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Abstract

Objective—Direct reading instruments are valuable tools for measuring exposure as they provide 

real-time measurements for rapid decision making. However, their use is limited to general survey 

applications in part due to issues related to their performance. Moreover, statistical analysis of 

real-time data is complicated by autocorrelation among successive measurements, non-stationary 

time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian 

framework is proposed that accounts for non-stationary autocorrelation and LOD issues in 

exposure time-series data in order to model workplace factors that affect exposure and estimate 

summary statistics for tasks or other covariates of interest.

Method—A spline-based approach is used to model non-stationary autocorrelation with relatively 

few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over 

the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a 

Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects 

and fixed effects of covariates. The method is implemented using the rjags package in R, and is 

illustrated by applying it to real-time exposure data. Estimates for task means and covariates from 

the Bayesian model are compared to those from conventional frequentist models including linear 

regression, mixed-effects, and time-series models with different autocorrelation structures. 

Simulations studies are also conducted to evaluate method performance.

Results—Simulation studies with percent of measurements below the LOD ranging from 0 to 

50% showed lowest root mean squared errors for task means and the least biased standard 

deviations from the Bayesian model compared to the frequentist models across all levels of LOD. 

In the application, task means from the Bayesian model were similar to means from the frequentist 
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models, while the standard deviations were different. Parameter estimates for covariates were 

significant in some frequentist models, but in the Bayesian model their credible intervals contained 

zero; such discrepancies were observed in multiple datasets. Variance components from the 

Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, 

except for the auto-regressive moving average model. Plots of means from the Bayesian model 

showed good fit to the observed data.

Conclusion—The proposed Bayesian model provides an approach for modeling non-stationary 

autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, 

quantiles, and parameter estimates for covariates that are less biased and have better performance 

characteristics than some of the contemporary methods.
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Introduction

Direct reading real-time instruments are valuable tools for measuring exposure, and have 

traditionally been utilized as early warning devices to detect leaks, evaluate accidental 

exposures, or for emergency responses (Pearce and Coffey, 2011). They are appealing as 

they provide real-time or near-real time measurements eliminating the time-lag between 

sample collection and laboratory analysis, thus enabling rapid decision making. Real-time 

data also provide important information on the short-term variability of exposure within a 

work–shift which may be important for identification of exposure excursions, development 

of control strategies, and metrics of peak exposures for epidemiologic studies. Generally, the 

use of direct reading instruments for aerosols, gases, and vapors have been limited to general 

survey or screening applications in part due to their lack of specificity or due to issues 

related to their performance such as validity, precision, calibration etc. (Coffey and Pearce, 

2010). Presently, direct reading aerosol instruments are increasingly used to assess 

exposures to engineered nanomaterials, primarily as screening tools (Kuhlbusch et al., 2011; 

Ostraat et al., 2013). With the recent advances in sensor technology, especially 

nanotechnology-enabled sensors, there is renewed and growing interest in the development 

of direct reading instruments that have improved sensitivity, detection limit, specificity, 

multiplexing capability, and other performance characteristics (Sadik et al., 2009; van Zee et 

al., 2009). Direct reading instruments hold tremendous promise of novel exposure metrics 

for use in epidemiologic studies of acute effects or sensitization where peak exposures and 

patterns of exposure are important (Mihlan et al., 2000; Preller et al., 2004), as well as of 

identifying important time-varying factors such as tasks that affect exposure levels, thus 

offering opportunities for targeted control measures. To emphasize the importance of 

developing and using direct reading real-time instrumentation in exposure assessment, the 

National Institute for Occupational Safety and Health (NIOSH) launched the direct reading 

exposure assessment methods (DREAM) initiative in 2008 with the goal of enhancing the 

use of these technologies to improve worker health and safety (NIOSH, 2014). As part of 

this effort, NIOSH established the Center for Direct Reading and Sensor Technologies 

(NCDRST) in 2014 to coordinate research and develop guidance on direct reading and 
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sensor technologies. Despite their historical use and the renewed interest in direct reading 

instruments for exposure assessment, there is a paucity of published literature on the use of 

these instruments for quantitative occupational exposure assessment and epidemiology.

In the practice of industrial hygiene, measurement data are used for multiple purposes 

including estimating exposures for jobs or tasks for evaluating compliance with regulatory 

standards, for epidemiologic studies, or for assessing engineering controls or respiratory 

protection requirements. Real-time measurement with observations or self-reported activity 

diaries can be particularly useful for identifying high-exposure tasks to target interventions, 

however, reliably estimated summary measures such as the mean, geometric mean (GM), 

geometric standard deviation (GSD), and various quantiles such as the 95th percentile (P95) 

are needed to fully utilize these data. Modeling the determinants of real-time exposure 

measurements can provide task-specific exposure estimates taking into account fixed-effects 

covariates that may explain exposure variation within tasks, e.g. enclosures, engineering 

controls or materials used, and random effects of clustering around measurements taken on 

an individual, or within a specific workplace. In addition to the task-specific mean or GM, 

estimates of task-specific variation (e.g. GSD) and quantiles (e.g. P95) are essential to 

inform the appropriate selection of control measures (e.g. ventilation equipment or respirator 

selection) or in assigning short-duration task exposures to participants in epidemiologic 

studies, e.g. for exposure to cleaning chemicals among healthcare workers. However, 

statistical analysis of real-time data is made difficult by several issues in addition to the 

analytical issues associated with the performance of direct reading instruments such as lack 

of specificity or the presence of interferences. One is the high potential for non-stationary 

autocorrelation among successive measurements, especially when accounting for a variable 

microenvironment (i.e. task). Another is the presence of left-censoring due to limit-of-

detection (LOD). Thus there is a need for a statistical tool for modeling the determinants of 

real-time exposure data that can account for non-stationary autocorrelation, LOD 

measurements, fixed-effects covariates, hierarchical random effects, and provide a range of 

summary measures such as the mean, standard deviation, and various quantiles of interest.

A variety of approaches have been used to analyze autocorrelated exposure data in the 

occupational and environmental fields ranging from relatively simple approaches such as 

graphical presentation, time-weighted averages (Dodson et al., 2007), regression approaches, 

and some nonparametric tests (Brook et al., 2007), and time-series models (Oka et al., 2010; 

Entink et al., 2011) to more complex approaches recently proposed using Bayesian methods. 

For example, Oka et al. (2010) proposed an algorithm for estimating volatile organic 

compound (VOC) concentrations from time-series data using simple moving averages. 

Entink et al. (2011) proposed an ARIMA time-series approach using autoregressive 

correlation structure to analyze time-series data. More recently, Entink et al. (2015) 

proposed a Bayesian approach for analyzing nanoparticle data, fitting a multilevel model 

with first-order autoregressive error structure to address temporal autocorrelation. Clerc et 

al. (2013) proposed a Bayesian approach for analyzing nanoparticles, where the probability 

distribution of differences between source and far-field sampling points were estimated via 

Bayesian methods, but the approach does not provide data-generating statistical models.
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In general, time series obtained from personal real-time monitors can be thought of as either 

functional data (Ramsay and Silverman, 2002) or repeated measures data (Diggle et al., 

2002). The former approach, which assumes a uniform time domain over which the 

characteristics of a stochastic process are to be estimated, is complicated by the irregular 

lengths of the series over which the personal real-time data have been collected. The latter 

approach, which attempts to model autocorrelation within each series but does not require 

time domains of uniform length, is a more natural choice. However, most available software 

provide a limited number of choices in modeling the correlation within a series: compound 

symmetry (every measurement is equally correlated with every other measurement within a 

series); first-order autoregressive models (AR-1), which assume a correlation that 

exponentially decays with a larger time interval and is characterized by a single correlation 

parameter, e.g. AR-1 models, which assume equally spaced intervals, or conditional 

autoregressive (CAR) models which account for irregularity in interval spacing; or more 

general autoregressive-moving average (ARMA) models (Entink et al., 2011). These options 

are typically available in software for estimating linear mixed effects (LME) models, e.g. the 

lme function in R (nlme package) or the MIXED procedure in SAS; however, they all 

assume stationary time-series (i.e. time-series where the autocovariation parameters are 

constant throughout the series). Alternatives based on estimating marginal means (i.e. 

generalized estimating equations, or GEEs, models that do not require detailed specification 

of within-cluster correlation structure) are also available; these approaches employ simple 

yet unbiased models for estimating the fixed effects of interest but provide ‘robust’ standard 

error estimates that account for autocorrelation within a series. These methods tend to under-

perform when there are a small number of long series (Houseman et al., 2002); limitations 

can be mitigated by time-series bootstrap methods (Heagerty and Lumley, 2000), which 

partition a series into ‘windows’ that are resampled for standard error estimation, although it 

can be difficult to choose a window size and there are no standard software packages for 

implementation.

None of the methods described above simultaneously account for left-censoring in a 

rigorous manner, in every case requiring the ad-hoc and arbitrary substitution of some 

fraction of the LOD for left-censored values. Such substitution can lead to bias in statistical 

estimates (Antweiler and Taylor, 2008). It is possible to use multiple imputation to impute 

the left-censored values (Hopke et al., 2001), or else via quadrature methods (Thiébaut and 

Jacqmin-Gadda, 2004). These latter methods are relatively computationally intensive as they 

depend on resampling of one form or another.

In this article, we present a systematic Bayesian framework for analyzing exposure time-

series arising from real-time monitors. The proposed model, illustrated in Figure 1, has two 

components: (1) fixed-effects terms representing variables of interest (e.g. task indicators, 

microenvironment characteristics, or instrument indicators); and (2) a non-parametric term 

representing autocorrelated error processes. Because the model is constructed within a 

Bayesian framework, it can easily integrate over the censored part of the modeled 

distributions and can easily be extended to include hierarchical random effects such as 

worker nested within a workplace, nested within an industry. Our method is similar to that 

proposed by Entink et al. (2015), but we employ a spline-based approach to model 

autocorrelation, which allows for potential non-stationary autocorrelation and entails fewer 
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assumptions about the autocorrelation structure; we also address left-censoring due to 

LODs, and provide flexibility in accounting for potentially complex hierarchical 

relationships, fixed effects of exposure determinants and other covariates of interest. 

Although the computation is of complexity similar to those based on multiple imputation or 

quadrature, we have implemented it using the rjags package in R; this package is an R 

interface for the software Just Another Gibbs Sampler (JAGS), which provides 

comprehensive support for sampling from the posterior distribution of a Bayesian model, 

allowing for flexible modification of the model to fit specific exposure assessment needs, as 

well as flexible data manipulation via the functionality available in R.

We address the non-stationary autocorrelation using a spline approach that is common semi-

parametric modeling (Ruppert et al., 2003). Splines have been used extensively in the 

environmental statistics literature to account for autocorrelation (Paciorek and Schervish, 

2006; Gryparis et al., 2007; Torabi and Rosychuk, 2011). We apply the basic idea here to 

account for autocorrelation within the measurement time-series. One important issue is the 

selection of tuning parameters to properly constrain the spline coefficients, and to that end 

we employ a method proposed by Brumback et al. (1999), where the spline coefficients are 

embedded in a random effects model and the corresponding tuning parameter is represented 

by a variance component parameter.

In the following sections, we present a brief description of the approach, followed by an 

illustration of the method by applying it to real-time data, and ending with simulation studies 

to evaluate method performance.

Methods

Details of our proposed model, depicted schematically in Figure 1, appear in the 

Supplementary Methods section available online (Supplementary Online Material Part 1); 

we briefly describe its principal features here.

Bayesian spline model

We assume that n time-series Yi, i ∈ {1,…,n}, have been collected, each series of potentially 

varying length, and with each measurement corresponding to one of m designated 

occupational tasks. We also allow for the possibility that each measurement corresponds to a 

vector of covariates. Each measured value Yir (where r indexes individual sequential 

measurements) is assumed to be normally distributed, with mean µir depending upon a 

number of fixed effects (task-specific means and coefficients corresponding to covariates), 

task-specific measurement errors, and random series-specific effects. The latter random 

series-specific effects are represented as a stochastic error process, implemented using a B-

splines basis, and may also include a random series-specific intercept to account for 

heterogeneity in mean response across individual profiles. Additionally, we support task-

specific standard deviations. Finally, a variant of our model accounts for left censoring by 

LOD, which is a common feature in many exposure assessment settings.

While our proposed model is complicated to fit within a frequentist framework, it is 

relatively straight-forward to fit this model in a Bayesian paradigm using standard software 
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such as JAGS. JAGS compiles a model described using a standardized language that 

supports flexible Bayesian model specification, together with data informing the model and 

initial guesses at values representative of the posterior distribution, and returns a Markov 

chain representing values sampled from the posterior distribution. The fundamental principle 

used by JAGS is Gibbs Sampling, a well-known Markov-Chain-Monte-Carlo (MCMC) 

technique. In particular, Gibbs Sampling seamlessly integrates over unobserved portions of 

the model, e.g. hierarchical random effects and the left tail of below-detection observations.

Data source

We demonstrate our proposed analytical approach within the context of two exposure 

assessment scenarios. In our primary example, we used a dataset of real-time exposure to 

total volatile organic compounds (TVOC) among 141 workers over 207 days covering 14 

healthcare occupations at several hospitals described in detail by LeBouf et al. (2014). Full-

shift monitoring using seven real-time TVOC monitors (ppbRAE Plus monitor, RAE 

Systems, San Jose, CA, USA) as mobile-area samples was conducted to measure ppb-level 

TVOC concentrations. During exposure monitoring, information on exposure determinants 

such as tasks and activities, products used, tools used, control technologies etc., was 

recorded at 5-min intervals on standardized form for each study participant for the entire 

sampling duration as described by Saito et al. (2015). A wide range of tasks are performed 

by healthcare occupations from cleaning and laboratory tasks to patient care and 

administrative tasks. The averaging time of the sampling instruments was set to 10 s, which 

was summarized to 5-min averages to match the observation data. The instrument LOD was 

1 ppb; 8.3% of the 10-s readings were below the LOD, resulting in 7.9% of the 5-min 

averages falling below detection. In this example, our approach illustrates the summarization 

of real-time exposure data accounting for autocorrelation within series defined by 

employee–date combinations, as well as non-stationary data, and LOD measurements. In 

particular, we present summary exposures for tasks, accounting for fixed effects of 

covariates such as instruments.

We also used a second, smaller dataset of real-time exposure to nanoparticles collected 

during a walkthrough visit at an ultrafine titanium dioxide (TiO2) and lithium titanate 

(Li2TiO3 or LTO) manufacturing facility. The purpose of this analysis was to inform the 

parameters of a simulation study, described in the latter portion of this article. Summary 

statistics are presented in Table 1. Details of the analysis are described in the Supplementary 

Methods section (Supplementary Online Material Part 1).

Results

Examples

We now demonstrate the proposed methods with an analysis of real-time TVOC monitoring 

data from healthcare workers. Summary characteristics of this data set appear in Table 1. 

Many of the 5-min average TVOC concentrations fell below the detection limit of δ = 1 ppb 

and the number of series present in the data set was large enough to warrant the inclusion of 

random series intercepts. Thus, this analysis demonstrates the full potential of our proposed 

methodology. The model was fit using JAGS implemented in the R package rjags (version 
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3.4.0) run in R (version 3.2.2). The JAGS model used is described in the Supplementary 

Methods under Code for Example 1 (in Supplementary Online Material part 1).

Posterior statistics are shown in Table 2 for a selection of tasks related to cleaning and 

disinfecting activities. Figure 2 shows the observed data for a time single series Yi (an LPN 

sampled on August 13, 2010) overlaid with the mean profile µir. Essentially, the solid curve 

represents the realization of a smooth stochastic process modeled by the spline term, while 

differences between the dashed and solid curves represent the independent error process. 

Supplementary Figure S1 (in Supplementary Online Material Part 2) shows plots of 

observed measurements Yir by expected value µir along with a 95% credible intervals for µir; 

in general, there was substantial agreement between observed and expected, although some 

of the below-detection values were predicted to be very close to zero.

Corresponding estimates from frequentist methods are shown in Supplementary Table S1 (in 

Supplementary Online Material Part 2) for all the tasks evaluated. We note that estimates 

from frequentist methods were similar to, but not identical with, the posterior means and 

medians from the proposed method. Supplementary Table S2 (in Supplementary Online 

Material Part 2) provides Pearson and Spearman correlation coefficients between frequentist 

estimates of task-specific means and the corresponding posterior means from our proposed 

model. No method returns results that are perfectly correlated with another. In general, 

posterior means from our method, AR-1 estimates, and CAR estimates were correlated with 

each other to a moderately high degree (Spearman 0.66–0.75, Pearson 0.73–0.91) and 

uncorrelated with OLS estimates. The OLS model assumes independent measurements and 

additionally, LOD measurements were replaced by LOD/2 in this model. Under these 

circumstances, we would not expect OLS to perform well. The lack of correlation reinforces 

the observation that OLS is inferior to our proposed method as well as some of the other 

commonly used frequentist methods we investigated.

We also fit a model that adjusts for instrument-specific effects, as described in the 

Supplementary Methods (in Supplementary Online Material part 1). Posterior statistics are 

shown in Supplementary Table S3 (in Supplementary Online Material part 2), and reveal 

task-specific effects very similar to those shown in Table 1. Note that the random effect SD 

approximately doubles after adding an instrument effect, reflecting a greater differentiation 

of individual profiles after deconvolving the instrument effect (which is otherwise mixed 

into the profile effects). As a final note, we assessed convergence of the MCMC chains by 

applying the Gelman and Rubin convergence diagnostic (available in the R package coda) to 

two independent chains for each data analysis performed. The convergence statistic, R,̂ 

should be close to one, preferably less than 1.2 or (a more stringent criterion) less than 1.1. 

As it was not possible to use all variables in the multivariate chain to calculate R,̂ we 

assessed convergence only for the α variables, i.e., those governing the task-specific means. 

We calculated R̂ = 1.01 for our primary example.

Detailed results of our second analysis appear in Supplementary Tables S4–S6 and 

Supplementary Figure S3–S6 (in Supplementary Online Material part 2). In summary, we 

observed many of the same features described for the primary data analysis, including the 

fact that frequentist estimates were similar to, but not identical with, estimates from our 
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proposed model. In addition, parameter estimates for covariates, e.g. source enclosure were 

significant in some frequentist models, but in the Bayesian model their credible intervals 

contained zero; such discrepancies with the covariates were observed in multiple datasets. 

Note that in the Bayesian context, the credible intervals describe the bounds around the 

parameter estimate, and the comparison to null is not relevant; we do that here solely to 

facilitate comparison to the classical models.

Simulations

Our proposed method is cast within a Bayesian framework, and thus, from a strict 

philosophical perspective, does not admit frequentist interpretations. Nevertheless, we 

anticipate readers will be interested in comparisons of our method with commonly used 

frequentist methods. Consequently, we conducted several simulation experiments to 

investigate the properties of the proposed method when applied with a frequentist 

interpretation, using posterior mean as an analogue of the frequentist estimate, posterior 

standard deviation as an analogue of the frequentist standard error, and credible interval as 

an analogue of the frequentist confidence interval. For each experiment, we used posterior 

statistics obtained from one of the nanoparticle data sets analyzed in our second example. 

Details are described in the Supplementary Methods section (in Supplementary Online 

Material part 1). We compared our proposed method to three commonly used frequentist 

methods: OLS, CAR, and ARMA, each with the value of below-detection data set to half the 

LOD (on the original scale before applying the logarithmic transform). In general, our 

proposed method appeared to be more efficient than the competing methods. For example, 

our method generated the lowest values of root mean square error (RMSE), as shown in 

Figure 3, which, for a range of assumed detection limits, displays the RMSE values for the 

intercept and for one of the five tasks assumed in the simulation. Results for all tasks are 

shown in Supplementary Figure S8 (in supplementary online material Part 2). Additionally, 

our method often demonstrated more accurate coverage, and frequentist methods showed 

biased estimates of sampling standard deviations. We also examined the robustness of our 

method when the true data-generating mechanism followed a more conventional error 

model. We fit four AR(1) models, with autocorrelation parameters 0.10, 0.25, 0.50, and 0.75 

respectively, and fit three AR(2) models, with autocorrelation vectors (0.25, −0.50), (0.50, 

−0.25), and (0.50, −0.50). Figure 4 displays the results for the AR(1) simulations; AR(2) 

results appear in Supplementary Figure S12, in Supplementary Online Material part 2. 

RMSE values were about the same for all methods (except OLS in some cases); in terms of 

interval coverage our proposed method performed about as well as CAR and ARIMA in the 

AR(2) models and in the AR(1) models with lower autocorrelation, but tended to break 

down at the highest level of autocorrelation (0.75). We surmise that the reason for this is that 

the dense placement of knots was inconsistent with the high levels of autocorrelation, 

leading to an insufficiently high value for the maximum possible autocorrelation that could 

be modeled; the remedy, in such a situation, would be to use a sparser set of knots.

Discussion and conclusions

There is a growing interest in developing and using direct reading instruments to assess 

exposures as they minimize analytical cost and the eliminate the time-lag between sampling 
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and receiving results after analysis. For example, the 2014 Mine Safety and Health 

Administration’s Respirable Coal Dust Rule (30 CFR Parts 70, 71, 74, and 90) (USDOL 

2014) requires the use of continuous personal dust monitors (CPDM) to assess respirable 

dust exposures of underground coal miners, and recommends their use (optional) for other 

circumstances such as surface miners, workers in non-production areas of the underground 

coal mining operations, or underground anthracite mines using certain methods, to enable 

rapid identification of out-of-control situation and enable corrective actions to be taken in a 

timely manner. Thus it is foreseeable that large quantities of real-time data will be generated 

in the near future. Without readily available analytical methods, it is likely that all the real-

time data will be summarized into a single time-weighted average (TWA) summary as has 

been traditionally done with real-time exposure data, e.g. noise data. Once the summary data 

have been stored in databases, the real-time data may no longer be available to examine and 

extract information on short-term exposure variability and peak exposures. Systematic 

evaluation of such data will likely provide extremely valuable information to plan for and 

develop effective strategies to prevent overexposures to augment the on-the-spot corrective 

actions. Thus, there is a need to develop readily available methods and tools to analyze real-

time exposure data.

Another rapidly growing area that will require these new statistical analytical tools is related 

to the field of sensor development (Sadik et al., 2009; van Zee et al., 2009). With new 

multiplexing platforms, large datasets will be generated which will likely have left-censoring 

issues for some of the analytes because of the different proportions of chemicals present in a 

mixture. These types of sensors are already being used in a variety of exposure and health 

assessment settings, e.g. the use of electronic noses where an array of sensors are employed 

to detect patterns of mixtures to distinguish signature patterns of different products, health 

outcomes, or signatures of different exposure scenarios. There is already interest in 

extending the capabilities of these sensor arrays beyond pattern recognition to quantitative 

determination of the different exposure components in real time. This calls for an extension 

of the analytical methods to develop multivariate methods that address the issue of 

correlation among multiple outcome variables in addition to all the issues identified with 

analysis of real-time data. Entink and colleagues have started to address this aspect of 

multiple correlated outcome variables datasets containing size distribution of particles in 

real-time (Entink et al., 2015), but did not incorporate issues related to left censoring and 

non-stationary autocorrelation. Using additional random effects, our method can be extended 

in a relatively straightforward manner to incorporate correlation across different 

measurements collected simultaneously.

With regards to the simulation studies, we note that all methods tended to break down with 

high autocorrelation. In cases where high autocorrelation is anticipated (or judged on the 

basis of simpler methods such as ARMA), potential remedies are longer averaging intervals 

(e.g. averaging over 60 min rather than 5 min) or else using sparser knot placement in our 

proposed model. Additional work is needed in estimating optimal knot selection in this 

context.

We also note that our method entails distribution assumptions that may not be exactly 

correct, e.g. lognormality of the response. Note, however, that non-normality of posterior 
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distributions may be driven by the skewed nature of the variance component parameters. 

Note also that the available methods commonly employed for real-time data entail the same 

distribution assumptions, with little flexibility for altering them without extensive reworking 

of algorithms. In contrast, our Bayesian formulation can relatively flexibly be altered to 

account for different distributions (e.g. gamma responses), although with some considerable 

computational cost. In general, our method provides a flexible methodology for addressing 

non-stationary stochastic error in real-time sampling. Our model accounts for potential task-

specific variation in error, at the cost of slightly complicating the interpretation of variance 

components; however, as we have demonstrated in the results presented in Supplementary 

Material, it is still possible to use graphical means to communicate the time-dependent 

autocovariance implied by the posterior distributions of the parameters (see Supplementary 

Figures S2 and S3 in the Supplementary Online Material part 2). We note that additional 

heterogeneity in the variance of the stochastic error can be addressed using additional layers 

of variation, as can more complex hierarchical relationships among the employees. Given 

our Bayesian framework and use of the R library rjags, it is relatively straightforward to 

implement such extensions.

In conclusion, the proposed Bayesian model provides an approach for modeling non-

stationary autocorrelation in a hierarchical modeling framework to estimate task means, 

standard deviations, and parameter estimates for covariates that are less biased and have 

better performance characteristics than some of the contemporary methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the Bayesian spline model.
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Figure 2. 
Example time series gray region shows the 2.5th and 97.5th percentile of 1000 MCMC 

samples from the posterior distribution of µir.
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Figure 3. 
Root mean square error for simulation experiment Simulation, described in detail in the 

Supplement, assumed five separate tasks. Shading represents detection limit used in 

simulation (higher detection limit corresponds to larger proportion of missing data). 

Coefficient from task #1 (based on Receiving Powder task from nanoparticle data set 

described in Supplement) displayed the largest bias resulting from missing data. Results 

from other tasks are shown in Supplementary Figure S8.

Houseman and Virji Page 15

Ann Work Expo Health. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Interval coverage for simulation experiment with AR(1) errors Y-axis shows coverage 

probabilities for our method (‘proposed’) compared with three commonly used frequentist 

methods. X-axis shows assumed autoregressive parameter. Individual line styles show five 

distinct tasks, described in detail in the Supplement.

Houseman and Virji Page 16

Ann Work Expo Health. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Houseman and Virji Page 17

T
a
b

le
 1

C
h
ar

ac
te

ri
st

ic
s 

o
f 

d
at

a 
u
se

d
 i

n
 e

x
am

p
le

s

M
ea

s.
 (

n)
N

D
 (

n)
Se

ri
es

 (
n)

G
M

M
ed

ia
n

G
SD

IQ
R

R
an

ge
T

im
e

25
%

ile
75

%
ile

M
in

M
ax

M
in

M
ax

T
V

O
C

p
p
b
R

ae
1
6
6
8
3

1
3
1
3

2
0
5

1
2
4
.6

1
9
2
.7

8
.4

5
8
.9

4
3
4
.8

<
0
.5

2
8
0
8
8

0
:0

0
2
3
:5

9

N
an

o
C

P
C

1
4
3

0
3

2
3
5
1
8

2
4
8
8
2

1
.9

1
7
4
2
8

3
2
1
7
4

7
2
9
6

1
6
9
5
2
9

8
:2

8
1
6
:3

8

N
S

A
M

1
6
8

0
3

4
9

4
4

1
.7

3
3

7
1

2
0

1
6
7

8
:1

3
1
5
:4

1

O
P

C
1
8
7

0
3

2
7
5

3
6
5

2
.0

1
7
3

4
5
1

3
8

9
2
5

8
:1

3
1
6
:3

8

S
M

P
S

1
8
5

0
3

1
5
1
4
1

1
5
8
5
2

2
.0

1
1
1
7
2

2
1
4
4
0

4
1
5
8

1
6
2
7
5
4

8
:1

3
1
6
:3

8

C
P

C
, 
O

P
C

, 
an

d
 S

M
P

S
: 

#
 c

m
−

3
; 

N
S

A
M

: 
µ
m

2
 c

m
−

3
; 

T
V

O
C

: 
p
p
b
.

Ann Work Expo Health. Author manuscript; available in PMC 2018 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Houseman and Virji Page 18

T
a
b

le
 2

M
o
d
el

 p
o
st

er
io

r 
st

at
is

ti
cs

 f
o
r 

T
V

O
C

 f
o
r 

se
le

ct
ed

 c
le

an
in

g
 a

n
d
 d

is
in

fe
ct

in
g
 t

as
k
s

#
Ta

sk
 m

ea
ns

 (
α

)
Ta

sk
 S

D
s 

(σ
e)

M
ea

n
St

d
M

ed
2.

5%
97

.5
%

M
ed

2.
5%

97
.5

%

B
u
ff

 f
lo

o
r

1
3
5

4
.7

8
0
.1

5
4
.7

8
4
.5

0
5
.0

6
0
.5

5
9

0
.4

7
5

0
.6

5
6

C
le

an
 b

at
h
ro

o
m

1
8
7

4
.7

7
0
.1

4
4
.7

7
4
.5

1
5
.0

5
0
.3

3
8

0
.2

8
3

0
.4

0
5

C
le

an
in

g
1
0
2
2

4
.7

4
0
.1

3
4
.7

4
4
.4

8
5
.0

1
0
.6

2
1

0
.5

8
8

0
.6

6
0

C
le

an
 s

p
il

l
6
9

4
.5

2
0
.2

1
4
.5

3
4
.1

2
4
.9

3
1
.0

0
0

0
.8

0
6

1
.2

7
3

C
le

an
 w

in
d
o
w

4
8

4
.7

2
0
.1

6
4
.7

3
4
.4

0
5
.0

2
0
.3

1
8

0
.2

4
1

0
.4

3
4

D
is

in
fe

ct
 m

ac
h
in

e
2
2

5
.0

1
0
.2

5
5
.0

1
4
.5

3
5
.5

0
0
.7

2
3

0
.5

1
5

1
.0

7
2

F
lo

o
r 

st
ri

p
3
2

4
.6

6
0
.2

5
4
.6

6
4
.1

6
5
.1

4
0
.9

4
4

0
.7

2
7

1
.3

3
7

H
an

d
 w

as
h

3
8

4
.7

6
0
.1

4
4
.7

5
4
.4

9
5
.0

4
0
.0

8
4

0
.0

4
9

0
.2

0
0

M
ix

 p
ro

d
u
ct

3
3

4
.7

7
0
.1

7
4
.7

8
4
.4

3
5
.1

1
0
.3

4
9

0
.2

1
4

0
.5

7
8

M
o
p
 f

lo
o
r

5
9
9

4
.7

2
0
.1

3
4
.7

2
4
.4

7
4
.9

8
0
.5

7
5

0
.5

3
6

0
.6

2
0

P
o
u
r/

m
ix

 p
ro

d
u
ct

7
7

4
.7

9
0
.1

4
4
.7

9
4
.5

2
5
.0

8
0
.3

1
7

0
.2

4
9

0
.4

0
7

S
co

p
e 

cl
ea

n
5
1

4
.6

8
0
.2

8
4
.6

7
4
.1

2
5
.2

4
0
.9

6
1

0
.7

5
2

1
.2

9
3

S
te

ri
li

ze
 d

is
in

fe
ct

1
7
2

4
.7

7
0
.1

5
4
.7

7
4
.4

9
5
.0

6
0
.8

1
4

0
.7

1
8

0
.9

3
3

S
w

ee
p
/v

ac
u
u
m

/d
u
st

1
5
2

4
.7

0
0
.1

4
4
.6

9
4
.4

2
4
.9

8
0
.4

5
5

0
.3

7
9

0
.5

5
4

W
as

h
 e

q
u
ip

m
en

t
2
2
0

4
.7

0
0
.1

5
4
.7

0
4
.4

2
4
.9

9
0
.2

8
5

0
.2

4
9

0
.3

2
7

W
ip

e 
w

it
h
 a

lc
o
h
o
l

1
9

4
.2

9
0
.2

6
4
.2

8
3
.7

7
4
.8

2
0
.8

7
7

0
.6

5
0

1
.2

4
6

S
p
li

n
e 

S
D

 (
σ ζ

)
1
.6

8
1
.6

5
1
.7

2

R
an

d
o
m

 e
ff

ec
t 

S
D

 (
σ a

)
0
.8

2
0
.6

7
1
.0

3

A
ll

 c
o
ef

fi
ci

en
ts

 r
ep

re
se

n
t 

st
at

is
ti

cs
 f

o
r 

n
at

u
ra

l 
lo

g
-t

ra
n
sf

o
rm

ed
 c

o
n
ce

n
tr

at
io

n
s

Ann Work Expo Health. Author manuscript; available in PMC 2018 August 01.


	Abstract
	Introduction
	Methods
	Bayesian spline model
	Data source

	Results
	Examples
	Simulations

	Discussion and conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

