for both species trees and45

individual gene family trees. Advances have come from in-
creased sequencing data for both additional taxa and loci as
well as from new methods for leveraging that data.
For the problem of “species tree reconstruction,” many

advances have been made by combining data across loci50

either by concatenating multiple aligned loci into a “su-
permatrix” (Rokas et al. 2003; Ciccarelli et al. 2006), com-
bining multiple gene trees into a“supertree” (Creevey and
McInerney 2005), or by using a model for how such loci are 55

correlated and coordinated in their evolution (Maddison
and Knowles 2006; Liu and Pearl 2007). For example, in the
BEST model (Liu and Pearl 2007), the correlated evolution
of loci is captured by modeling a common species tree that
constrains the evolution of each locus while still allowing 60

some topological differences at each locus to occur via a co-
alescent process (Wakeley 2009). A probabilistic approach
such as this allows one to use sequence alignments from
multiple loci to estimate the posterior distribution of the
species tree. 65

The problem of “gene tree reconstruction” also needs
a similar strategy for exploiting abundant sequence data.
Many recent efforts to reconstruct gene families in iso-
lation (i.e., not accounting for their shared species tree
or correlated evolution) have met many challenges. For 70

example, the TreeFam project (Li et al. 2006) had found that
automatic methods of reconstruction (such as maximum
likelihood [ML], Felsenstein 1981; maximum a posteriori
[MAP], Rannala andYang1996; neighbor joining [NJ], Saitou
and Nei 1987; and parsimony, Felsenstein 2005) were not 75

sufficiently accurate for systematic use and thus relied on
human curators to adjust trees using additional information
from the species tree, syntenic alignments, and the relevant
literature. In a study by Hahn (2007), simulations were used
to study how errors in gene tree reconstruction propa- 80

gate into later inferences of gene duplication and loss (DL)
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events. In particular, the study showed that methods such
as NJ frequently make reconstruction errors that lead to a
biased inference of many erroneous duplications in ances-85

tral lineages followed by numerous compensating losses in
recent lineages.
In our own empirical work, we have found that the phy-

logenetic information availablewithin a single locus is quite
limited for most genes (Rasmussen and Kellis 2007). For ex-90

ample, in the recently sequenced 12 Drosophila species, we
found that for alignments of orthologous genes, the inferred
gene trees, regardless of the method used, have only a 38%
chance of congruence with the species tree. For the 62%
of alignments that supported an incongruent ML gene tree95

topology, only 5.7% did so with sufficient statistical signifi-
cance (P < 0.01; SH test; Shimodaira and Hasegawa 1999).
This along with several other measures of information con-
tent indicated that most loci lack enough information to
confidently support one gene tree topology over the many100

other competing alternatives.
As we show below, the phylogenomic setting allows us

to overcome the issue of limited information within individ-
ual loci by studying many gene families across the genome
simultaneously. The additional information ultimately im-105

proves our ability to reconstruct gene trees but requires
properly integrating information from both across species
and genes while building upon several recent advances that
we describe next.

Modeling Gene Trees and Species Trees110

Our work fits within a growing body of literature addressing
the simultaneous modeling of gene and species evolution.
In one branch of this field, the primary concern is to model
orthologous loci whose phylogeny may become incongru-
ent with the species phylogeny due to incomplete lineage115

sorting (Maddison and Knowles 2006; Liu and Pearl 2007).
In that case, gene trees are often modeled with the coales-
cent process (Wakeley 2009), which defines how topologies
and branch lengths are distributed across loci (Rannala and
Yang 2003), and has been used to reconstruct both gene120

trees (Hobolth et al. 2007; Dutheil et al. 2009) and species
trees (Maddison and Knowles 2006; Liu and Pearl 2007), as
well as many population related statistics, such as ancestral
population sizes and recombination rates.
In another branch of the field, the loci of interest are125

those whose phylogeny is incongruent because of evolu-
tionary events such gene duplication, loss, and horizontal
transfer, and severalmodels have been developed for eachof
these events. In the specific case ofmodelingDL, both prob-
abilistic approaches (Arvestad et al. 2004; Gu and Zhang130

2004; Hahn et al. 2005) and nonprobabilistic or parsimony-
basedmethods have been developed (Goodman et al. 1979;
Page 1994; Chen et al. 2000;Wapinskiet al. 2007) to improve
the reconstruction of either gene trees (Arvestad et al. 2004;
Rasmussen and Kellis 2007; Wapinski et al. 2007) or species135

trees (Page and Charleston 1997). Our focus will be in this
part of the field and specifically on the goal of the probabilis-
tic reconstruction of gene trees in the context of a common
and previously determined species tree.

For studyinggene trees, Hahn et al. (2005)used thebirth– 140

death (BD) process to track changes in the number of par-
alogs in a gene family across a clade of species. Although
it provides a way to look for significantly changing paralog
copy counts, the method lacks a way of incorporating infor-
mation from DNA or peptide sequences. 145

Amethod for incorporatingsuch sequences was later de-
veloped by Wapinski et al. (2007) and was implemented
in their SYNERGY gene tree reconstruction program. The
method makes use of peptide sequences by combining a
species-aware NJ algorithm along with an optimization for 150

minimizing DLs while maximizing synteny (i.e., conserved
gene order) between orthologs. However, this combina-
tion is ad hoc and nonprobabilistic, making it difficult to
determine the best way to weigh conflicting information
(Ȧkerborg et al. 2009). For example, in the cases where syn- 155

teny information can be misleading, such as cases of gene
conversions, SYNERGY shows significantly reduced recon-
struction accuracy, suggesting that the primary sequence
information is not sufficiently incorporated into the recon-
struction (fig. 6). 160

A fully Bayesian model was proposed by Arvestad et al.
(2004) that combined a model for gene DLs with sequence
evolution. This was done by defining a prior for gene
tree topologies and branch lengths using a BD process,
which when combined with a sequence substitutionmodel 165

(e.g., JC69; Jukes and Cantor 1969) produced a Bayesian
method for gene tree reconstruction and reconciliation.
One disadvantage of this approach was the assumption of
a clock model for substitution (i.e., constant substitution
rates). 170

In 2007, we introduced a distance-based ML method
for gene tree reconstruction that incorporates information
from the species tree but avoids the clock model assump-
tion (Rasmussen and Kellis 2007). Our model decomposes
substitution rates into gene-specific and species-specific 175

components, which was motivated by our observation of
substitution rate correlations across the genomes of 12
Drosophila and 9 fungal species. By first learning parame-
ters for gene- and species-specific rate distributions from
genome-wide information and then using thatmodel to re- 180

construct gene trees, SPIDIR showed significantly increased
reconstruction accuracy compared with several other pop-
ular phylogenetic algorithms at the time. However, despite
these improvements, the approach was distance based and
thus did not fully utilize all the information available in 185

sequence data.
Recently, Arvestad et al. (2004) have introduced PrIME-

GSR, an extension of their previous work, which relaxes the
clock assumption by using identical independent gamma
distributions to model rate variation (Ȧkerborg et al. 2009), 190

however, no species-specific rate variation is learned or
modeled. In our evaluations (see Results), we find thatmod-
eling these rates can provide a significantbenefit in gene tree
reconstruction.
In summary, although much progress has been made in 195

gene tree reconstruction, what remains missing is a prin-
cipled, fast, and accurate method that incorporates all of
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FIG. 1. Overview of the phylogenomic pipeline. (a ) The typical phylogenomic pipeline consists of several common steps, although particular
implementations may vary. The pipeline input is the set of all gene sequences across several species and the known species tree relating the
species (blue boxes). Gene sequences are then compared across species and clustered according to their sequence similarity, resulting in a set
of homologous gene families. A multiple sequence alignment is then constructed for each gene family, followed by phylogenetic reconstruction
of each aligned family to produce gene trees. Each gene tree is then reconciled to the known species tree in order to infer orthologs, paralogs,
and gene duplications and loss events, which are the pipeline outputs (orange box). (b ) Our phylogenomic pipeline follows similar steps, except
that SPIMAP includes a model parameter estimation step (dashed light green box) for DL rates (learned from the per-species gene counts in the
gene families resulting from the clustering step), and gene- and species-specific substitution rates (learned from a subset of trusted orthologous
alignments supported by synteny or other information and congruent to the species trees). These learned evolutionary parameters are then used
in a joint tree building and reconciliation step (dark green box), specifically informing our topology prior (duplication/loss model) and our branch
length prior (gene/species-specific substitution model). The joint step also enables us to use the known species tree and duplication/loss model
to rapidly score topology proposals and speed up tree search in contrast to the traditional pipeline that only uses the known species tree in the
reconciliation step.

these various models. In addition, freely available software
is needed to facilitate further analyses in this field.
Here, we present SPIMAP, a Bayesian gene tree recon-200

struction method that incorporates within a unified frame-
work models for gene DL, gene- and species-specific rate
variations, and sequence substitution. We model gene DL
using the BD process (Arvestad et al. 2004). Similar to the
other methods, we do not attempt to model incomplete205

lineage sorting or horizontal transfers, although approaches
for doing so in the future could be useful. We have im-
plemented a relaxed clock, defined using the rate varia-
tion model we have previously developed (Rasmussen and
Kellis 2007). A key distinction of our method is that we em-210

ploy an empirical Bayes approach, where the parameters
of the rate model are learned using a novel Expectation–
Maximization (EM) training algorithm that incorporates se-
quence data across many loci. Once these parameters are
estimated, we use them along with the species tree to re-215

construct gene trees for thousands of sequence alignments
from across the genome. Our method also achieves signif-
icant speed increases by using a novel tree search strat-
egy derived from our gene tree topology prior. Lastly, we
demonstrate the feasibility and increased performance of220

this method on several real and simulated data sets. The

SPIMAPsoftware iswritten inC++and is available fordown-

[AQ3]

load at http://compbio.mit.edu/spimap/.

Methods

Method Overview 225

The reconstruction of gene trees for every gene family
in several genomes typically requires a computational
pipeline similar to the one shown in figure 1a . Databases
that have followed this general outline include TreeFam
(Li et al. 2006), Ensembl (Vilella et al. 2009), andmany others 230

(Huerta-Cepas et al. 2007; Datta et al. 2009), whereas other
methods such as SYNERGY (Wapinski et al. 2007) perform
similar tasks but not necessarily as separate consecutive
steps. The general pipeline goes as follows: The input (blue
boxes in fig. 1a) consists of nucleotide or peptide sequences 235

for all genes in all genomes under consideration as well as a
species tree estimated prior to the pipeline computation us-
ing anymethod or informationdesired. Next, the sequences
are compared with each other using a method such as an
all-vs-all Blast search (Altschul et al. 1990) or HMMER (Eddy 240

2000). The Blast hits are then clustered using a method such
as OrthoMCL (Li et al. 2003) or a method like that of PHIGs [AQ4]

(Dehal and Boore 2006) in order to form clusters of highly
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FIG. 2. SPIMAP’s generative model. (a ) First, the process begins with a given species tree S and divergence times. (b ) Second, a gene tree T (black
lines and labels) is evolved inside the species tree according to a DL model. The gene tree bifurcates either at speciation events (white circles
located at species tree nodes) or at duplication events (stars located along species tree branches). Gene tree lineages can also terminate within a
species tree branch at gene loss events (red “X”). (c ) Third, substitution rates are generated according to our relaxed clock rates model of species-
specific and gene-specific rates. (d ) Lastly, sequences are evolved down the gene tree according to a continuous-time Markov process to produce
a sequence alignment (yellow box) which is emitted from the process.

similar genes that are likely to represent gene families. For
each cluster, a multiple sequence alignment is then con-245

structed (e.g., MUSCLE, Edgar 2004) followed by gene tree
reconstruction using a phylogenetic algorithm (e.g., PhyML,
Guindon and Gascuel 2003; BIONJ, Gascuel 1997; or Mr-
Bayes, Ronquist and Huelsenbeck 2003). Lastly, a “recon-
ciliation” algorithm is used to compare each gene tree to250

the species tree in order to infer all DL events as well as all
ortholog and paralog relationships. Reconciliationmethods
include maximum parsimony reconciliation (MPR) (Page
1994; Zmasek and Eddy 2001), RAP (Dufayard et al. 2005),
and Notung (Chen et al. 2000), each of which take different255

approaches to inferring gene DL events in presence of possi-
bly uncertain gene trees. The duplications, losses, orthology,
paralogy, and the gene trees themselves typically constitute
the outputs of a phylogenomic pipeline (orange box; fig. 1).
The pipeline we have constructed for SPIMAP follows260

the same general structure (fig. 1b ). For clustering, we have
implemented our own method (Butler et al. 2009) sim-
ilar to that of PHIGs. For multiple sequence alignment,
we have used the MUSCLE (Edgar 2004) program. In con-
trast to other methods, however, ours takes an Empirical265

Bayes approach by including a “training” step (dashed green
box; fig. 1b ) that supplies several species-level evolution-
ary parameters to SPIMAP’s gene tree reconstruction step.
In the training step, we estimate the average genome-wide
gene DL rates θt = (λ,μ) based on gene counts within270

each gene family cluster using a method similar to that
of Hahn et al. (2005) (see Estimating DL Rate Parame-
ters). We also estimate substitution rate parameters θb =
(αG ,βG ,α,β) based on a subset of the alignments using a
novel EMmethod (see Estimating Substitution Rate Param-275

eters). These parameters are then used in a combined gene
tree reconstruction and reconciliation step (dark green box;
fig. 1b ) performed simultaneouslywithin a single probabilis-
ticmodel. From thismodel, we compute theMAP gene tree
using a novel rapid gene tree search that incorporates in-280

formation from the species tree and from DL rates. In the

following sections, wewill discuss howwe compute the pos-
terior probability of a gene tree and describe the details of
our rapid tree search.

Gene Tree and Species Tree Definitions 285

We define a “gene family” as the set of all genes descended
froma single gene in the last common ancestorof all species
in consideration.We represent the rooted phylogenetic tree
of n genes by a tree with topology T = (V , E ), which de-
scribes the set of nodes (vertices)V (T ) anda set of branches 290

(edges) E (T ) of the tree. The leaves L (T ) ⊂ V (T ) of a gene
tree represent observed genes from extant species, whereas
the internal nodes I (T ) = V (T ) \ L (T ) represent ances-
tral genes from ancestral species. We will use several func-
tions to discuss how nodes are related to one another. For 295

example, we use child(v) to represent the set of children of
v , left(v) and right(v) to represent the left and right chil-
dren, and parent(v) to represent its parental node. For any
node v , we use b (v) to denote the branch (v , parent(v))
and l (v) to be the length of that branch, measured in sub- 300

stitutions per site. Lastly, we use l to denote the vector of all
branch lengths of a tree, namely l = (l (v1), . . . , l (v2n−2)).
Thus, a “gene tree” is represented by the tuple (T , l).
In addition, we will also consider a phylogeny S relating

species, called a “species tree.” The branch lengths t of S are 305

expressed in units of time (e.g., millions of years) and are
thus typically ultrametric. For a node u ∈ V (S ), we express
its length as time t(u). We will assume all trees are rooted
and all nodes to have at most two children.
Each gene tree can be viewed as evolving “inside” the 310

species tree (fig. 2a). A reconciliation R is a mapping from
gene nodes to species nodes that defines the species to
which each extant and ancestral gene belongs (Goodman
et al. 1979) (fig. 3a). In this setting, a gene tree is “congru-
ent” if R is an isomorphic mapping between T and S and 315

“incongruent” otherwise. Also, all internal nodes of a gene
tree represent either “geneduplication” or speciation events
(represented as stars and white circles, respectively; fig. 2a).
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FIG. 3. Reconciliation and duplication subtrees. (a ) A reconciliation R
maps gene nodes to species nodes for both speciation events (white
circles) and duplication events (stars). “Implied speciation nodes”
(gray circle) are then inferred based on the reconciliation. (b ) Our al-
gorithm breaks the gene tree T into subtrees sub(T , v ,u1), where the
subtree root v is a speciation and the subtree leaves σ(v ,u1) are the
next speciation nodes below v that reconcile to species u1.

GenerativeModel of Gene Family Evolution
In our generative model, gene trees are generated in three320

steps: given a species tree with specified topology and spe-
ciation times, 1) we first generate a gene tree topology and
duplication times by repeated use of a BD process, 2) we
then generate substitution rates from gene and species-
specific distributions, and 3) lastly, weuse these rates to gen-325

erate molecular sequences according to a continuous-time
Markov process (fig. 2).
Theparameters of ourmodel areθ = (S , t, θt , θb ), where

S and t are the species tree topology and branch lengths, θt
are the topology parametersλ andμ, and θb are the branch330

length parametersαG ,βG ,α, andβ, the details of which are
given below.

Generating Topology and Divergence Times
We use the gene DL model first developed by Arvestad

et al. (2003), which is based on a repeated use of the BD335

process (Feller 1939) to define the topologies and branch
lengths (in units of time) of a gene tree evolving inside a
species tree (fig. 2a).
The BD process is a continuous-time process that gener-

ates a binary tree according to a constant rate λ of lineage340

bifurcation (which will represent gene duplication) and rate
μ of lineage termination (representing gene loss). After run-
ning a BD process for a time t , all lineages that exist at time t
are called “surviving,” whereas all others are called “extinct.”
A node is “doomed” if it has no surviving descendants. The345

BD process has been used widely in phylogenetics (Arvestad
et al. 2004; Gu and Zhang 2004; Hahn et al. 2005), although
typically for defining priors for species trees (Rannala and
Yang 1996).
The gene DL model is defined by repeatedly using the350

BD process to generate a gene tree. To initialize, we begin
with a single gene node v reconciled to the root of S (i.e.,
R (v) = root(S )) andmark it as a speciationnode.We then
recursively apply the following: 1) For each speciation node
v at the top of a species branch b (u) of length t(u), we355

generate a tree according to the BD process for t(u) units
of time. 2) For each newly created node w , we record its
reconciliation as R (w) = u . 3) For each w that survives
across that species branch, we mark it as an “extant gene” if
u is a leaf species, otherwise mark it as a speciation. 4) We 360

recursively apply steps 1–3 until all speciation nodes have
been processed. 5) We mark all nodes in the gene tree not
marked as extantgenes or speciationas duplications. 6) As a
postprocessing step, we prune all doomed lineages, namely
lineages with no extant descendants. 365

Generating Substitution Rates
We use a relaxed clock model where substitution rates

are allowed to vary between lineages (fig. 2b). Each branch
has a length l (v) (measured in substitutions/site) that is
the product of a duration of time t(v) and a substitution 370

rate r(v). The times are given by the DL model. The sub-
stitution rates indicate the number of substitutions per site
per unit time and are described by a ratesmodel. Previously
(Rasmussen and Kellis 2007), we developed a rates model
that captured the substitution rate r(v) as the produc- 375

tion of two components, a gene-specific rate and a species-
specific rate. Here, we define these components with the
following distributions:
(a) For eachgene family j , the “gene-specific rate” gj scales

all rates in a tree. We represent the gene rate as a random 380

variable Gj that is distributed across families as an inverse-
gamma distribution with shape and scale parameters, αG

and βG . Without loss of generality, we constrain Gj to have
amean value of one across all gene families (i.e.,αG = βG+
1,αG > 1). Thus, we have 385

P (Gj = gj |βG ) = InvGamma(gj |αG = βG + 1,βG ).

(b) For each branch b (vk ), the “species-specific rate” sk
defines a rate specific to that branch in the gene tree. It is
representedbya randomvariable Sk andhas a gammadistri-
bution whose scale and shape parameters (αi ,βi ) depend
on the species ui = R (vk ). This allows one to model rate 390

accelerations and decelerations that are specific to a species
ui and exists across all genes of that species. Thus,

P (Sk = sk |αi ,βi ) = Gamma(sk |αi ,βi ),

where ui = R (vk ). (1)

We also assume that each Sk is independentof the others
and of the gene rate G . Given these definitions for the sub-
stitution rate, we can then express the branch length l (vk ) 395

of a gene tree j as

l (vk ) = r(vk )× t(vk ) = gj × sk × t(vk ). (2)

In total, our rate model has parameters θb = (βG ,α,β),
whereα = (α1, . . . ,αm),β = (β1, . . . ,βm), andm is the
number of species branches |E (S )|.
Generating Sequence 400

After generating a gene tree with a topology, divergence
times, and substitution rates, we finally evolve a molecular
sequence down the tree using a continuous-time Markov
chain to model sequence substitution. Specifically, we have

5
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implemented Hasegawa–Kishino–Yano (HKY; Hasegawa405

et al. 1985) to generating nucleotide sequences. The HKY
process uses the branch lengths l (vk ) = r(vk )t(vk ) as pa-
rameters for sampling derived sequences. Only sequences
on the leaves of the tree are emitted, whereas ancestral se-
quences are hidden (fig. 2c ). In our current formulation,410

sequence insertion and deletion (indels) are not modeled.
Instead, gaps in the sequence alignment are treated as
missing data.

MAP Reconstruction of Gene Family Evolution
In our current implementation of the algorithm, we com-415

pute the MAP gene tree according to our model. Thus, we
seek to calculate

l̂, T̂ , R̂ = argmax
l,T ,R

P (l, T , R |D, θ) (3)

= argmax
l,T ,R

P (D|l, T , R , θ)P (l|T , R , θ)
× P (T ,R |θ)/P (D|θ) (4)

= argmax
l,T ,R

P (D|l, T )P (l|T ,R , θ)P (T ,R |θ). (5)

The first term in equation (5) is the likelihood of a gene
tree with branch lengths l and topology T given the se-
quence data D. The probability is defined by the sequence420

evolutionmodel (e.g., HKY) andcan be computedefficiently
using the pruning algorithm (Felsenstein 1981), which we
have implemented for SPIMAP. Because this model only
depends on the topology and branch lengths of the gene
tree, the likelihood term is conditionally independentof the425

reconciliationR and parameters θ.
The prior of our model is factored into two terms: the

prior of the topology and the prior of the branch lengths.
The topology prior P (T , R |θ) is defined based on the DL
model and it can be computed efficiently (see Computing430

the Topology Prior). We have also found that factoring
out the topology prior from the branch lengths provides
a unique advantage for fast tree search (see Rapid Tree
Search).
Lastly, the branch length prior P (l|T ,R , θ) represents the435

probability of observing of gene tree branch lengths l. This
prior incorporates both divergence times of duplications in
the BD process as well as the distribution of substitution
rates. We present how to compute this term numerically
(see Computing the Branch Length Prior).440

Computing the Topology Prior
The topology prior P (T , R |θ) (from eq. 5) helps SPIMAP re-
construct gene trees that haveplausible patterns of gene DL.
For completeness, we describe how to compute this term.
According to the DLmodel introduced by Arvestad et al.445

(2004, 2009), the BD process is repeatedly used to generate
the gene tree topology T as it evolves from the root of the
species tree S to the leaves. Therefore, T can be viewed as
a union of several subtrees, each of which was generated by
one BD process. Because these processes are independent450

of one another, we can view the topology prior P (T ,R |θ)
of gene tree T as a product of the probabilities of the BD

process generating each of the subtrees. Performing this fac-
toring is the key step in computing the topology prior, but,
there are two additional caveats to consider: 1) how to ac- 455

count for lineages in the gene tree that are hidden from
observation due to extinction and 2) how to account for
labeled and unlabeled nodes in the gene tree. By combin-
ing these ideas, we can compute the prior of a gene tree
topology. 460

Factoring the Gene Tree
Given a gene tree topology T , we first decompose it into

the subtrees that were generated from each individual BD
process (fig. 3). We call each of these subtrees “duplication
subtrees” because all of their internal nodes consist of du- 465

plication nodes. To identify these subtrees, first notice that
each speciation node v is the root of two such subtrees. If
v has reconciliation R (v) = w and w ∈ V (S ), then the
two subtrees perfectly reconcile within the child species
branches left(w) and right(w). Also notice that the leaves 470

of each duplication subtree are either speciation nodes or
extant genes.
Some speciation nodes (e.g., the gray node in fig. 3a) may

be initially hidden in a gene tree due to gene losses. We
call such nodes “implcit speciation nodes” and they can be 475

added to a gene tree by identifying gene tree branches that
spanmultiple branches in the species tree (e.g., branch b2 in
fig. 3a). If a given gene tree T lacks implied speciationnodes,
we can add them by locating each v and w = parent(v),
where parent(R (v)) �= R (w). Next, the edge (v ,w) is re- 480

placedby a new speciationnode x and two new edges (v , x)
and (x ,w) while setting R (x) = parent(R (v)). This pro-
cedure can applied repeatedly until all implied speciation
nodes are identified.
When all speciation nodes are explicit, we can identify 485

duplication subtrees by partitioningthe gene tree at all spe-
ciation nodes spec(T ) (fig. 3). We denote a particular sub-
tree as sub(T , v , u), where v ∈ spec(T ) is the root of the
subtree and u ∈ child(R (v)) is the species to which the
leaves L (sub(T , v , u)) reconcile. The leaves are defined by 490

the set

σ(v , u) = {w : w ∈ spec(T ) ∪ L (T ),R (w)

= u ,w ∈ V (Tv)}, (6)

where Tv is a subtree of T containing node v and all of its
descendants.
For eachduplication subtree, we can derive its probability

from the BDprocess (Rannala andYang 1996). First, for a BD 495

process with a birth rateλ and death rateμ, the probability
that one lineage will leave s survivors after time t is

p(s , t) = (λ/μ)sp(1, t)(p(0, t))s−1, (7)

where

p(0, t) =
μ(1 − e−(λ−μ)t )
λ− μe−(λ−μ)t

p(1, t) =
(λ− μ)2e−(λ−μ)t

(λ− μe−(λ−μ)t )2
. (8)
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Second, for s survivors there are ξs = s !(s − 1)!/2s−1

equally likely “labled histories,” which are leaf labeled500

topologies whose internal nodes are order by their time.
Thus, for a topology T with s leaves and H (T ) labeled
histories, its probability is

P (T |t ,λ,μ) =H (T )

ξs
p(s , t), where (9)

H (T ) =
∏

v∈I(T )

( |I (Tright(v))|+ |I (Tleft(v))|
|I (Tright(v))|

)
.

(10)

Doomed Lineages
In addition to factoring the tree, there are two caveats to505

consider. The first to consider is the possibility of lineages in
the gene tree that are hidden fromobservation because they
have gone extinct, that is, they leave no descendants in the
leaves of the species tree. We call such lineages “doomed,”
and this extinction process must be accounted for in our510

topology prior.
Let d (u) be the probability that a lineage starting at node

u in the species tree will be doomed, that is, losses occur
such that no descendants exist at the leaves of the species
tree. This probability d (u) is the product of the probabil-515

ity of extinction occurring in both the left and the right
subtrees beneath node u . For a child branch b (c), where
parent(c) = u , we must consider two possibilities. Ei-
ther the gene lineage goes extinct in b (c) with probability
p(0, t(c)) (eq. 8) or it survives and leaves i survivors, each of520

which themselves are doomed with probability d (c). Thus,
this probability can be expressed recursively as

d (u) =

⎧⎪⎨
⎪⎩

∏
c∈child(u)

∞∑
i=0

p(i , t(c))d (c)i if u ∈ I (S ),

0 if u ∈ L (S ).
(11)

The value d (u) can be computed efficiently for each
node u in the species tree S by dynamic programing follow-
ing a postorder traversal of S .525

Labeled and Unlabeled Nodes
The second caveat of the topology prior computation is

distinguishing between labeled and unlabeled nodes within
the gene tree. In equation (9), we give the probability of a
BD process generating a labeled topology T . Each duplica-530

tion subtree sub(T , v , u) is generated by one BD process,
however, only duplication subtrees with extant leaves (i.e.,
L (sub(T , v , u)) ⊆ L (T )) are labeled topologies. All other
duplication subtrees have leaves that are speciation nodes
and thus are unlabeled topologies.535

To properly account for labeled andunlabeled nodes, we
envision the DL model as a three step process. First, a gene
tree T ′ is generated by repeated use of the BD process af-
ter which as all extant and speciationnodes are labeled. The
probability of this tree is P (T ′, R |θ) and it can be computed540

by factoringT ′ into duplication subtrees, each of which has
a known probability (eq. 9).

Second, a mapping U is applied to T ′ that removes all
labels to produce an unlabeled gene tree T ′′. The probability
P (T ′′, R |θ) is thus the sumof the probability of eachT ′ that 545

becomes T ′′ after removing labels,

P (T ′′, R |θ) =
∑

{T ′ :T ′′=U(T ′)}
P (T ′, R |θ). (12)

We call two trees T ′i and T ′j equivalently labeled if
U (T ′i ) = U (T ′j ). Because equivalently labeled trees T

′
i all

have equal probability, the probability P (T ′′, R |θ) is sim-
ply the probability of T ′ times the number of equivalent 550

labelings. The number of equivalent labelings is computed
as a product of correction terms, one for each duplication
subtree. Specifically, for each internal subtree T2 (i.e., leaves
are speciations nodes), wemultiply by the termN2(T ,T2, R )
and for each external subtree T2 (i.e., leaves are extant 555

genes), we multiply by N1(T2, R ). See supplementary sec- [AQ5]

tion 2.2, Supplementary Material online for the definition
of these terms.
In the third and final step, labels are added back to

the leaves of T ′′ to create our desired leaf labeled gene 560

tree topology T . Because each labeling is equally likely to
be generated by this process, the probability P (T ,R |θ)
is P (T ′′, R |θ) divided by the number of ways to relabel
T ′′. This final correction factor is 1/N1(T ,R ) and is de-
rived in supplementary section 2.2, SupplementaryMaterial 565

online.

The Full Topology Prior
Combining these ideas, we can compute the probability

of a gene tree T being generated by the DL model as

P (T ,R |S , t, λ,μ)
=

1

N1(T , R )

×
∏

v∈spec(T )

∏
u∈child(R (v))

g(v , u , sub(T , v , u)), (13a)

g(v , u , T2) = f (T ,T2, R )
∞∑
i=0

(|L (T2)|+ i

i

)

× p(|L (T2)|+ i , t(u))d (u)i , (13b)

f (T ,T2, R ) =

⎧⎪⎪⎨
⎪⎪⎩

N2(T ,T2, R )H (T2)/ξ|L (T2)|
if L (T2) ⊆ I (S ),

N1(T2, R )H (T2)/ξ|L (T2)|
if L (T2) ⊆ L (S ).

(13c)

The sum in equation (13) is a sum over how many 570

doomed lineages i might have been present at node u .
Within the sum, we find the probability that a BD process
generates the survivors L (T2) that are present plus i hid-
den doomed lineages. The term d (u)i is the probability that
those i lineages go extinct. The permutation term describes 575

the number of ways to choose i doomed lineages from the
total number of survivors i + |L (T2)|.
Although this calculation involves an infinite sum, it can

be computed analytically and the total computation of the
topology prior takes at most O (|V (T )||V (S )|) run time 580
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FIG. 4. Species and phylogenies used in evaluation. (a ) Phylogeny of 16 fungal species used for the reconstruction pipelines of real and simulated
evaluation data sets. The phylogeny was estimated in Butler et al. (2009) with divergence times estimated by the r8s program (Sanderson 2003)
assuming 180 My (Massey et al. 2003) for the divergence depth. (b ) The phylogeny of 12 Drosophila species used in our simulation evaluation.
Phylogeny was estimated by Tamura et al. (2004).

(Arvestad et al. 2009). Currently, we only consider recon-
ciliations R that are maximally parsimonious for DLs. This
approximation is likely reasonable, as we find that the true
reconciliation is the most parsimonious one in 98% of gene
trees simulated using our species tree (fig. 4) and indepen-585

dently estimated DL rates (Hahn et al. 2005), agreeing with
results from similar studies (Doyon et al. 2009).

Computing the Branch Length Prior
The final term in our model is the branch length prior
P (l|T ,R , θ), which is the prior probability of the branch590

lengths l given the topology T , reconciliation R , and model
parameters θ. This term helps SPIMAP choose gene trees
that have branch lengths that aremore reasonable given the
time span impliedby the reconciliation andourprior knowl-
edge of the substitution rates.595

Wewill explain the calculation of this term in a top-down
fashion, breaking it into smaller parts until each part is de-
fined. We begin by viewing the branch prior as a marginal
over the gene rate g of the family in consideration

P (l|T ,R , θ) =
∫

P (l|g ,T , R , θ)P (g |αG ,βG )dg . (14)

Once conditioned on the gene rate g , many of the branch600

lengths of T become independent because we know their
common scale factor g . However, those branches that sur-
round a duplication node are still nonindependent because
their lengths depend on the time of the duplication, which
is unknown. However, if we partition T into a set of sub-605

treesT by segmenting at each speciation node v ∈ spec(T )
(without adding implied speciation nodes), each subtree
τ ∈ T will contain branch lengths that are independent of
the other subtrees. In particular, each subtree τ is rooted by
a speciation node, its leaves are either extant or speciation610

nodes, and all other internal nodes are duplication nodes.
We refer to branch lengths for each subtree τ as lτ , its diver-
gence times as tτ , and its substitution rates as rτ . Thus, lτ =
(l (w1), l (w2), . . . , l (wk )) and tτ = (t(w1), . . . , t(wk )),

where w1,w2, . . . ,wk are the nonroot nodes of subtree τ . 615

Using this notation,we can continue to factor,

P (l|g ,T , R , θ) =
∏
τ∈T

P (lτ |g , T , R , θ). (15)

The branch lengths within lτ are nonindependent be-
cause they depend on the duplication times. However, if we
condition on the branch times tτ , each branch length l τi
becomes a simple function of the branch rate rτi because 620

l τi = t τi r
τ
i . Because we model all branch rates as being in-

dependent of one another, we can then finally factor the
branch prior as a product of the probability of each branch
length l τi ,

P (lτ |g ,T , R , θ)

=

∫
P (lτ |tτ , g , T , R , θ)P (tτ |g , T , R , θ)dtτ , (16)

where P (lτ |tτ , g , T ,R , θ) =
∏
i

P (l τi |t τi , g , T , R , θ), (17)

and where P (tτ |g , T ,R , θ) describes the distribution of 625

branch times in subtree τ which is defined by the BD pro-
cess. We have integrated over the branch times tτ because
they are unknown.
The last term to define is the distribution of a single

branch length l (vi ). In the simplest case (see the next sec- 630

tion for a caveat), the distribution can be derived as follows:

l (vi ) = g × t(vi )× s(vi ) ∼ g × t(vi )

× Gamma
(
αR (vi ), βR (vi )

)
= Gamma

(
αR (vi ) ,

βR (vi )

g × t(vi )

)
, (18)

where, s(vk ) is the species-specific rate for branch b (vk ). In
our implementation of computing the branch prior, we in-
tegrate over gene rates g (eq. 14) by approximating with a
summation with equally probable gene rates. Also, the inte- 635

gral over times tτ (eq. 17) is performedwithMonte Carlo by

8
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sampling from P (tτ |g ,T , R , θ). The run time of this calcula-
tion is implemented to be linear with the size of the gene
tree.

Handling Implied Speciation Nodes640

One complexity not considered in equation (18) is the ef-
fect of implied speciation nodes. In such a case, we can have
a branch length l (vi ) that spans multiple species branches.
For example, the branch b2 in figure 3a spans the species B
and u1. Also note that the length of branch b2 is the sum645

of two smaller branches: one within species branch B and
one within species branch u1. Thus, to complete our de-
scription of the branch prior, we must define the probabil-
ity P (l (vi )|t(vi ), g , T , R , θ) for branches that spanmultiple
species.650

To handle these cases, we introduce a topology T ′ that
is defined as the topology T with implied speciation nodes
added. Also let l′ and t′ be the length and time vectors of
T ′ , and R ′ be a reconciliation of T ′ to S . For each branch
b (vi ) = (vi ,wi ) in T , where wi is the parent of vi in T ,655

there is a path p = (vi , . . . ,wi ) in T ′. Let p(vi ) be the
set of all vertices in p excluding the top node wi . Thus, the
branch lengths and times in treeT can be expressed as sums
of branch lengths and times in tree T ′,

l (vi ) =
∑

v ′k∈p(vi )
l (v ′k ) and t(vi ) =

∑
v ′k∈p(vi )

t(v ′k ).

(19)

The distribution of each l (v ′k ) is the same as the distri-660

bution given in equation (18) using R ′ as the reconciliation.
To define the probability P (l (vi )|t(vi ), g , T , R , θ), we note
that l (vi ) is simply the sumof independent gamma random
variables, and methods exist to compute this probability
efficiently (Moschopoulos 1985).665

Branches Near the Root
If a gene branch contains the root, then it is still dis-

tributed by a sum of gamma distributions and thus can use
the same methods developed here. For nodes that recon-
cile before the species tree root, we still treat them as be-670

ing generated by a BD process in the basal branch of the
species tree. We model the length T0 of the basal branch
as expontentially distributed with mean λ0 and model the
species-specific substitution rate as a gamma-distributioned
random variablewithmean and variance that is the average675

of the other species-specific rate distributions.

Rapid Tree Search
To compute the argmax in equation (5), we search over
the space of possible gene tree topologiesT , branch lengths
l, and reconciliations R using a hill climbing approach to680

find the MAP reconciled gene tree (T̂ , l̂, R̂ ). We begin our
search with an initial tree constructed using the NJ algo-
rithm (Saitou and Nei 1987). We use subtree pruning and
regrafting to propose additional topologies T . For each T ,
branch lengths l are proposed using numerical optimization685

(Newton–Raphson) of the likelihood term P (D|l, T ).
One unique feature of our search is that we use the gene

tree topology prior P (T ,R |θ), a relatively fast computa-

tion compared with computing P (D|l, T ) by 2–3 orders of
magnitude to prescreen topology proposals for those that 690

are likely to have high posterior probability. Given the best
topology T thus far, we make N ∈ [100, 1, 000] unique re-
arrangements Ti and compute their topology prior ki =
P (Ti , Ri |θ), where Ri is the MPR. As our next proposal, we
then choose a topology Ti from T1, . . . , TN with probability 695

pi =
c
N+

(1−c)ki∑
i ki
, where parameter c ∈ (0, 1) defines amix-

ing between the weights ki and the uniform distribution. In
practice, we use c = 0.2.
We have found that this simple adjustment to our search

strategy greatly increases the speed of finding theMAPgene 700

tree (See Results and table 2).

Estimating Substitution Rate Parameters
As discussed previously, our substitution rate model is able
to describe rate variation that occurs in both gene- and
species-specificways. In order to achieve this, it requires the 705

estimation of several parametersθb = (αG ,βG ,α,β). One
unique approach in our method is that we estimate these
parameters prior to reconstruction by analyzing substitu-
tion rates frommultiple loci with knownphylogenetic trees.
This constitutes a “training step” in an empirical Bayes ap- 710

proach. Figure 1b illustrates how this estimation fits within
the larger phylogenomic pipeline.
Currently for our training data set, we use trees of one-to-

one orthologous gene alignments (e.g., syntenic orthologs
or unambiguous best reciprocal Blast hits) where we can be 715

reasonably confident that the gene tree topology is congru-
ent to the species tree. Fixing the gene tree topology, we es-
timate theML branch lengths forN trees withM = |E (S )|
branches each in order to construct a matrix L of branch
lengths, such that lij is the length of the j th branch in the 720

i th tree. We then use the Lmatrix along with a species tree
S and its branch lengths tto estimate the parameters θb . Be-
cause the gene rates g of these trees are not known,we treat
them as hidden data and use an EM algorithm to estimate
our parameters. 725

The variables of the substitution rate training model are
as follows. A gene tree will have a “gene rate” g , a vector of
“species rates” s (measured in substitutions/site/unit time),
and a vector of “branch lengths” l (measured in substitu-
tions/site). Thus, for a single gene tree, we have the following 730

variables:

g , l = [l1, . . . , lM ]
T , s = [s1, . . . , sM ]

T ,

t = [t1, . . . , tM ]
T , with li = gsi ti . (20)

For a set of N gene trees indexed by j , we can describe
them using the variables

g = [g1, . . . , gN ]
T , L = [l1, . . . , lN ],

S = [s1, . . . , sN ], with lij = gj sij ti . (21)

We have designed this method to assume that L is di-
rectly observed and is given as input along with the diver- 735

gence times t. In contrast, the gene rates g and species rates
S are not directly observed andhave to be inferred from the
model.
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As for the distribution of these variables, recall that gj are
independent and identically distributed (i.i.d.) by the inverse740

gamma InvGamma(αG ,βG ) and that sij are independently
distributed by Gamma(αi ,βi ). Thus, the distribution of the
branch length matrix L is

P (L|t,α,β,αG ,βG )

=
∏
j

P (lj |t,α,β,αG ,βG ) (22)

=
∏
j

∫ ∞

0
P (gj |αG ,βG )P (lj |gj , t,α,β)dgj (23)

=
∏
j

∫ ∞

0

InvGamma(gj |αG ,βG )

×
∏
i

Gamma

(
lij |αi ,

βi
gj ti

)
dgj . (24)

In our EM algorithm, the branch length matrix L is the
observed data and the gene rate vector g is the hidden data.745

In EM, the goal is to iterativelyfind better estimates of θb by
maximizing this function

θb
k+1 = argmax

θb

∑
j

∫
P (gj |lj , θb k )log P (lj , gj |θb )dgj .

(25)

For the derivation of equation (25), see supplementary
section 2.3, Supplementary Material online. Conditioning
on the hidden data allows us to find the next estimates of750

the gene- and species-specific rate parameters separately,

βk+1
G = argmax

βG

∑
j

[∫
P (gj |lj , θb k )

log InvGamma(gj |βG )dgj
]
(26)

αk+1
i ,βk+1

i = argmax
αi ,βi

∑
j

[∫
P (gj |lj , θb k )

log Gamma

(
lij |αi ,

βi
gj ti

)
dgj

]
.

(27)
[AQ6]

These expressions are computed using the Brent root
finding algorithm for βG and BFGS for αi ,βi as imple-
mented in the GNU scientific library. The gradients of these
expressions are given in supplementary section 2.3, Supple-755

mentary Material online.
Computing the term P (gj |lj , θb k ) (i.e., the probability of

hidden data) constitutes the E-step. By exploitingconjugate
priors (see supplementary section 2.3, SupplementaryMate-
rial online), we have760

P (gj |lj , t, θb )

= InvGamma

(
gj |αG +

∑
i

αi ,βG +
∑
i

βi lij
ti

)
.

(28)

We have currently implemented the EM algorithm such
that P (gj |lj , t, θb ) is discretized. Thus, the integrals in the
argmax expressions (26) and (27) are approximated as sums.
See supplementary figure S8, Supplementary Material on-
line for an example of parameters learned from data sets of 765

12 flies and 16 fungi species.

Estimating DL Rate Parameters
Wehave also implementeda trainingprocedure for estimat-
ing the genome-wide average duplication rate λ and loss
rate μ. We use the algorithm of Hahn et al. (2005), which 770

uses the gene counts in each gene family cluster (fig. 1b )
to estimate λ and μ. However, unlike Hahn et al., we do
not require λ and μ to be equal. Examples of parameters
estimated from data are given in supplementary table S1,
SupplementaryMaterial online. 775

Results

Phylogenomic Data Sets
To evaluate our approach for gene tree reconstruction, we
have reconstructed gene trees for both real and simulated
data sets. For our real data set, we have used 16 fungi species 780

(fig. 4a) whose genomes have been sequenced to either
draft or high coverage quality (Goffeau et al. 1996; Cliften
et al. 2003; Kellis et al. 2003; Dietrich et al. 2004; Dujon
et al. 2004; Jones et al. 2004; Kellis et al. 2004; Butler et al.
2009). For our simulated data sets, we simulated gene align- 785

ments that share many properties of real gene trees, by us-
ing a model with parameters estimated from real data sets.
Thus, we have simulated gene trees that capture the prop-
erties of the 16 fungal genomes as well as 12 fully sequenced
Drosophila genomes (Adams et al. 2000; Richards et al. 2005; 790

Clark et al. 2007) (fig. 4b ). By using both clades, we can eval-
uate the performance of phylogeneticmethods across a va-
riety of species tree topologies, divergence times, and gene
DL rates.
For the species trees, we obtained the topologies and di- 795

vergence times from several data sources. For the 16 fungi,
we used the species phylogeny as constructed in Butler et al.
(2009) andestimated timedivergenceusing the r8s program
(Sanderson 2003) with an estimate of 180 My (Massey et al.
2003) for the clade depth (fig. 4a). For the 12 flies, we used 800

the same topology and divergence times as used in several
recent studies (Tamura et al. 2004; Hahn et al. 2007) (fig. 4b ).

Training SPIMAP’s Model Parameters
To run SPIMAP in our evaluations, we applied our training
algorithms to estimate the parameters of our gene family 805

model. These parameters were also used to generate the
simulated data sets. Here, we describe how we prepared the
input data for our training procedure for both the 16 fungi
and 12 Drosophila data sets. Our training procedure con-
tains two methods: one to estimate our substitution rate 810

parameters θb = (βG ,α,β) and one to estimate our DL
rates θt = (λ,μ).
The first method ( see Estimating Substitution Rate Pa-

rameters) estimates our substitution rate parameters froma
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data set of one-to-one orthologous gene trees that are con-815

gruent to the species tree. Toobtain such trees, we identified
families that are highly likely to be one-to-one orthologous
(i.e., one gene from each species in the clade). For the 16
fungi, we previously identified739 confident one-to-oneor-
thologous families (Butler et al. 2009). This was done by820

identifying synteny blocks containing at least three consec-
utive genes and spanning across the Saccharomyces or Can-
didae clades. Pairs of syntenic clusters with best reciprocal
Blast hits spanning across the clades were merged, resulting
in 739 families. For the 12 flies clade, we previously identi-825

fied 5,154 one-to-one families where genes belong to a syn-
teny block spanning all 12 species and contains at least three
consecutive genes along each chromosome (Rasmussenand
Kellis 2007). Next, for each one-to-one family, we made
peptide multiple alignments using MUSCLE (Edgar 2004).830

Coding sequences were mapped onto the alignments to
produce codon-aligned nucleotide alignments, substituting
every amino acid with the corresponding codon and ev-
ery gap with a triplet of gaps. PhyML v2.4.4 (Guindon and
Gascuel 2003) was run on each nucleotide alignment using835

the HKY + Γ + I model and a fixed topology (congruent
with the species tree), resulting in estimates for the branch
lengths of each gene tree. Lastly, these branch lengths Lwere
used in our EM method to estimate the model parameters
(see supplementary figs. S8 and S9, SupplementaryMaterial840

online).
The second method (see Estimating DL rate parame-

ters) estimates ourDL parameters fromgene counts present
within gene family clusters that contain DLs. For the 16
fungi, we used gene counts from gene families previously845

clustered (Butler et al. 2009) to estimate the gene DL rates
λ = 0.000732, μ = 0.000859 (events/gene/My). For the 12
Drosophila clade, we used the DL rates λ = 0.0012,μ =
0.0012 that were previously estimated by Hahn et al. (2007)
using a similar method as our fungi rate estimation, except850

that DL rates were assumed to be equal.

Reconstructing Gene Families from 16 Fungi
In our first evaluation, we analyzed the performance of
SPIMAP versus several other popular phylogenetic pro-
grams on a data set of 16 fungi species. We have included[AQ7] 855

three traditional “sequence-only” methods: PhyML v2.4.4
(Guindon and Gascuel 2003; ML), RAxML 7.0.4 (Stamatakis
et al. 2005; ML), BIONJ (Gascuel 1997; NJ), and MrBayes
v3.1.1 (Ronquist and Huelsenbeck 2003; Bayesian).We have
also evaluated several other methods that use species-860

related information, which we call “species tree aware.”
These include our previousmethod SPIDIR (Rasmussen and
Kellis 2007), SYNERGY (Wapinski et al. 2007), and PrIME-
GSR (Ȧkerborg et al. 2009).
For our 16 fungi real data set, we downloaded coding865

sequences and peptides from the January 2009 update of
fungi data set used by the SYNERGY method (Wapinski
et al. 2007; Wapinski et al. 2009). By using this data as
the input for all the other methods, we can compare
against the trees constructed by SYNERGY (also down-870

loaded from the January 2009 update).We focused the anal-

ysis on the same 16 species as used in Butler et al. (2009),
which is a tree that also agrees with the one used by SYN-
ERGY. We used the same gene clusters as defined by SYN-
ERGY’s trees, in effect using SYNERGY as the clustering 875

step for the phylogenomic pipeline (fig 1a). Peptide align-
ments were made using MUSCLE (Edgar 2004), and cod-
ing sequences were mapped onto them to produce nu-
cleotide alignments. In addition, from the nucleotide align-
ments, we also produced RY-encoded alignments, which 880

only indicate whether a base is purine (R) or pyrimidine
(Y). No other information from SYNERGY trees was made
available to the other methods.
We used the following parameters for each of the meth-

ods. For PhyML and BIONJ, we used a HKY + Γ + I model 885

of nucleotide substitution,whereas for RAxML, we used the
GTRCAT model. We configured MrBayes with four chains,
an automatic stop rule, a 25% burn-in, sampled every ten
generations froma total of 10,000 generations, a 4×4model
for nucleotides, and enforced a binary tree. For methods 890

that do not produce reconciled trees (i.e., PhyML, RAxML,
MrBayes, and BIONJ), we have used MPR to infer DLs. For
SPIDIR, we used DL penalties of 0.001 and an error cost of
−600. For PrIME-GSR, we used 50,000 iterations, the Jones,
Taylor, and Thorton model, gamma-distributed rates, and 895

our own species tree (fig. 4). The tree search was initialized
by anML tree foundby PhyML. We also ran PrIME-GSR with
1,000,000 iterations (as recommended by Ȧkerborg et al.
2009) but for only 500 trees randomly chosen from the data
set in order to limit the computational run time. SPIMAP 900

was executedwith two settings: “long” (2,000 iterations with
1,000 prescreening iterations) and “short” (100 iterations
with 1,000 prescreening iterations). For all other programs
and options, defaults were used.
Although, a ground truth is not known for real data sets, 905

we have used several informativemetrics to assess the qual-
ity of gene trees, gene duplications, and losses inferred by
these methods. Each of these metrics also illustrate differ-
ent advantages and shortcomings of each method.

Recovering Syntenic Orthologs 910

The first metric we investigated was the ability to infer
syntenic orthologs—pairs of genes that are highly likely to
be orthologous given their surrounding conserved gene or-
der. Although not all orthologous pairs are syntenic, syn-
teny information does allow us to identify a conservative 915

set of orthologous genes using a method independent of
phylogenetics and thus provides a useful gold standard to
test against. See supplementary section 2.1, Supplementary
Material online for a description of our synteny determina-
tionmethod. When we construct trees on families that con- 920

tain such genes, we expect a syntenic gene pair to appear
within the reconstructed gene tree such that their most re-
cent common ancestor is a speciation and thus are inferred
as orthologs.
SPIMAP recovered syntenic orthologs with 96.5% sensi- 925

tivity, followed by PrIME-GSR at 88.9% and PhyML at 64.1%
(table 1). Because SYNERGYuses syntenyas oneof its inputs,
this test alone cannot assess its accuracy, and indeed 99.2%
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Table 1. Evaluation of Several Phylogenetic Programs on Gene Trees from 16 Fungi.

Program Orthologsa (%) Number of Orthologsb Number of Dupb Number of Lossb Average run timec

SPIMAP (quick)d 96.2 550,800 5,541 10,884 1.0 min
SPIMAP (long)d 96.5 557,981 5,407 10,384 21.9 min
SPIMAP (i.i.d.)e 93.9 547,976 6,201 13,428 21.6 min
SPIDIR (quick)d 83.3 524,292 10,177 33,550 2.2 min
SYNERGY 99.2 595,289 4,604 8,179 —f

PrIME-GSR 88.9 527,153 7,951 21,099 53.1 min
PrIME-GSR (long)d 90.7 — — — 20.7 h
RAxML 63.8 463,020 21,485 65,392 18.4 s
MrBayes 63.9 460,510 21,307 65,238 43.2 s
PhyML 64.2 464,479 21,264 64,391 45.3 s
BIONJ 60.4 439,193 22,396 71,231 0.5 s

aPercentage of syntenic orthologs recovered.
bNumber of pairwise orthologs, duplications, and losses inferred from trees.
cAverage run time for reconstructing each gene tree.
dBoth SPIMAP and PrIME-GSR were run with a few iterations (quick) of 100 and 50,000 and with many iterations (long) 2,000 and 1,000,000.
eSPIMAP was also run using a i.i.d. species-specific rate model.
fBecause SYNERGY trees were downloaded, no run time was estimated.

of syntenic genes are orthologs in SYNERGY’s trees. When
given more iterations, PrIME-GSR’s accuracy increases to930

90.7% but computational time increases dramatically, 24-
fold from 53 min to 20 h per gene tree. In contrast, SPIMAP
achieved its accuracy of 96.5% in 29.1 min on average per
tree and can achieve as much as 96.2% accuracy even when
limited to an average run time of 1.0 min (“quick” mode).935

Also, SPIMAP achieves 96.3% ortholog accuracy when as-
sessing the same 500 tree subset as PrIME-GSR’s longmode.
Note that the species tree aware programs (SPIMAP, SYN-
ERGY, and PrIME-GSR) predict as much as 20% more or-
tholog pairs than the leading competing sequence-only940

program (PhyML).
For SPIMAP, performance was greater on RY-encoded

alignments (96.5%) versus the full nucleotide alignments
(92%, data not shown). This is likely due to that fact that
the nucleotide alignments containeda gas chromatography945

(GC) bias that varies across species (supplementary table S1,
SupplementaryMaterial online), thus violating the station-
arity assumption made in our implemented sequence evo-
lutionmodel (HKY). Reconstruction accuracy of PhyML and
MrBayes was slightly diminished on RY-encoded alignments950

(63.0% and 61.1%, respectively), most likely due to the their
lower information content. We also found that PrIME-GSR
performs best on peptide data (88.9%), and that syntenic
ortholog recovery decreased to 86.2% on nucleotide align-
ments usingHKY (parameters estimated using PHYML) and955

81.2% on RY-encoded alignments using JC69.
One important distinction between SPIMAP and PrIME-

GSR is that SPIMAP models species-specific rate variation.
To investigate the effect of this difference, we configured
SPIMAP to learn an i.i.d. rates model similar to PrIME-960

GSR. For each branch, our modified training step estimated
(αi = 2.819, βi = 663.0) as the parameters for the i.i.d.
gamma distributions. Reconstructing gene trees using these
parameters, we found fewer syntenic orthologs (93.9%) and
greater numbers of DLs.965

Counting DL Events
Second, we evaluated the total numbers of DLs inferred

across the clade (supplementary fig. S1, Supplementary
Material online). Both SPIMAP and SYNERGY inferred at
least 32% fewer duplications and 50% fewer losses than 970

PrIME-GSR and the three sequence-only methods. The
sequence-only methods, which do not use the species tree,
infer many more events on nearly every branch, especially
for short interior branches. The distribution of DL events
that occurwithin each gene tree is illustrated in supplemen- 975

tary figure S2, SupplementaryMaterial online. Interestingly,
each of the other sequence-onlymethods inferred over four
times as many gene duplication events and six times as
many gene loss events as SPIMAP. For the sequence-only
methods, duplications are more frequent near the root of 980

the species tree and losses aremore frequent near the leaves,
a pattern suggesting that these events are erroneous (Hahn
2007).

Duplication Consistency Score
With our third metric, we sought to characterize the 985

plausibility of the inferred duplications using the “duplica-
tion consistency score,” introduced by Ensembl for evalu-
ating their phylogenomic pipeline (Vilella et al. 2009). The
consistency of a duplication node with children l and r is
defined as |A ∩ B |/|A ∪ B |, where A and B are the set 990

of species represented in descendants of l and r , respec-
tively (see example in fig. 5a). The consistency score is de-
signed to detect duplications that are wrongly inferred due
tophylogenetic reconstruction errors because such false du-
plications are often followed by many compensating losses 995

(Hahn 2007; Vilella et al. 2009) (i.e., low species overlap
|A ∩ B |). Figure 5 depicts the distribution for the dupli-
cation consistency score for each program. Both SPIMAP
andSYNERGYshowedsimilar consistencydistributions that
are heavily shifted toward 1 (47.8–49.0% and 4.2–17.2% of 1000
duplications with a score of 1 and 0, respectively; fig. 5).
The sequence-only methods have many low scoring dupli-
cations (<11% and>70% with scores 1 and 0, respectively),
an effect seen previously (Vilella et al. 2009). PrIME-GSR’s
distribution lies in between these extremes with 30.0% and 1005

42.1% for scores 1 and 0, respectively. Lastly, the i.i.d. version
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FIG. 5. The duplication consistency score for assessing phylogenetic methods. (a ) Duplication consistency score computed on two example trees.
For each duplication node (star), this score computes the number of species present in both the left and right subtrees divided by the total number
of species descendant from the duplication node. Erroneous duplications show an increased rate of compensating losses and thus lower scores.
(b ) Cumulative distribution of duplication consistency scores for all duplications inferred in the 16 fungi data set by eachmethod. SPIMAP (blue)
and SYNERGY (green) perform best according to this metric, having the fewest duplications with low consistency scores. SPIMAP trained with an
i.i.d. model similar to PrIME-GSR (dashed blue) infers duplications with overall lower consistency scores. These are followed by PrIME-GSR (dark
green) and SPIDIR (dashed light blue) that showmore moderate performance. Lastly, the four traditional methods implemented in the programs
MrBayes, RAxML, PHYML, and BIONJ, all have similar and significantly lower score distributions.

of SPIMAP also scored lower than SPIMAP, inferring nearly
twice the number of duplications with a consistency score
of zero (fig. 5).

Recovering Gene Conversions1010

The fourth metric was specifically designed to test the
case where species-level information is misleading, effec-
tively testing the ability of species-aware methods to prop-
erly weigh species information against conflicting sequence
information.1015

The fungal clade contains a whole-genome duplication
(WGD) event, such that every gene simultaneously dupli-
cated followed bymany gene losses (Wolfe and Shields 1997;
Kellis et al. 2004). Of the paralog pairs that are still present
in the Saccharomyces cerevisiae genome, 37 of them have1020

a Ks less than the average Ks between the S. cerevisiae and
S. bayanus genomes of 1.05, indicating that these paralogs
have undergone recent gene conversions near or after the
speciation of the S. cerevisiae and S. bayanus lineages (Gao
and Innan 2004) (see an example in fig. 6a). Also indicative1025

of gene conversion (Noonan et al. 2004), these genes have
a significantly elevated GC frequency of 42.0% in the third
codon position, compared with a frequency of 37.9% for all
S. cerevisiae genes (P <1.7× 10−09; Mann–WhitneyU ). Of
these paralogs, SPIMAP infers 15 of them happening after1030

the S. bayanus speciation and 31 after the Candida glabrata
speciation (fig. 6b). In comparison, SYNERGY infers none of
the paralogs duplicating after the S. bayanus speciation and
only one after the C. andidaglabrata speciation. Instead 34
of the 37 paralogs are inferred as occurring on the branch1035

containing the WGD, thus indicating that synteny informa-
tion between S. cerevisiae and other postduplication species
overrides sequence information in the vastmajority of cases.
For 33 families, the SPIMAP-constructed tree has a higher

likelihood than the SYNERGY tree and for 22 families the 1040

likelihood is significantly higher (P < 0.01; SH test). In con-
trast, SYNERGY never has significantly higher likelihood.
Together these four metrics applied to real gene trees

from 16 fungi suggest that SPIMAP often outperforms both
sequence-only and species-aware methods. From these 1045

trees, we observe what appears to be an over estimation of
DL events by the other methods, an error that has been ob-
served in previous empirical studies (Hahn 2007). To better
understand how phylogenetic errors influence the accuracy
of event inference, we turn now to simulated data. 1050

Reconstructing SimulatedGene Trees
To test our method on a data set where the correct phy-
logeny is unambiguously known,we implementeda simula-
tion program based on ourmodel for gene family evolution.
Our intent was to make the simulations realistic by captur- 1055
ing the same gene and species-specific rate variation as well
as gene DL rates as seen in real gene trees. Thus, the same
model parameters and species phylogenywere usedas those
estimated for both the 12 flies and 16 fungi clades.
For each clade, we simulated 1,000 gene trees and gener- 1060

ated the correspondingnucleotide alignments (supplemen-
tary figs. S3 and S4, Supplementary Material online). Next,
we reconstructed gene trees from these simulated align-
ments using SPIMAP, PrIME-GSR, and the other sequence-
only phylogenetic methods. Note, SYNERGY was excluded 1065

from the analysis because synteny, which is one of its inputs,
was not simulated. SPIMAP’s substitution rate parameters
were estimated on a simulated data set with no DLs (sup-
plementary figs. S8 and S9, SupplementaryMaterial online).
Its DL parameters were trained from the gene counts of each 1070
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FIG. 6. Inferred duplication times for recent Saccharomyces cerevisiae gene conversions. (a ) Typical gene tree topology for 37 paralogous gene pairs
originally arising from WGD and previously reported (Gao and Innan 2004) to have undergone gene conversion events (small star) near or after
the speciation of S. cerevisiae and S. bayanus, such that one gene copy (green) is replaced by the other (red), followed by subsequent nucleotide
divergence (orange). The correct inferred duplication of the two S. cerevisiae paralogs (red and orange lines, denoted 1 and 2) should occur within
the time span indicated by the top brownbars. However, we expectmethods that are heavily biased to follow the known species tree to incorrectly
infer these events further up the tree. (b ) We evaluated both traditional and species-aware methods in their ability to recover the correct trees in
these cases and report the counts of where different gene conversion events are inferred for each method. We find that both SPIMAP and PrIME-
GSR, as well as all traditional methods find the vast majority of these paralogs duplicates near or after S. bayanus speciation. However, SYNERGY
incorrectly infers a WGD topology, most likely due to strong reliance in synteny information which is misleading in this case.

simulated data set (supplementary table S1, Supplementary
Material online).
First, wemeasured topology accuracy across all themeth-

ods. SPIMAP outperforms the sequence-only programs by

7–29% on the simulated 12 flies data set and by 52–81% for 1075
the 16 fungi data set (fig. 7a). SPIMAP also showed a 3–8%
accuracy increase over PrIME-GSR. To test whether lower
reconstruction accuracy of the sequence-onlymethods was

FIG. 7.Metrics of phylogenetic accuracy on simulated data sets for 12 Drosophila and 16 fungal species. (a ) SPIMAP has a higher reconstruction
accuracy for correctly inferring the full gene tree topology for both fly and fungal data sets. (b ) The percent of accurately reconstructed branches
is similar across methods for the 12 flies but a larger improvement is seen for SPIMAP on the larger and more diverse 16 fungi clade. (c ) Despite
topological and branch inaccuracies, pairwise ortholog detection is robust in both precision and sensitivity. (d, e ) In contrast, DL inference is very
sensitive to phylogenetic errors, especially in terms of precision. Stars indicate 100%.
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due to insufficient search, we performed an addition run of
PhyML where the tree search was initialized with the cor-1080

rect tree. However, topology accuracy for these runs only
increased from 15.5% to 16.7%, indicating errors due to in-
sufficient search play only a minor role. Overall the accu-
racy improvement for SPIMAP is larger on the fungi data set,
which has a more complex and divergent phylogeny.1085

Second, we assessed partial topology correctness using
the percent of branches accurately reconstructed. For the
flies, SPIMAP consistently performs better but by only a
few percent (fig. 7b). However, for the fungi, SPIMAP again
shows a larger accuracy improvement at 20–39% over the1090

sequence-only methods.
Third, we looked at the percentage of orthologs inferred

correctly, where we noticed a surprising trend. Although
topologies and branches had high error rates for many
methods, there was also a high percentage of correctly in-1095

ferred ortholog pairs (fig. 7c). Upon closer inspection, we
found that often when a branch is misplaced it only dis-
rupts a small fraction of the pairwise orthologs. Thus, it ap-
pears that orthology discovery at the pairwise level is quite
robust to phylogenetic errors. In addition, we noticed that1100

false positive orthologs calls are rarely made, although false
negatives are more frequent, especially on the fungal clade.
Fourth, we looked at the accuracy of inferring gene DLs,

which is very important for studies interested in study the
rate of such events. As opposed to the ortholog pairwise1105

metric, we find that DLs are very sensitive to phylogenetic
errors. Notice that although branch accuracy may be high[AQ8]

for some programs and data sets, even a small number
of errors can lead to dramatic overestimation DLs (fig. 7c
and d and supplementary fig. S6b and S6a). In general,1110

all programs are able to recover DL events for the flies
and fungi data sets with similar sensitivity (fraction of true
positives among all actual positives). Programs differ by
less than 6% difference, with SPIDIR and BIONJ as outliers.
However, in terms of precision (fraction of true positives1115

among all predicted positives), SPIMAP has a dramatic im-
provement in event inference over sequence-onlymethods:
2127% and 4553% for the flies DL, respectively, and 58–69%
and 75–80% for fungi DLs (with BIONJ as an outlier in each
case). Compared with PrIME-GSR, SPIMAPshows a 9–12%1120

increase in duplication precision and 32–33% increase in
loss precision. The 2–3-fold over prediction of events by the
sequence-only phylogenetic methods (fig. 7c and d) is an
effect similar to that seen in the real data.
Lastly, we find that these results also hold when simula-1125

tions are performed with unusually high DL rates at twice
(2×) and four times (4×) the estimated true rates (1×).
We performed simulations with five different settings 1×–
1×, 2×–2×, 4×–4×, 4×–1×, 1×–4× for DL rates, re-
spectively.We find that SPIMAP has increased performance1130

for topology, branch, and event accuracy for all these rate
settings (supplementary figs. S5a and S6a, Supplementary
Material online). In addition, we found that SPIMAP was
robust to errors in the DL rate parameters.When we recon-
structed trees from the 1×–1× data set using DL rate pa-1135

rameters thatweremis-specified tobe four times faster than

the true rates, topology accuracy was still 92.0% compared
with 94.2%when using properly estimated parameters. Sim-
ilarly, when reconstructing the 4×–4× data set using DL
rate parameters that were one fourth the true rate, we 1140

obtained 71.1% topology accuracy compared with 69.2%.

Search Efficiency
In addition to evaluating reconstruction accuracy, we also
evaluated reconstruction speed. Our goal with SPIMAP was
to develop a method that is feasible enough to include in a 1145

phylogenomic pipeline containing thousands of trees and a
variety of family sizes.
From the reconstruction of genes from our real data set

(table 1), we found that SPIMAP has an average reconstruc-
tion time per tree (1.0 min) that is only slightly longer than 1150

that of PhyML (43.2 s). To investigate how our search strat-
egy influences reconstruction run time, we generated a sim-
ulated data set of 500 gene families using 16 fungi species
tree. For this simulation, we used i.i.d. species-specific rates
(αi = 2.819,βi = 663.0), no variation occurs in the gene 1155

rate, and the Jukes–Cantor model. We also used the same
gene DL rates as estimated from real fungi gene families
(λ = 0.000732, μ = 0.000859). SPIMAP’s substitution
rate model was trained on a data set with the same param-
eters but no DLs. The parameters used by SPIMAP during 1160

reconstruction are given in supplementary figure S10,
SupplementaryMaterial online.
Although we have not implementedmany optimizations

for SPIMAP, ourprescreening search strategy allows SPIMAP
to compete with the highly optimized PhyML program 1165

(table 2). The RAxML program achieves significantly faster
run times, but this occurs with a small decrease in accu-
racy for this data set. We believe our speed increase is be-
cause the gene family model, through the use of the species
tree in the prior, produces a posterior distribution that is far 1170
more concentrated than the likelihood. Thus, many seem-
ingly equivalent trees from a likelihood perspective are sig-
nificantly different based on their priors and posteriors. In
addition, our prescreening search strategy (see Rapid Tree
Search) appears to greatly help in speeding up discovery 1175

of the MAP gene tree. For example, with no prescreening,
SPIMAP achieves a topology accuracy of 32.4% with an av-
erage run time of 7.2 s. By using 100 prescreening iterations,
accuracy increases to 84.8%, whereas run time only increases
to 8.5 s. For comparison, PhyML achieves 26.0% topology ac- 1180
curacy in about 25.8 s on average.
Whether this prescreening strategy can scale to much

larger trees with thousands of sequences (Stamatakis et al.
2005; Price et al. 2010), remains to be seen. However, the du-
plication subtree factoring within the topology prior may 1185

allow reuse of many computations between tree local rear-
rangements and could be combined with existing strategies
for speeding up tree search.
SPIMAP is currently implemented as a MAP method,

thus if branch support values are needed, bootstrappingwill 1190
be required. Given the speed of our search, we can per-
form 100 bootstraps in about 11.1 minutes to achieve 86.4%
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Table 2. Evaluation of Search Time for Several Phylogenetic Methods.

Program Iterationsa Prescreensb Bootstraps Topology(%) Branch(%) Run time

RAxML — — 0 20.8 80.3 3.5 s
RAxML — — 100 22.8 1.1 39.8 s
PhyML — — 0 26.0 83.9 25.8 s
PhyML — — 100 26.0 83.9 13.9 m
SPIMAP 50 1 0 32.4 81.4 7.2 s
SPIMAP 100 1 0 50.8 87.1 12.7 s
SPIMAP 500 1 0 83.8 96.0 1.2 mmin
SPIMAP 1,000 1 0 88.6 97.5 2.0 min
SPIMAP 50 100 0 84.8 96.7 8.5 s
SPIMAP 1,000 100 0 90.8 98.1 2.3 min
SPIMAP 50 100 100 86.4 97.1 11.1 min

aNumber of iterations used for each method.
bNumber of prescreening iterations used for SPIMAP.

accuracy. This run time is comparable to 100 bootstraps
of PhyML at 13.9 min and 26.0% accuracy. Thus, boot-
strap analysis is quite feasible for SPIMAP, and the method1195

should be efficient and practical enough for any pipeline
that uses phylogenetic programs with run times on the
order of PhyML’s.
Lastly, we evaluated the influence of run time and

family size on reconstruction accuracy. Using the same pa-1200

rameters above, we simulated more gene trees from the
16 fungal species tree and divided them into six classes
based on the their number of extant genes: 5–9, 10–19,
20–29, 30–39, 40–49, and 50–59. Each size class was pop-
ulated with 100 simulated trees and alignments. SPIMAP1205

was run in twomodes, onewithout bootstrapping(1,000 it-
erations and 100 prescreens) and one with 100 bootstraps
(100 iterations and 100 prescreens). For the middle gene
size class 20–29, SPIMAP achieved average run times of
5.3 and 50.4 min, respectively. For each data set, PrIME-1210

GSR was also executed, using the same amount of time as
SPIMAP, which required 7,300 iterations (quick mode) and
77,000 iterations (longmode) .We find that for smaller trees
with 5–29 extant genes that both SPIMAP runs and PrIME-
GSR’s long mode achieve similar topology accuracy in the1215

range of 80–100% (supplementary fig. S11, Supplementary
Material online). However, for larger gene trees with 30–
49 extant genes, as accuracy degrades for all methods, both
modes of SPIMAP have a 20% increase in topology accuracy
over PrIME-GSR. Improvements in inferring DL accuracy is1220

also seen for the larger trees (>10% increase in duplication
precision and>30% increase in loss precision).

Discussion
We present a novel probabilistic model and algorithm for
gene tree reconstruction. Our approach uses a Bayesian1225

framework to model sequence evolution, gene duplica-
tion, loss, and substitution rate variation, thus incorporat-
ingmany disparate types of information in a principledway.
This unified framework presents many advantages.
In contrast to previous gene tree reconstruction meth-1230

ods (Zmasek and Eddy 2002; Dufayard et al. 2005; Durand
et al. 2006; Vilella et al. 2009), where a gene tree is reconciled
only after full reconstruction by a method such as NJ or ML,

our method finds a reconciliation and gene tree simultane-
ously. In addition, the parameters of our model are inter- 1235
pretable (e.g., substitutions ratesandduplication/loss rates),
and we have provided training algorithms for each one.
This provides an advantage over a method like SYNERGY
(Wapinski et al. 2007) that optimizes a parsimony-based
cost function for several different events such duplications, 1240
loss, and syntenic relationships.Without a probabilistic ba-
sis, the weights of these costs and the behavior of their
combination are more difficult to determine and analyze.
Our study of gene conversions demonstrates more work is
needed to understand how synteny information should be 1245

weighed against conflicting sources of information.
Our method models rate variation that is correlated

across all branches of the tree (gene-specific rate) as well as
rates specific to each species lineage (species-specific rates).
We have found that when both these effects are modeled, 1250
the result is a more informative prior which leads to in-
creased reconstruction accuracy (see the i.i.d. version of
SPIMAP in table 1 and fig. 5). In contrast, PrIME-GSR uses
identical and independent gamma distributions for rate
variation which do notmodel species-specific rate variation. 1255
Thus, species with rate acceleration or decelerated across
the genome will have branches that are consistently penal-
ized by an i.i.d. rate prior. One complication for modeling
species-specificrates is possibilityof overparameterizingthe
model. We addressed this issue by learning the rate distri- 1260
butions prior to reconstruction from a data set of multiple
orthologous gene trees. This learning step provides an ad-
vantage even when i.i.d. rates are used (see SPIMAP with
i.d.d. and PrIME-GSR in table 1). By combining data across
loci, the rate variation prior can be estimated more accu- 1265
rately than if the gene trees were considered in isolation.
The rate prior of our current work builds upon a pre-

viously developed method, SPIDIR (Rasmussen and Kellis
2007). We designed SPIDIR to be a distance-based likeli-
hood method that exploits the rate variations we had ob- 1270
served in the 12 fly and 9 fungal genomes. Although the
method proved effective, its reliance on pairwise distances
did not fully utilize the available character information and
it lackedan explicitmodel forDL rates. Indeed,wefind inour
latest comparison that SPIMAP has more consistent accu- 1275
racy improvements than SPIDIR even for larger species trees
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(16 fungi) and fast rates of DL (fig. 7 and supplementaryfigs.
S5a and S6a, SupplementaryMaterial online).
Thus far, we have only implemented a very simple model

for sequence evolution within the SPIMAP program. Cur-1280

rently SPIMAP uses the HKY model, although providing ad-
ditional models as well as modeling rate variation across
sites may lead to additional improvements to reconstruc-
tion accuracy. However, we note that for the evaluationswe
present here, that modeling rate variation across sites did1285

not contributed significantly to improved reconstructions.
In fact, the PhyML program found very similar recovery rates
for syntenic orthologs using both rate variation (64.2% re-
covery using four categories and an estimated α) or using
none (64.9% recovery).1290

Lastly, we envision this method participating in a larger
phylogenomic pipeline.We believe that within most clades
of interest, there will be sufficient data for training our
model. For example, in the 12 sequencedDrosophila species,
about one-third of all genes are syntenic across all 12 species1295

(Clark et al. 2007; Rasmussen and Kellis 2007) and thus can
serve as a trainingset for our substitution ratesmodel. Once
a model is learned from simple gene families, it can then be
applied to reconstruct gene familieswithmore complicated
histories of gene DL. Given these advances andmany others1300

to come, phylogenetics will likely play an ever increasing role
in understanding the evolution and function of genomes.

Supplementary Material
Supplementary tables S1, sections 2.1–2.3, and figures S1–
S11 are available at Molecular Biology and Evolution online1305

(http://www.mbe.oxfordjournals.org/).
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