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Abstract. Hidden Markov Models(HMM) have proved to be a successful modeling paradigm for dynamic and spatial processes

in many domains, such as speech recognition, genomics, and general sequence alignment. Typically, in these applications,

the model structures are predefined by domain experts. Therefore, the HMM learning problem focuses on the learning of the

parameter values of the model to fit the given data sequences. However, when one considers other domains, such as, economics

and physiology, model structure capturing the system dynamic behavior is not available. In order to successfully apply the

HMM methodology in these domains, it is important that a mechanism is available for automatically deriving the model structure

from the data. This paper presents a HMM learning procedure that simultaneously learns the model structure and the maximum

likelihood parameter values of a HMM from data. The HMM model structures are derived based on the Bayesian model selection

methodology. In addition, we introduce a new initialization procedure for HMM parameter value estimation based on the K-means

clustering method. Experimental results with artificially generated data show the effectiveness of the approach.

1. Introduction

The Hidden Markov Model (HMM) methodology

has been applied extensively in many domains for ef-

ficient modeling of multi-dimensional sequence data.

Examples of successful applications include the speech

recognition domain for temporal sequence model-

ing [1], and the genomics domain for spatial sequence

modeling [2]. The HMM methodology is a probabilis-

tic state based approach, where the set of system states

that govern the dynamic behavior or spatial characteris-

tics may not be directly observable, thus the term “hid-

den”, the hidden states manifest indirectly as multi-

dimensional output sequences that are directly observ-

able. The HMM learning task starts with sequence

data, and attempts to fit a probabilistic state transition

model that best describes the data.

HMM methodology can be applied to modeling tasks

for any real world system that is dynamic in nature,

for example, systems in economics, social science, and

medical domains. With the proliferation of computing

technology, there is a lot of interest in analyzing these

dynamic systems in terms of better understanding the

system behaviors and/or performing prediction or fore-

casting tasks. Typically, data describing the systems is

recorded over different periods of time, and is in the

form of multiple sequences of data, each describing one

particular aspect (or feature) of the system. To illustrate

the model learning task, let us consider hypothetical

data generated from a dynamic process. We measure

two time-varying features of the system, f1 and f2, over

a fixed time interval (100 time units in our example),

and collected values for f1 and f2 at fixed increments,

say every 0.5 sec. We repeat the data collection process

a number of times, therefore, our data is made up of

a set of f1 and f2 feature value sequences and each

sequence is 100 time units long. Figure 1 shows data

recorded at two different time periods from the same,

hypothetical dynamic system.

Our goal is to construct a model describing the dy-

namic behavior of the underlying system by construct-

ing HMMs that best describe the data. Typically, in
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Fig. 1. Data recorded at two different time periods from the same, hypothetical dynamic system.

applications such as speech recognition and genomics
research, the structures of the HMMs, i.e., the num-

ber of states in the model and the links between states,
are predefined by the domain experts. Therefore, the

HMM learning problem focuses on the learning of the

parameter values of the HMM from data [1,3]. But,
for many other domains, not as much is known about

the domain structure, therefore, it becomes more dif-
ficult to define HMM structure beforehand. This sig-

nificantly limits the application of the current HMM

learning methodologies.
In our work, we extend existing methodologies, by

proposing an extended HMM learning procedure that
simultaneously derives both the structure and the pa-

rameters of the HMM from sequence data of the type

shown in Fig. 1. To elaborate, we first discuss the
HMM structure.

More formally, a HMM is a non-deterministic
stochastic Finite State Automata (FSA) that satisfies

the first order Markov property. For a stochastic pro-

cess, X , let X(t), denotes the state of a system at
time t. X is said to satisfy the Markov property if,

for any sequence X(t0), X(t1), . . . , X(tn), such that
t0 < t1 < . . . tn−1 < tn, we have

P{X(tn) = x|X(t0) = x0, . . . , X(tn−1) = xn−1}
= P{X(tn) = x|X(tn−1) = xn−1}.

The state in which the system finds itself at time

tn depends only on its state at time tn−1, X(tn−1),
which contains all the relevant information concerning
the history of the process behavior [4]. Most discrete-

event models of physical systems are assumed to satisfy
this Markov property, i.e., their state description at the

current time t, is a function of their last state description

at time t− 1, and the input to the system at time t.
A first order HMM, λ, with M states, S =

(S1, S2, . . . , SM ), that models data described by K

temporal features can be characterized by three sets of

probabilities: �π,A, and B(�µ,Σ), where

– the initial state probabilities, �π, a vector of size

M , (0 � πi � 1), defines the probability of any

of the states, Si, being the initial state of a given

temporal sequence;

– the transition matrix, A of size M × M , (0 �

aij � 1, 1 � i, j � M), defines the probability

of transition from state i at time t, to state j at the

next time step; and

– the emission probability matrix, B of size M×K ,

defines the probability of generating feature val-

ues at any given state [3]. When the system be-

havior can be represented as a sequence of dis-

crete states, a discrete density HMM (DDHMM)

may be employed, where the probability density

function (pdf) associated with the individual states

follow multinomial distributions. When the sys-

tem behavior is sampled from continuous real-

valued distributions, a continuous density HMM

(CDHMM) is employed, where the pdf associated

with the individual states follow multivariate nor-

mal distributions. For CDHMM, the multivariate

Gaussian distributions associated with individual

states are characterized by their mean vector, B�µ,

and co-variance matrix, BΣ. In our work, tempo-

ral data are assumed to be continuous valued and

CDHMMs are used for modeling these data. In

addition, we assume that all temporal features are

independent of each other. Therefore, the covari-

ance matrix at each state is diagonal, and can be

represented as a variance vector, B�σ.

Looking back at our example presented in Fig. 1,

the multi-dimensional data sequence has to be broken

down into segments, where each segment corresponds

to a hidden state of the system. It is assumed that the



C. Li and G. Biswas / A Bayesian approach for structural learning with hidden Markov models 203

S 1

B:   =[      ],   =[      ]σµ 16
5

1.5
1

(a)

(b)

S
2

S1
S3

feature value

f

f

1

2

S 2 S 3

12
20µ   

0.8

0.1

0.1

0.1

0.15

0.75

0.15

σ 2
1.5

0.1

0.75

B:   =[      ],  =[      ]

time

26
0 1

2.5B:   =[      ],   =[      ]µ   σ

−5

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Fig. 2. The mapping between the states in the derived HMM and the data collected from the dynamic system.

overall dynamic behavior of the system is governed by

a finite set of states: S1, S2, . . . , SK . The behavior of

the system in each state, i.e., the output produced, is a

function of the emission probability matrix B, and the

overall behavior of the system is a combination of the

state transition probability matrix, A, and the emission

matrix,B. Let us say that for our example data shown in

Fig. 1, our learning algorithm correctly determines that

the underlying process is made up of three states, and

derives the transition probabilities among the states, as

well as the emission probabilities for each state. The re-

sulting model can be depicted as a stochastic automata

shown in Fig. 2(b). Rectangles in the sequence data in

Fig. 2(a) illustrate the temporal data output from each

of the three hidden states.

In this paper, we cast the HMM learning problem in

the Bayesian model selection framework [5]. Bayesian

model selection enforces the Occam’s razor principle.

When constructing a HMM for data, Bayesian model

selection employs a criterion function that trades off the

fit between the model and the data, and the complexity

of the model itself. The reasoning behind this is that

if one allows the complexity of the model to increase

arbitrarily, one can always derive models that almost

perfectly fit the data. Such a model typically overfits
the data and has no predictive value in practical appli-
cations. Therefore, it makes sense to tradeoff complex-
ity and accuracy. It introduces a penalty term that is
directly proportional to the model complexity function.
The trade off between this term and the accuracy of fit
results in the derivation of HMM models that are good
fit for the data, but is not too complex in structure.

The rest of this paper discusses the Bayesian HMM
learning methodology, and presents experimental re-
sults to support its effectiveness. Section 2 reviews the
HMM modeling methodology. Section 3 introduces the
Bayesian model selection methodology and presents
the Bayesian HMM structural learning procedure. Sec-
tion 4 discusses the design of the experiments, and the
experimental results obtained. Section 5 summaries
the paper and discusses directions for future work.

2. The HMM modeling methodology

2.1. Learning HMM from data

The HMM learning problem can be viewed at two
different levels: (i) the parameter learning level, and (ii)
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the structural learning level. At the parameter learning

level, the model structure, i.e., the number of states in

a HMM, is given, the HMM learning process estimates

the model parameter values, (i.e., the π vector, and the

A and B matrices), from data using iterative optimiza-

tion methods. The degree of fit of the derived models

is dependent on the initial values of the parameters and

the parameter estimation methods used. In addition, it

is a function of the model size. When the given model

size differs significantly from the true model size, no

matter how good the parameter estimation procedure

is, the derived models are not likely to provide a good

characterization for the data. At the structural learning

level, the HMM learning procedure learns the model

structure and the parameter values of the model from

the data simultaneously. Next, we discuss existing

methods developed for the two HMM learning levels.

2.2. Learning HMM parameters from data

Given the structure, i.e., the number of states in the

HMM, parameter estimation methods try to derive the

model parameters, �π, A, and B, such that the parame-

ter configuration optimizes a predefined objective cri-

terion. Criteria that have been used for HMM parame-

ter estimation include data likelihood, mutual informa-

tion measured from multiple HMMs [6], entropy based

distance functions [7], and maximum between HMM

model distance [8]. We employ the well known Baum-

Welch (BW) [9] parameter estimation method, which

uses the data likelihood maximization criterion to mea-

sure the fitness of a model parameter configuration and

to guide the search process.

The Baum-Welch parameter estimation procedure is

a variation of the more general EM algorithm [10]. It it-

erates between an expectation step (E-step) and a maxi-

mization step (M-step). The E-step assumes the current

parameter configuration of the model and computes the

expected values of the necessary statistics. The M-step

uses these statistics to update the model parameters so

as to maximize the expected likelihood of the parame-

ters [11]. The iterative process continues until the pa-

rameter configuration converges.1 The maximum like-

lihood HMM parameter estimation is implemented us-

ing the Forward-Backward dynamic programming pro-

cedure. Details of the Forward-Backward procedure

can be found in [3].

1In experiments we have run, we consider a parameter configura-

tion to converge if the log data likelihood of two consecutive model

configurations differ by less than 10−6.

Like other hill climbing approaches, a problem with

the Baum-Welch procedure is that it is sensitive to the

initial configuration of the model, and tends to con-

verge to local maxima parameter configurations. The

only way to solve this problem is exhaustive search,

which is computationally infeasible in many applica-

tions. The Viterbi algorithm presents a compromise. It

is designed to start with an initial HMM, λ, with a ran-

dom parameter configuration. Given a sequence data

O = O1, O2, . . . , OL, the algorithm finds the single

best state sequence, called the Viterbi path Q, by seg-

menting the sequence values into states that maximize

P (O,Q|λ). The state membership, j, 1 � j � M ,

of the tth value, Ot, 1 � t � L, is determined based

on the likelihood of the partial observation sequence

O0, O1, . . .Ot−1, along the partial Viterbi path, δt−1,

as well as the probability of the tth observation value,

given the current parameter configuration of the model.

Once sequence values are segmented into states along

the Viterbi path, model parameters can be updated

based on the statistics collected using the segmented

data.

Viterbi method is computationally efficient. The

time complexity of the algorithm is O(ML). The

method suffers from two major problems: (i) the qual-

ity of the initialization still depends on an initial random

parameter configuration of the model, and (ii) the data

segmentation is done through a local search. As a re-

sult, the initialization algorithm does not always guar-

antee a good starting parameter configuration for the

Baum Welch procedure for convergence to the globally

maximum configuration.

2.3. Learning HMM model size/structure from data

An important issue for developing general HMM-

based learning systems is to solve the model size deriva-

tion problem. When the same set of data is modeled

using HMMs of different sizes, significantly different

models may be generated. HMMs of different sizes

model data at different levels of abstraction. HMMs

with a larger number of states typically provide a more

detailed description for data than HMMs with a lesser

states. On the other hand, as the size of the HMM

grows, the model becomes more and more complex,

which often overfits data and loses prediction value. In

addition, a model that is too complex makes the model

interpretation task more difficult. The question is how

to determine the most appropriate HMM model size for

any given data set.
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The HMM model selection methods can be catego-

rized into two groups depending on whether a method

is based on: (i) a model reduction strategy, or (ii) a

model expansion strategy. Model reduction strategy

starts with a HMM that has a large number of states and

successively reduces the size of the model by merging

and eliminating states. Solcke and Omohundro’s state

merging algorithm [12] and Casacuberta et al.’s state

elimination method [13], and Brand’s entropic prior

approach [14] are examples of this strategy.

Solcke and Omohundro’s [12] algorithm starts with

an initial model of sizeS0 = NL, whereN is the size of

the data and L is the length of the temporal sequences.

The model contains one state for every value observed

in every sequence. The initial model configuration

corresponds to the maximum likelihood model for the

data. The size of the model is gradually reduced by

merging pairwise states of the model. The merging

process terminates when further state reduction does

not improve the posterior probability of the model given

the data. The pairwise state merging process makes

this method computationally expensive. At each merge

step, all S · (S − 1)/2 (S is the size of the model,

initially S = S0) pairs of states are considered for

merging. Each pair of states is tentatively merged, and

the quality of the model, before and after the merge,

is compared. The merge that results in the largest

improvement in model posterior probability is selected

to be carried out formally. When data is described with

continuous valued temporal sequences of long length,

the computation involved in each state reduction step

can be very significant. Another problem with this

method is that, once it is committed to a merge step,

the method cannot “back off” from a decision which,

in the light of new data, may turn out to be an over-

generalization.

Casacuberta et al. [13] proposed deriving the struc-

ture of HMMs through combined error correcting

grammatical inference (ECGI) and state reduction tech-

niques. First, ECGI is used to learn a HMM when se-

quence data are provided one at a time. For every new

sequence which cannot be exactly recognized by the

current model, the model is updated by adding states

and transitions which are required for the new sequence

to be accepted. Models constructed using ECGI are

typically much smaller than the maximum likelihood

models initially derived using Solcke and Omohundro’s

algorithm, but they can still be rather large. To over-

come this problem, a model reduction procedure is ap-

plied to eliminate states that are less important. The

importance of the states is determined by the number

of times the state is used for the parsing of the sequence

data across the set of states in the model. Less impor-

tant states are eliminated from the model. This model

reduction approach is more efficient than Stocle and

Omohundro’s state merging approach. But with this

method, the state definitions of the model are not up-

dated after each state elimination step. In comparison,

this is not as good as the state merging approach where

a few of the less significant states may be combined to

form one important state and remain in the model.

In Brand [14]’s approach, HMM structure learning

process is folded into the conventional EM HMM pa-

rameter estimation procedure. The M-step of the EM

process is replaced with the entropic MAP estimator.

Iterative MAP estimation drives weakly supported tran-

sition and state parameters toward extinction. A subse-

quent step trims the transition and states, with a guar-

antee that any such deletion will increase the posterior

probability of the model.

Model expansion methods include Takami and

Sagayama’s [15] SSS algorithm and Ostendorf and

Singer’s [16] extended SSS algorithm. They start with

a HMM of the minimum size (i.e., one state), and in-

crease the size of the model in steps by successively

splitting individual states based on a chosen criterion.

Takami and Sagayama’s [15] successive state splitting

(SSS) algorithm constructs the Hidden Markov network

(HMnet), a special case of a HMM, from data. Their

method starts with a minimum size HMnet containing a

single state. Then the model is gradually expanded by

successively splitting states that have the largest vari-

ance in their state emission pdf. The actual split of

the state can be contextual, i.e., concatenation of two

states in parallel, or temporal, i.e., concatenation of two

states in series. The emission pdfs of the two states

are re-estimated. The parameter re-estimation is done

through a local search procedure, i.e., only parameters

that are directly connected to the splitting state will be

updated. The state splitting procedure continues un-

til a prescribed number of total states is reached. The

parameter values of the HMnet are re-estimated once

the model has expanded to its pre-determined size. Be-

cause the size of the final model is fixed, the SSS algo-

rithm’s focus is on the topology of the model, i.e., how

states are connected in the model.

Ostendorf and Singer [16] further expanded the basic

SSS algorithm by choosing the state and the candidate

split at the same time based on the likelihood gains.

Their state splitting method relies on a data likelihood

measure to make decisions on state splitting choices.

The recognition accuracy of the model on test data is
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used as the stopping criteria for the splitting process.

The main limitation of the two SSS algorithms is that
they perform local parameter updating after each split
operation. Local parameter updating methods are more

efficient than the global parameter updating methods,
for example, the Baum Welch procedure, but they are
shown to produce less fit parameter values for data [16].

The model parameters become even lesser fit for data
after a sequence of splitting operations.

The goal of our HMM learning methodology is to

derive discrete event models from data that represent
the behavior of dynamic systems. For model inter-
pretation purposes, it is preferable that the models are

compact, i.e., involve lesser states. Also, for most well
behaved systems, the number of states go through by
such systems is usually quite small. This means that the
size of the HMM that captures the temporal behavior

of a dynamic process is typically much smaller than the
length of the data sequence. Furthermore, considering
the nature of the data is multi-dimensional, continuous

valued sequences, a model reduction approach such as
the one proposed by Solcke and Omohundro is not com-
putationally feasible in many applications. Therefore,

our HMM learning method adopts the model expan-
sion strategy that expands from a minimal size model
to derive a relatively small size model.

In addition to the strategy for model construction,
an objective criterion function is needed to determine
when an expansion process terminates and the best

model to be selected for the data. We employ the
Bayesian model selection methodology for this task.
Bayesian model selection criterion trades off the fit-
ness of model to the complexity of the model. The

best model selected using the Bayesian model selec-
tion criterion is the one that is compact in size and is
adequately describes the data.

3. A Bayesian approach for learning HMM from

data

Recently, Bayesian methods have received much at-
tention in developing model learning techniques [17–
19]. In this section, we first review the Bayesian model

selection methodology. Then we discuss how it is
adapted to solve the HMM learning problem.

3.1. Bayesian model selection

Given data X , and a model, M , derived from X ,
Bayes theorem defines the posterior probability of the

model, P (M |X), as:

P (M |X) =
P (X |M)P (M)

P (X)
, (1)

where P (X) and P (M) are prior probabilities of the

data and the model, respectively, and P (X |M) is the

marginal likelihood of the data. The prior probability of

the data is unchanged across different models. There-

fore, for model comparison purposes, we can express

P (M |X) ∝ P (X |M)P (M). Assuming all models

are equally likely a priori, we can reduce the poste-

rior probability to depend on the marginal likelihood

only, i.e., P (M |X) ∝ P (X |M). Using this formal-

ization, we define the best model as the one that gives

the highest marginal likelihood.

Computing the marginal likelihood for complex

models has been an active research area [20–23]. Given

the parameter configuration, θ, of a model, M , the

marginal likelihood of the data is computed as

P (X |M) =

∫

θ

P (X |θ,M)P (θ|M)dθ. (2)

A class of approximation techniques, Monte-Carlo

methods, have received a great deal of attention in

the statistics community [20,24]. Although, in theory,

these techniques are known to converge to produce ac-

curate results, they are computationally too expensive

to be of practical use on non-trivial size data sets. An

alternative class of approximation techniques is based

on the large sample properties of probability distribu-

tions. They are computationally much more efficient

than Monte-Carlo techniques, and provide accurate re-

sults when certain assumptions hold. In this section,

we look at three marginal likelihood approximation

methods: (i) the Laplace approximation [22], (ii) the

Bayesian Information Criterion (BIC) [22,23,25], and

(iii) the Cheeseman-Stutz approximation [26].

The Laplace approximation

The Laplace approximation is widely used by

Bayesian statisticians. For large amounts of data,

P (θ|X,M) ∝ P (X |θ,M) · P (θ|M) can often be ap-

proximated as a multivariate Gaussian distribution [22].

In particular, define

g(θ) ≡ log(P (X |θ,M) · P (θ|M)). (3)

Let θ̃ to be the parameter configuration that maxi-

mizes g(θ).
This parameter configuration also maximizes P (θ|

X,M), and is known as the Maximum a Poste-

rior(MAP) configuration for θ. A second degree Taylor

polynomial approximation for g(θ) at θ̃ yields:
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g(θ) ≈ g(θ̃) − 1

2
(θ − θ̃)A(θ − θ̃)t, (4)

where (θ − θ̃)t is the transpose of row vector (θ − θ̃),
and A is the negative Hessian of g(θ) evaluated at θ̃.

Computing eg(θ) and using equation 3, we obtain

P (θ|X,M)
∝ P (X |θ,M)P (θ|M)

≈ P (X |θ̃,M)P (θ̃|M)e{−
1

2
(θ−θ̃)A(θ−θ̃)t}

(5)

Integrating both sides of Eq. 5 over θ, and taking the

logarithm of the result, we obtain the Laplace approxi-

mation of the marginal likelihood:

logP (X |M)

≈ logP (X |θ̃,M) + logP (θ̃|M) (6)

+
d

2
log(2π) − 1

2
log |A|,

where d is the dimension of g(θ). It has been shown

that under certain regularity conditions, the Laplace

approximation is quite accurate, but its computation is

expensive, in particular the computation of the negative

Hessian [22].

Bayesian Information Criterion (BIC)

BIC [25], is derived from the Laplace approxima-

tion [22]. By retaining only the terms in equation 7

whose computational complexity increases with the

size of data, N :

1. logP (X |θ̃,M), which increases linearly withN ,

and

2. log|A|, which increases as d · logN ,

we obtain the very efficient but less accurate BIC ap-

proximation. Also, for large N , θ̃ can be approximated

by the ML parameter configuration, θ̂. Thus, we have:

logP (M |X) = logP (X |M, θ̂) − d

2
logN. (7)

The first term in the BIC computation, logP (X |M,

θ̂), is the likelihood term which tends to favor larger

and more detailed models of data. The second term,

− d
2 logN , is the model complexity penalty term. d

represents the number of significant parameters in the

model. The larger and more complex the model, the

larger the d value, thus a higher model complexity

penalty. This term bias the selection of simpler models

with a smaller number of parameters. BIC selects the

best model for the data by trading off these two terms.

By using the model complexity term, the BIC measure

automatically enforces the Occam’s principle for fa-

voring the simplest model which explains the observa-

tions. BIC is considered to be equivalent to Rissanen’s

Minimum Description Length (MDL) measure [27] de-

rived from information theory. They both find models

that are a good fit to data, and they both favor smaller

models. BIC uses the model complexity penalty term

to penalize large models that require a larger number

of parameters to characterize the model. MDL selects

the best model that can be encoded using the minimum

number of bits in machine code. Larger models contain

more information to be encoded, i.e., more parameters

and more structure information [28]. Thus more bits

are required to encode the models, and, therefore, are

less favored.

Cheeseman-Stutz(CS) Approximation

Cheeseman and Stutz first proposed the CS approxi-

mation method for marginal likelihood computation in

their Bayesian clustering system, AUTOCLASS [26]

by defining:

P (X |M) = P (X ′|M)
P (X |M)

P (X ′|M)
, (8)

where X ′ represents the data with known cluster la-

bels (known data), and X represents data that is not la-

beled with cluster information (incomplete data). The

first term is the marginal likelihood of the known data.

An exact computation of this term involves integration

through all possible parameter configurations of the

model as in Eq. 2. The integration is approximated by

a summation over a set of local maximum parameter

configurations, θs [26,29]:

P (X ′|M) =

∫

P (θ|M)P (X ′|θ,M)dθ

(9)
≈

∑

θ∈θs

P (θ|M)P (X ′|θ,M).

To reduce computation, in our work, we have

further extended this approximation by using a sin-

gle maximum likelihood configuration, θ̂, θ̂ ∈ θs,

to approximate the summation, i.e., P (X ′|M) ≈
P (θ̂|M)P (X ′|θ̂,M).

The second term in the CS approximation is a gross

adjustment term. Both its numerator and denominator

are expanded using the BIC measure. Ignoring differ-

ences between the penalty terms in the numerator and

the denominator, we obtain:

logP (X |M) ≈ logP (θ̂|M)
(10)

+ logP (X |θ̂,M),
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where X is the incomplete data. P (θ̂|M) is the prior

probability of the maximum likelihood model parame-

ters. It is computed as the product of the prior proba-

bilities of the individual parameters in the model. The

larger and more complex the model is, the more pa-

rameters are involved, thus the smaller the product.

This, again, automatically enforces the Occam’s razor

principle for selecting the simpler models for the data.

3.2. Bayesian model selection for HMM model size

selection

Our goal for HMM model size selection is to con-

struct the HMM, λ, with the smallest number of states

that best models the data, X. In the Bayesian model

selection framework, the best model size is the one,

which when coupled with its ML parameter configura-

tion, gives the highest model posterior probability, or

marginal likelihood. In this section, we describe how

the BIC and the CS approximations for marginal like-

lihood computation are adapted for the HMM model

size selection task.

3.2.1. Approximate marginal likelihood for HMM

model size selection

Applying the BIC approximation, the marginal like-

lihood of the HMM λ for data X is computed as:

logP (X |λ)

≈ logP (X |λ, θ̂) − d
2 logN

=

N
∑

i=1

logP (xi|λ, θ̂) −
d

2
logN,

(11)

where N represents the number of objects in X , d is

the number of significant parameters2 and θ represents

the ML parameters in λ. The likelihood of individual

objects xi given model λ, logP (xi|λ, θ̂) is computed

using the forward procedure [3].

On the other hand, when applying the CS approxima-

tion, the marginal likelihood of HMM λ is computed as

the sum of data likelihood and model prior probability.

For the model prior probability computation, we make

the following assumptions:

2Significant parameters include all the parameters for emission

probability definitions and only the initial probabilities and transition

probabilities that are greater than a predefined threshold value t. t is

chosen to be 10−3 for all experiments conducted in this paper.

– For a HMM withM distinct states, the set of initial
state probabilities, πi, i = 1, . . . ,M , and the tran-
sition probabilities between pairwise states, aij ,
1 � i, j � M , follow the multinomial distribu-

tion, πi � 0,

M
∑

i=1

πi = 1, and aij � 0,

M
∑

j=1

aij =

1, for 1 � i � M . Following Cheeseman and
Stutz’s work [26], the prior probability distribution
of the transition parameter values are assumed to
follow the Dirichlet distribution [30]:

P (ai1, . . . , aiM |λ)

= Dirichlet(ai1, . . . , aiM |λ, α1,
(12)

. . . , αM )

≈
M
∏

j=1

a
αj

ij , (1 � i � M).

P (π1, . . . , πM |λ) ≈
M
∏

j=1

π
αj

j , (13)

The non-negative hyper-parameters, the α ′
js, mea-

sure the confidence of the prior probability of the
model parameters. We choose a uniform distribu-
tion over all αj ’s (i.e., we assume all the α values
are equal).

– For parameters that define the emission probabil-
ities, we assume that the feature mean values in
each state, µi, are uniformly distributed, and the
standard deviation in each state, σi, follow Jeffer-
y’s prior distribution

P (µf |λ) =
1

µfmax
− µfmin

, (14)

P (σf |λ) = σ−1
f [log

σfmax

σfmin

]−1, (15)

where µf and σf represents the mean and stan-
dard deviation value for the f th temporal feature,
and µfmax

/µfmin
and σfmax

/σfmin
are the maxi-

mum/minimum mean and standard deviation val-
ues for feature f .

Therefore, the prior probability of the ML parameters
of a HMM is:

logP (θ̂|λ)

≈ log[(
∏M

i=1 P (ai1, . . . , aiM |λ))·
P (π1, . . . , πM |λ)·
∏M

i=1

∏F
f=1(P (µif |λ) · P (σif |λ))]

∝ log[(
∏M

i=1

∏M
j=1 a

αj

ij ) · (∏M
j=1 π

αj

j )·
∏M

i=1

∏F
f=1(

1
µfmax

−µfmin

·
σf

−1[log
σfmax

σfmin

]−1)],

(16)
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and the CS approximation of the marginal likelihood

for the HMM is:

logP (X |λ)

≈ logP (θ̂|λ) + logP (X |θ̂, λ)

∝
M
∑

i=1

M
∑

j=1

log(a
αj

ij ) +

M
∑

j=1

log(π
αj

j )

+

M
∑

i=1

F
∑

f=1

log( 1
µfmax

−µfmin

· σif
−1 · [log

σfmax

σfmin

]−1)

+

N
∑

i=1

logP (xi|θ̂, λ).

(17)

3.2.2. Characteristics of the BIC and CS measures

To show the characteristics of the BIC and the CS

measures for HMM model size selection, we con-

structed a four-state HMM, λ, using the model con-

struction procedure described in Fig. 7. 15 Data ob-

jects are generated from λ by assuming a probabilistic

walk through the HMM. Each data object is described

by two temporal features and the length of the temporal

sequence is 100.

Figure 3 shows the data likelihood, the model com-

plexity penalty/model prior probability, and the BIC

and CS values, for the data set. The dashed lines show

the likelihood values of data given the learned HMMs

of different sizes. The dotted lines show the value of

the penalty term (Fig. 3(a)) and the parameter prior

probability (Fig. 3(b)) for each model. The solid lines

show the BIC (Fig. 3(a)) and CS (Fig. 3(b)) measures as

a combination of the above two terms. We observe that

as the size of the model increases, the model likelihood

also increases and the model complexity penalty and

model prior probability decreases monotonically. Both

BIC and CS have their highest value corresponding to

the correct model size, 4. Given this characteristic of

the BIC and the CS measures, when data provided is

sufficient, the optimal HMM model size for data may

be selected by choosing the model size that corresponds

to the highest BIC and CS values.

A number of previous studies have established the

dependency between the accuracy of the structure de-

rived versus the amount of data available in model se-

lection problems [28,31,32]. An empirical study of

this dependency relation for the HMM learning prob-

lem using the BIC and the CS measures as the model

selection criteria is presented in a forthcoming paper.

In this paper, we assume that the data provided is suf-

ficient for model learning purposes. Next, we discuss

our heuristic search control structure for HMM model

size selection using the BIC and CS measures. The

approach is designed based on the assumption that data

provided is sufficient for the learning of HMM model

size and model parameters.

3.3. Heuristic search control for HMM model size

selection

Under the assumption that the data provided is suffi-

cient and complete, the characteristics of the BIC and

CS measures allow us to employ a sequential model

expansion strategy with an objective stopping criterion.

The expansion process starts with the smallest HMM

model, i.e., a one state HMM. The size of the model

is increased in steps of 1. After each model expansion

step, the parameters of the HMM model is estimated

from data using the Baum-Welch procedure. Then, the

model is evaluated using the BIC or the CS measure. If

the score of the current model decreases from that of the

previous model, we conclude that we have just passed

the peak value, and accept the previous model as our

best model. Otherwise, we continue with the model

expansion process. Figure 4 illustrates this iterative

search process to determine the HMM size.

Our methodology is similar to the successive state

splitting (SSS) approach [16] in that both approaches

start with the minimum size model, and increase the

model size in the smallest increment until the best

model is found. However, our method differs from the

SSS approach in the way model parameters are esti-

mated. Instead of performing a local adjustment of pa-

rameter values of “affected states” after a state is split,

as in SSS, our method performs a global update of the

parameters of the entire model after each model ex-

pansion step. “Local parameter adjustment” has been

shown to generate sub-optimal parameter estimations.

In addition, SSS relies on pre-defined model size for

terminating the model expansion process, while our

method employs an object criterion function for deter-

mining the termination condition for the model expan-

sion process.

3.4. HMM model parameter initialization

The quality of the HMM model size selection pro-

cess is closely linked to the accurate estimation of the

HMM parameter values. Like other iterative maximum

likelihood approaches, the accuracy of the parameter

values estimated using the Baum Welch procedure de-

pends on the quality of the initial parameter values of
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Fig. 3. The characteristics of the BIC and CS measures for HMM model size selection using sufficient data.
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Fig. 4. The model expansion process for HMM model size selection.

the model. The Viterbi initialization process is one way

of starting with initial parameter values that are better

than random. However, it suffers from a number of

limitations that we discussed earlier. To address these

shortcomings, we have developed a new parameter ini-

tialization scheme based on the K-means static data

clustering algorithm [33], that we call the Clustering

initialization process. Our empirical results show that

it generates better initial parameter values resulting in

more accurate model determination.

The Clustering HMM initialization procedure can be

described as a four step process, as illustrated in Fig. 5.

Given a data set of N objects, described by F temporal

features, and each feature has sequence length L, the

four steps in the Clustering initialization procedure for

a M state HMM can be described as:

Step 1: Convert the temporal data into data vector of

size N × L by treating temporal values collected

at individual time steps as a static value vector of

dimension F .

Step 2: Apply the K-means clustering algorithm [33]

to partition this data set into M groups. The struc-

ture derived is the one with the minimum overall

mean squared error for this M -cluster configura-

tion.

Step 3: Compute the centroids (mean, standard de-

viation) of these M groups. These vectors be-

come the initial emission parameter values of the

M state HMM.

Step 4: Map the individual value vectors in the static

data and their group information back to their orig-

inal positions in the temporal sequences. Accu-

mulate the frequencies of occurrence of the value

vectors in all the sequences. Then assign the accu-

mulated frequency statistics to the corresponding

transition parameters in the model.

The Clustering initialization method takes a more

global approach to computing the initial state definition

than the Viterbi initialization method. Furthermore,

since this method depends entirely on data, and not

on yet another initial model parameter configuration,

the resulting configuration is more stable. Therefore,

the state definitions derived for the clusters are better

than those based on the Viterbi method. This, in turn,
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Fig. 5. The Clustering parameter initialization method for HMM.

generates transition probabilities that are closer to the

true probabilities. Since the parameter configuration

derived via the Clustering initialization is closer to the

ML parameter configuration, it requires fewer Baum

Welch iterations for the configuration to converge to

the ML configuration. In the experimental section, we

demonstrate that the Clustering initialization results in

lesser BW iterations before convergence, and the HMM

models derived based on the Clustering initialization

are of a higher quality than those derived based on the

Viterbi initialization.

4. Experimental evaluation

In this section, we experimentally evaluate the

Bayesian HMM learning procedure. The following

three experiments were conducted to evaluate:

– the effectiveness of the HMM model size selection

using the BIC and CS measures,

– the effectiveness of the Clustering parameter ini-

tialization scheme in comparison to the Viterbi pa-

rameter initialization method for the Baum-Welch

parameter estimation procedure, and

– the accuracy of the HMM learning algorithm when

compared to the generating HMM.

All experiments are conducted using artificially gen-

erated data. We first describe the model and data gen-

eration process. Then, we discuss the criteria used for

evaluating the experimental results. Finally, we discuss

the experimental results and the interpretation of these

results.

4.1. Model and data generation

4.1.1. HMM model generation

For experiments one and two, HMMs of different

sizes were constructed using the following two step

proces:

step 1: assign state definitions by defining the emis-

sion pdfs for individual features in each state.

The mean and standard deviation values were ran-

domly sampled from value ranges [0, 100] and

[0,5], respectively.

step 2: assign the state initial and transition prob-

abilities by random sampling from a value range

[0, 1], and then normalize the probabilities to en-

sure

M
∑

i=1

πi = 1, and

M
∑

j=1

aij = 1, i = 1, . . . ,M ,

where M is the number of states in a model.

The goal of the third experiment is to study the mod-

eling capabilities of the HMM learning procedure. To

facilitate this, the separability of the state definitions

for the HMMs, from which the data was generated, was

varied systematically. All the models had four states.
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Fig. 6. The construction of 4-state HMMs of different state separability as controlled by δ1 and δ2 values.

We divided the four states of each model into two pairs:

the base pair had states S1 and S2, and the contrasting

pair had states S3 and S4. The data objects were de-

scribed by two temporal features. Therefore, the HMM

state definitions, i.e., the mean and standard derivation

of the emission parameters were mapped onto the two-

dimensional space. Two parameters, δ1 and δ2, are

used to set the distance between the base pair of states

and the distance between the contrasting pair of states

to the base pair of states, respectively. The distance

between the base pair of states, S1 and S2, is defined

by:

D(S1, S2)

= δ1 ·
√

(σx
1 + σx

2 )2 + (σy
1 + σy

2 )2,

where (σx
1 , σ

y
1 ) and (σx

2 , σ
y
2 ) are standard deviations of

the two features in state S1 and S2 respectively. The

distance from the contrasting pair to the mid point,Sm,

of the base pair of states is defined as:

D(S3, Sm) = δ2 · (
√

2σx
3 + σd), and

D(S4, Sm) = δ2 · (
√

2σx
4 + σd),

where (σx
3 = σy

3 ) and (σx
4 = σy

4 ) are the standard de-

viations of the two features in states S3 and S4 respec-

tively, and σd = 1
2 [max(σx

1 , σ
y
1 ) + max(σx

2 , σ
y
2 )]. To

create HMMs of varying state separability, the value of

δ1 was varied between 0.5 and 3.0. For every value of

δ1, i.e., every position of the two base states, the value

of δ2 is gradually varied between 0.1 and 3.0.

The higher the δ1 value, the more separated are the

pair of the base pair of states, and the higher the δ2 val-

ues, the more separated are the contrasting pair of states

to the base pair. The HMMs having δ1 = 3.0, δ2 = 3.0
is the easiest to be rediscovered from data. The HMMs

having δ1 = 0.5, δ2 = 3.0 is the hardest to be redis-

covered from data. A step by step description of the

procedure for generating the model parameters is given

in Fig. 7 and illustrated in Fig. 6.

4.1.2. HMM based temporal data generation

Temporal data is generated by assuming a proba-

bilistic walk through the model. Successor states are

a function of the current state and the transition prob-

abilities from that state. The initial state is selected

randomly with the probability of picking a particular

state i being a direct function of πi. The data gener-

ated within each state corresponds the pdf for that state.

The HMM based temporal data generation procedure

is summarized in Fig. 8.

Data sets containing varying number of data objects

(between 10 and 60) were generated from different

HMMs. Each data object is described by two temporal

features, and the sequence length of each feature is set

to 100.

For experiments one and two, we generated five dif-

ferent HMMs for each of the four model sizes: 5, 10,
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Fig. 7. Model generation procedure for 4-state HMMs with different state separability, controlled by (δ1, δ2).

15, and 20 states. For experiment three, for each pair

of (δ1, δ2) values, five different HMMs are generated.

One data set is created from each of these generating

HMMs.

4.2. Performance measures

We evaluate the quality of the derived HMMs using

the following criteria: (i) the likelihood of the training

data computed from the converged HMM, (ii) the size

of the HMM derived from data, and (iii) the normal-

ized difference in parameter values between the derive

HMM and the true HMM. We compare the effective-

ness of the two HMM initialization methods by com-

paring the number of iterations it took for the Baum

Welch procedure to converge. Each of these criteria is

described in more detail next.

– Data likelihood Data likelihood measures the log

likelihood of data to a given HMM model. For a

data set X , with N objects, and a HMM, (θ, λ),

trained on X , the log likelihood of data is com-

puted as:

logP (X |θ, λ) =

N
∑

i=1

logP (Xi|θ, λ). (18)

Given the same data and the same HMM model

size, the higher the data likelihood, the better fit

between the model and the data.

– HMM model size Starting with data generated from

a M -state HMM, the closer the size of the derived

HMM model is to the true model size, M , the

better the model size selection method.

– Normalized difference in model parameter values

To evaluate the quality of a derived HMM, we

compare the parameter values of the derived model

to those of the generating model if they are of the

same size. This is done in two steps. First, the cor-

respondence between the states in the derived and

the generating models were established by match-

ing states that are the closest in emission defini-
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Fig. 8. HMM based temporal data generation.

tions. Next, the normalized difference between

the corresponding emission parameter values and

the transition probability values is computed as:

Normalized difference in emission

parameters =
Aik − Âik

Âik

,

whereAik and Âik are the emission parameters for

state i, feature k, in the derived and the generating

HMMs respectively, and

Normalized difference in transition

probabilities =
Bij − B̂ij

B̂ij

,

where Bij and B̂ij are the transition probabili-

ties from state i to state j in the derived and the

generating model respectively.

– BW iterations We measure the total number of

Baum Welch iterations required for the parameters

of a HMM to converge after initialization.

4.3. Experimental results and interpretation

4.3.1. Experiment one: Effectiveness of the

Clustering parameter initialization method

The first part of this experiment compares the Clus-

tering and the Viterbi HMM parameter initialization

methods in terms of (i) the number of Baum Welch it-

erations each takes for convergence after the initializa-

tion, and (ii) the quality of the derived HMMs, mea-

sured in terms of the log likelihood of the training data

given the derived models.

Figure 9 compares the log data likelihood, and the

number of Baum Welch iterations required for HMM

convergenceusing the two initialization methods. In all

cases, the HMMs derived from the Clustering initial-

ization have an equal or higher data log likelihood than

those derived from the Viterbi initialization. Further-

more, the Baum Welch procedure performed after the

Clustering initialization requires many fewer iterations

for convergence than after the Viterbi initialization.

Table 1

HMM sizes re-discovered based on the Clustering and the Viterbi

parameter initialization methods. The mean and standard deviation

values are computed from HMM sizes selected over five different

data sets

True HMM size HMM initialization methods

Clustering Viterbi

5 5(0) 5.6(0.49)

10 10(0) 10.2(1.17)

15 13(2.2) 7.6(0.8)

20 19.6(1.35) 9(2.37)

The second part of this experiment compares the

HMM sizes selected when the two initialization meth-

ods were applied. Table 1 illustrates the mean and

standard deviation values of the HMM sizes rediscov-

ered from the data. The results show that HMM size

selection based on the Clustering initialization method

is more effective in finding the optimal HMM size for

the data than when the Viterbi initialization method is

used. It is observed that when the Viterbi initializa-

tion method is applied, in most cases, the HMM sizes

selected are sub-optimal, i.e., the sizes of the derived

HMMs are smaller than those of the true HMMs. On

the other hand, the HMM sizes derived using the Clus-

tering initialization correspond to the true HMM sizes

in most cases.

Results from these two experiments show that the

Clustering initialization method is a better choice than

the Viterbi initialization for HMM parameter initializa-

tion. Therefore, the Clustering HMM parameter ini-

tialization was used in all subsequent experiments.

4.3.2. Experiment two: Effectiveness of the BIC and

CS measures in HMM size selection

This experiment compares the effectiveness of the

BIC and CS measures in selecting the optimal HMM

size for data. Both the BIC and CS criteria measure

the fit between the model and data in terms of the data

likelihood. The difference between the two measures

lies in the model complexity penalty computation. 3

3The CS measure computes the prior probability of the models.

When minimum prior knowledge is assumed, i.e., in our case, we
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Fig. 9. Comparing the Clustering and the Viterbi HMM parameter initialization methods with HMMs of different sizes.

The model complexity penalty computation in BIC fo-
cuses on the size of the model in terms of the number of
significant parameters in the model. The model com-
plexity penalty is directly proportional to the number
of the significant parameters in the model. The model
complexity penalty computation in CS focuses not only
on the size of the model but also the actual values of

assume uniform α values for the prior computation of all state ini-

tial probabilities and transition probabilities, model prior probabil-

ity computation can be thought of as another way of computing the

penalty for model complexity.

the model parameters. Model prior probability is com-
puted as the sum of the log prior probabilities of the
individual parameter values.

When the model contains many transition probabil-
ities of very small values, for example, when the size
of the model becomes large, the log prior probability
generated based on these parameter values can be quite
low. This leads to a rather small CS value for the model.
This may lead to the case where the CS measure peaks
at HMM sizes that are smaller than the true optimal
model size for the data. We refer to this problem the
low transition value problem.
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Table 2

Comparing the BIC and CS measures for HMM model size selection.

Results shown here are the mean and standard deviation values (in

parenthesis) of the HMM model sizes selected from five different

HMMs

True HMM size Criterion measures

BIC CS

5 5(0) 5(0)

10 10(0) 10(0)

15 13(2.2) 13.2(2.2)

20 19.6(1.35) 17.8(1.6)

Table 2 shows the mean and the standard deviation
values of the HMM sizes selected for data. It is ob-
served that the HMM sizes derived using the two mea-
sures are comparable. In particular, they selected the
same HMM sizes for generating HMMs of 5, 10, and
15 states. For 20-state generating HMMs, the HMM
sizes derived using the BIC measure are slightly better
than those selected using the CS measure. This can
be attributed to the low transition probability problem

discussed earlier.
It can be concluded that:

– the BIC measure performs equally well for gener-
ating HMMs across different sizes;

– The BIC and CS measures are comparable for
HMM size selection when the generating HMMs
are relatively small; and

– The CS measure is not reliable when the generating
HMMs are large

For the rest of the experiments, the BIC measure was
used for HMM size selection.

4.3.3. Experiment three: Effectiveness of the

Bayesian HMM learning method

In this experiment, we perform a comprehensive
study of the effectiveness of our Bayesian HMM learn-
ing method. We study the robustness of the HMM size
selection and the accuracy of the HMM parameter value
estimation, using 4-state generating HMMs of varying
difficulty levels. The difficulty level for the generating
HMMs is controlled by two variables, δ1 and δ2. For
each pair of (δ1, δ2) values, five different generating
HMMs were created. One data set is generated based
on each generating HMM.

Table 3 presents the mean and standard deviation
values of the HMM sizes selected for generating HMMs
of different δ1 and δ2 values. It is observed that:

– the HMM size selection method is quite effective.
In almost all cases, it correctly rediscovers the
HMM sizes for generating HMMs with δ1 values
between 1 to 3, and δ2 values between 1 and 3;
and

Table 3

HMM sizes rediscovered for data generated based on different δ1
and δ2 values. Mean and standard deviation values (in parenthesis)

are computed from data set generated from five different HMMs

with the same (δ1, δ2) values

HMM size δ2

ց 3 2 1 0.5 0.1

δ1 3 4 4 4 3.2 3.4

(0) (0) (0) (0.285) (1.1)

2 4 4 4 4 3.4

(0) (0) (0) (0) (1.1)

1 3.8 4 4 3.8 3.2

(0.285) (0) (0) (0.285) (0.285)

0.5 3.2 4 3.8 3.8 2.4
(1.67) (0) (0.285) (0.285) (0.55)

– the performance of the model selection algorithm
is dependent on the separability of the state defi-

nitions of the model. The closer the state defini-
tions are to each other, the harder it is to rediscover
the correct model size. For any fixed δ1 value, as

the δ2 value decreases from 3 to 0.1, the average
size of the derived HMMs deviate more and more

from the true model size. Similarly, when δ2 is
fixed and the value of δ1 is decreased from 3 to

0.5, the average sizes of the derived HMMs devi-
ate more and more from the true model size. In
the first case, the obvious break point, i.e., from

which point on most derived models fail to recover
the correct model size, is δ2 = 0.1. In the second

case, the break point occurs when δ1 = 0.5. The
performance of the algorithm is the worst when
both δ1 and δ2 are reduced to the smallest value,

i.e., when δ1 = 0.5 and δ2 = 0.1.

Next, we compare the parameter values of the re-

discovered HMMs to those of the generating HMMs.
Comparisons are only made for rediscovered HMMs

having size equal to that of the generating HMMs. Re-
sults are not shown for the δ1 = 0.5, δ2 = 0.1 runs
because HMMs derived for all five data sets have sizes

different from those of the generating HMMs.
Tables 4 and 5 show the mean and standard deviation

values of the normalized differences of the emission
parameter values and the transition parameter values
between the derived and the generating HMMs, respec-

tively. It is observed that:

– the normalized differences in both sets of parame-

ters are within a reasonable range. All differences
for emission parameters are between 0.008 and
0.04, a majority of which are around 0.01. The

differences in transition parameters are between
0.1 and 0.72, with a majority of differences in the

range between 0.1 to 0.2; and
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Table 4

Normalized differences (mean and standard deviation values) in

HMM emission parameter values between the derived and the true

HMMs

Normalized δ2

difference ց 3 2 1 0.5 0.1

δ1 3 0.009 0.01 0.01 0.01 0.01

(0.01) (0.01) (0.01) (0.01) (0.01)

2 0.008 0.01 0.016 0.01 0.02

(0.01) (0.02) (0.02) (0.02) (0.02)

1 0.01 0.01 0.01 0.03 0.02

(0.01) (0.01) (0.01) (0.04) (0.04)

0.5 0.01 0.02 0.02 0.04 –
(0.01) (0.04) (0.03) (0.06) –

Table 5

Normalized differences (mean and standard deviation values) in HMM

transition probabilities between the derived and the true HMMs

Normalized δ2

Difference ց 3 2 1 0.5 0.1

3 0.10 0.13 0.15 0.10 0.15

(0.1) (0.012) (0.19) (0.17) (0.22)
2 0.09 0.19 0.14 0.15 0.65

δ1 (0.1) (0.27) (0.17) (0.18) (1.75)

1 0.13 0.19 0.21 0.22 0.2

(0.16) (0.28) (0.22) (0.23) (0.2)

0.5 0.23 0.17 0.25 0.72 –

(0.41) (0.28) (0.46) (1.48) –

– the overall normalized differences in emission pa-

rameters are an order of magnitude smaller than

the differences in transition parameters. This is

because the focus of the Clustering parameter ini-

tialization is on determining the state definition of

the HMMs. Transition probabilities are computed

based on the frequency counts of sequence values
changing states in consecutive time steps. Any

small error that occurs in estimating the state emis-

sion definitions will be magnified when estimating

the transition probabilities. This also explains the

observation that, as the difficulty level for the gen-

erating HMMs increases, the normalized differ-

ences of the emission parameters are less signifi-
cant than the differences observed in the transition

parameters.

Finally, we study the two exceptional cases that we

observed in this experiment. The first case is observed

for (δ1 = 1, δ2 = 3). Out of the five data generated

for this case, the size of the generating HMM was not
correctly rediscovered. This is considered exceptional

because when δ1 was kept at 1 and δ2 was reduced

to 2, the optimal sizes of all five generating HMMs

were correctly rediscovered. In the second case, when

(δ1 = 3, δ2 = 0.5), the optimal sizes of two of the

five generating HMMs were not correctly rediscovered.

This is also exceptional because when δ2 was kept at

0.5 and δ1 was reduced to 2, the optimal sizes of all

five generating HMMs were correctly rediscovered. A

closer examination of these exceptional cases show that

they are all due to the same problem that is the Baum

Welch procedure converges to local maxima param-

eter values. For example, for the case observed for

(δ1 = 1, δ2 = 3), when the data was modeled with a 3-

state HMM, because of the close proximity between the

base pair of states, the two were combined into a single

state, while the contrasting pair of states were correctly

modeled with separate states. When the size of the

HMM was increased to four, the converged HMM pa-

rameter values represented a local maxima parameter

configuration. One of the contrasting state split into

two states, while the base pair of states remained in a

single state. The BIC value for this 4-state HMM was

smaller than that of the 3-state HMM. Therefore, 3 was

picked by the HMM model size selection procedure as

the optimal HMM size for the data. Further analysis

of the generating HMM reveals the reason for the con-

vergence to the local maxima parameter configuration.

For this generating HMM, σx and σy associated with

one of the contrasting states are large (close to 5), yet

the σ values associated with the two base states are

rather small (around 1). When the Clustering param-
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eter initialization method was used to determine the

initial parameters of the 4-state HMM, the parameters

corresponding to the local maxima configuration was

favored because the mean squared error from this con-

figuration was smaller than that of the optimal config-

uration. Once this inferior initial parameter configura-

tion is adopted, it is very difficult for the hill climbing

Baum Welch procedure to leap out of the local maxima

configuration region.

5. Conclusions and future work

Our focus in this paper is on modeling dynamic sys-

tem behavior by learning the HMMs from temporal se-

quence data collected from the system. One problem

that prevented the HMM methodology from being used

in a wider range of domains is the requirement of pre-

defining the structure of the HMM to be learned, i.e.,

the number of states in the model. Our Bayesian HMM

learning approach addresses this problem by adopting

the Bayesian model selection methodology for select-

ing the best size of the HMM learned from data. To take

advantage of the characteristics of the Bayesian model

selection criterion functions, a model expansion search

control structure is employed that examines HMMs

of gradually larger sizes, and stops the search process

when further expansion of model size does not improve

the quality of the model. In addition to the heuristic

procedure on HMM size selection, we also introduced

a new HMM parameter initialization procedure that is

based on the static numeric data clustering algorithm.

We experimentally demonstrated the effectiveness of

the proposed Bayesian HMM learning method using ar-

tificially generated data. We compared the BIC and CS

measures for the model selection task and concluded

that the BIC measure produces more consistent results.

We also compared the Clustering parameter initializa-

tion method with the traditional Viterbi initialization

method and showed that the Clustering parameter ini-

tialization method leads to better quality HMM param-

eter values in shorter time period than the Viterbi ini-

tialization. From the study of the overall performance

of our HMM learning method, we conclude that this

procedure is able to find the correct model sizes and pa-

rameter values quite accurately for generating HMMs

of a wide range of difficulty levels.

The next step is to apply this method to real world

examples. When dealing with real world examples,

there are a number of issues that needs to be addressed.

First of all, in all our experiments, we made the sim-

plifying assumption that all temporal features are inde-

pendent of each other. This may not be true for real

world data. Therefore, the state emission definitions

need to be modified to accommodate feature depen-

dence relations. Secondly, real world data tends to

contain noises. As discussed in the experiment sec-

tion, the Baum Welch parameter estimation procedure

is quite sensitive to the data and may converge to local

maxima parameter configuration. Noise in data makes

the accurate parameter estimation task even more diffi-

cult. Finally, it is the problem of model interpretation.

The goal of applying this method to real world data is

to be able to understand the dynamic behavior of the

system being modeled by studying the HMM derived

from the system data. This typically should involve two

steps. First, assign domain specific labels/meanings to

the HMM states by interpreting the state emission defi-

nitions using domain knowledge. These correspond to

the set of stages going through by the system. Then,

interpret the dynamics of the system in terms of how

it moves among the set of stages by studying the state

transition probabilities.
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