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Abstract- A number of techniques for parametric (high- 
resolution) array signal processing have been proposed in the 
last few decades. With few exceptions, these algorithms require 
an exact characterization of the array, including knowledge 
of the sensor positions, sensor gaidphase response, mutual 
coupling, and receiver equipment effects. Unless all sensors 
are identical, this information must typically be obtained by 
experimental measurements (calibration). In practice, of course, 
all such information is inevitably subject to errors. Recently, 
several different methods have been proposed for alleviating 
the inherent sensitivity of parametric methods to such modeling 
errors. The technique proposed herein is related to the class 
of so-called auto-calibration procedures, but it is assumed 
that certain prior knowledge of the array response errors is 
available. This is a reasonable assumption in most applications, 
and it allows for more general perturbation models than 
does pure auto-calibration. The optimal maximum a posteriori 
(MAP) estimator for the problem at hand is formulated, and 
a computationally more attractive large-sample approximation 
is derived. The proposed technique is shown to be statistically 
efficient, and the achievable performance is illustrated by 
numerical evaluation and computer simulation. 

I .  INTRODUCTION 

HE field of array signal processing is concerned with T the problem of extracting information from measurements 

taken by an array of spatially distributed sensors. This research 

area has received much attention over the last few decades, 
and many relevant parameter estimation methods have been 

proposed. These techniques find application in such diverse 

disciplines as radar detection, radio and satellite mmmunica- 

tion, underwater source localization, and seismic exploration. 

As the terminology implies, parametric techniques require 

access to a parametrized model of the array measurements. 
The assumed data model includes the response of the array 

to emitters as a function of their spatial and temporal pa- 

rameters, such as bearing, range, polarization, frequency, etc. 

Hence, the array geometry and the gaidphase characteristics 

of the sensors and the associated receiver equipment must be 
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known to the user. If this is not the case, or if, for exarrple, 

the sensors are subject to mutual coupling, the array must be 

calibrated. This is normally done by experimentally measuring 

the array response to sources at different locations. In either 

case, the assumed model is bound to differ from the actual 

response at the time of data collection. This may be due to 

time-varying environmental conditions, or simply to errors in 

the chosen model structure. The effects of such model errors 

have been studied by several authors, e.g., [1]-[6]. These 

effects can be contrasted with estimation errors induced by the 

necessity of collecting only a finite amount of data from the 

array, e.g., as studied in [7]-[13]. In many cases of practical 

interest, the effects of modeling errors have at least as great an 

influence on the total estimation error as do the finite sample 

effects of noise. 

While most estimation algorithms have been developed with 

only finite sample effects in mind, alternative techniques that 

only take model errors into account have been proposed in [6] 

and [14]. An optimal approach to the problem must account 

for both sources of errors simultaneously. One idea would 

be to estimate the unknown parameters of the array response 

simultaneously with the signal parameters. Such techniques 

are referred to as auto-calibration methods, and have been 

proposed in, for example, [15]-[17]. An alternative is to 

view the modeling errors as random with known second-order 

statistics. Optimally weighted subspace fitting methods based 

on this model are derived in [6] and [ 141 (model errors only) 

and [ 181 and [ 191 (both model errors and finite sample effects). 

One drawback associated with auto-calibration techniques 

is that, in many situations, the array response and signal 

location parameters are not independently identifiable. For 

instance, it is not possible to estimate both sensor phase 

characteristics and signal bearing angles. On the other hand, 

the techniques pursued in [6], [14], and [18] can only give 

optimal performance in special cases (as will be demonstrated 

in Section IV-C). Herein, we consider a combination of the 

two approaches. That is, the array perturbation parameters are 

assumed to be random with known a priori distribution, and 

are estimated in a Bayesian framework along with the signal 

parameters. Similar ideas have appeared, e.g., in [20]-[24], 

and the results of the latter reference are taken as a starting 

point for the present work. 

One of the main contributions of this paper is the devel- 

opment of an algorithm that is computationally much simpler 

than the optimal maximum a posteriori (MAP) estimator, but 

is asymptotically equivalent in performance. The proposed 

1053-587>094$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1994 IEEE 

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on August 17, 2009 at 19:23 from IEEE Xplore.  Restrictions apply. 



3496 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42. NO. 12. DECEMBER 1991 

method combines the ideas of [24] and the noise subspace 

fitting (NSF) approach of [25], and hence is referred to as the 

MAP-NSF algorithm. Use of the NSF problem formulation 

decouples the estimation of the directions of arrival (DOA’s) 

of the signals and the array perturbation parameters, and yields 

a criterion function that depends only on the DOA’s. The 

array calibration parameters can then be solved for directly, if 

desired. In addition to developing the MAP-NSF algorithm and 

verifying its asymptotic efficiency, we also present a compact 
expression for the CramCr-Rao bound (CRB) for the case 

where both finite sample effects and model errors are present. 

The remainder of the paper is organized as follows. In 

the next section, the data model is formulated along with 

some fundamental assumptions and results. Secti0.n I11 presents 

both the MAP and MAP-NSF estimators, and Section IV 

explores some connections between MAP-NSF and other 

existing approaches. The compact expression for the CRB is 

presented in Section V, and the statistical efficiency of MAP- 

NSF is established. The resulting expression for the asymptotic 

estimation error covariance is examined using some illustrative 

examples in Section VI, along with computer simulations to 

investigate the usefulness of the asymptotic expressions for 

performance prediction. 

11. PROBLEM FORMULATION 

This section introduces notation and briefly presents some 

preliminary results that are necessary for the analysis that 

follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAData zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModel 

Consider an array of 7n sensors having arbitrary positions 
and characteristics. Impinging on the array are the waveforms 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd narrowband point sources, where d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< m. The vector 

of sensor outputs is denoted x ( t ) ,  and is modeled by the 

following familiar equation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x(t) = [ 4 H 1  3 P )  I . . . l 4 H d ,  PI1 [;;?;;] + n(t) 

= A ( B , p ) s ( t )  + n(t). (1) 

The columns of the m x d matrix A are the so-called array 
propagation vectors, denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU( H L ,  p ) .  i = 1, . . . , d. These 

vectors describe the array response to a unit waveform with 

signal parameter(s) OL.  The above model also allows for 

unknown “perturbation parameters,” collected in the real 71- 

vector p = [ P I ,  . . . p1,IT. This includes structured parameters, 

such as sensor gain, phase, position, and/or mutual coupling, 

as well as unstructured parameters (see Section IV-C). The 

nominal array response is assumed to be unambiguous; i.e., 
the matrix [.(e,, po). . . . , a(H,,po)] has full rank for any 

collection of distinct parameters 01, . . . , Or, .  
Though not necessary, it is assumed in our discussion that H ,  

is a real scalar, referred to as the zth DOA. The components 

of the d-vector 0 are the DOA’s of the model, whereas the 

vector 00 represents their true values. It is further assumed 

that the array response parameters in p represent small de- 

viations from their known nominal values, collected in the 

vector po. The a priori covariance matrix of the perturbation, 

denoted by Cl ,  is also assumed known. This matrix could 

be determined, for example, using sample statistics from a 

number of independent, identical calibration experiments, or 

using tolerance data specified by the manufacturer of the 

sensors. The complex d-vector s ( t )  is composed of the emitter 

waveforms received at time t ,  and the m-vector n(t) accounts 

for additive measurement noise. The array output is assumed 

to be sampled at N distinct time instants. Based on these 

measurements, x(l),  . . . ~ x ( N ) ,  the problem of interest is to 

determine the DOA’s of all emitters. The number of signals, 

d, is assumed to be known. 

Although the signal waveforms will be assumed to be 

Gaussian random processes when deriving the exact MAP 

estimator and the CRB, the properties of the proposed method 

will be analyzed under a less restrictive assumption. The signal 

waveforms are then regarded as arbitrary deterministic (i.e., 

fixed) sequences such that the following limit exists and is 

positive definite: 

where { .}* denotes the complex conjugate transpose. Simi- 

larly, we assume that the perturbation parameters are drawn 

from a Gaussian distribution when deriving the MAP estimator 

and the CRB, although the Gaussian assumption is relaxed 

when analyzing the resulting estimator. 

On the contrary, the noise term n(t) is modeled as a 

stationary, complex Gaussian random process, uncorrelated 

with the signals. The noise has zero mean and is assumed 

to be circularly symmetric as well as spatially and temporally 

white: 

~ [ n ( t ) n * ( s ) ]  = (T’I&,,~ ( 3 )  

~ [ n ( t ) n ~ ( s ) ]  = o (4) 

where dt., is the Kronecker delta. 

Since we are interested in studying the combined effects 

of finite sample errors and modeling errors, the size of the 

perturbations relative to the number of available snapshots 

plays a crucial role. The variances of the estimated DOA’s 

are known to be proportional to 1/N in the finite-sample-only 

case, whereas they are proportional to Cl in the model-error- 

only case. In this analysis, the relative contribution of the two 

error sources will be assumed to be of comparable magnitude, 

and the covariance matrix of the perturbation parameters will 
be expressed as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi is independent of N .  In Section V, a performance 

analysis is carried out assuming N to be “large enough.” An 

argument for the somewhat artificial assumption ( 5 )  is that if 

Cl = o(l/N), then the effect of the modeling errors can be 

neglected and the methods designed for finite sample errors 

only are optimal. On the other hand, if W1 = o ( N ) ,  the effect 

of the modeling errors dominates, thus rendering the methods 

designed solely for such errors optimal. Since the MAP 
approach presented herein is inherently more complicated than 
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either of the methods that take only finite samples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor modeling 

errors into account, the former should be avoided when one 

type of error dominate\ the other. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Preliminary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults 

In the next section, the exact MAP estimator is presented 

along with a less computationally demanding approximation. 

The proposed approximate technique is a subspace-based 
method, in that it relies heavily on the properties of the 

eigendecomposition of the array covariance. Under the above 

assumptions, the covariance matrix of the array output takes 

the form 

1 

N-x, N 
R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= lim - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE[x(t)x*(t)] 

t=l 

Since the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAPA* has rank d by assumption (the 
arguments of A will frequently be suppressed for notational 

convenience), c? is an eigenvalue of R with multiplicity m-d, 
and the corresponding eigenvectors are all orthogonal to A. 
The eigendecomposition of R thus takes the form 

IT1 

R = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,,eie: = E,A,E: + a 2 ~ , , ~ , * ,  (7) 
/=1 

where A, is a diagonal matrix containing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd largest eigen- 

values, and the columns of the 'rr1 x d matrix E, are the 

corresponding unit-norm eigenvectors. Similarly, the columns 

of E,, are the T u  - d eigenvectors corresponding to 0'. Since 

E,, is orthogonal to A, it follows that the range space of E, 
coincides with that of A. This observation forms the basis 

for all subspace-based estimation techniques, starting with 

the development of the popular MUSIC algorithm [26], [27]. 

Assuming orthonormal eigenvectors, the orthogonal projection 

onto the range space of A is denoted 

n = A(A*A)-IA* = E,sEZ (8) 

and its orthogonal complement is 

nL = I - A(A*A) -~A*  = E,,E;. (9) 

We now derive some expressions for the signal covariance ma- 

trix that will be useful in  the subsequent analysis. Combining 

(6) and (7) we get 

APA* = E,AE: (10) 

where 

Denoting the pseudo-inverse of A by 

(10) implies 

P = A+E,JE,*A+*. (13) 

Noting that (AtE,)-' = EZA, the inverse of the above 

equation can be written as 

p- l=  A*E,A-~E;A. (14) 

Under the stated assumptions, the eigendecomposition of R 
can be consistently estimated by performing an eigendecom- 

position of the sample covariance matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

R='C x(t)x*(t) = EsAsE: + EnAnEz (15) 
t=l  

N 

where the partitioning of the eigen-elements is similar to (7). 

111. ROBUST ESTIMATION 

In this section, the exact MAP formulation of the prob- 

lem is presented, along with a simplified but asymptotically 

equivalent approximation. 

A. Exact MAP Estimation 

When deriving the MAP estimator, it will be assumed that 

the a priori distribution of p is Gaussian with known mean 

po and covariance matrix SI. Likewise, the emitter signals, 

s( t )  are modeled as zero-mean Gaussian with second-order 
moments 

E [ S ( t ) S *  (s)] = Pbt,, (16) 

E[s(t)sT(s)] = 0. (17) 

The signal parameters, 8, the emitter covariance, P, and the 

noise variance, U',  are all regarded as unknown deterministic 

parameters (i.e., parameters with a non-informative a priori 
distribution). Following [24], the joint MAP estimate of 8, P, 
o2 and p is then obtained as 

{e, b, P, 2 1  = arg niin vnIAP(e. p,  P, 2) (18) 
~ , P F P '  

when SI is full rank. Here, VhfL(8.p%P,a2) is the negative 

log-likelihood function, which is given by [28] 

k ( e , p ,  P,  n2) = N ( h g  IR(8. p, P, g2)1 

+ Tr{R-l(8. p3 P ,  02)R}) + const. 

(20) 

where I . I denotes the determinant. The ML criterion function 

is known to be separable in P and 0'. For fixed A = A(8. p ) ,  
the minimizing signal covariance matrix and noise power are 

[281 

p = At(& - eZI)Af* 

Tr{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR} . 1 
6 2  = - 

m - d 

Substituting (21)-(22) into (20) leads to [29] 

vhlL(o,p) = mog IAPA* + 6211 t 
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Clearly, Vbr.kp(B.p,P,c2) is also separable in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa’, 
and ignoring constant terms the concentrated MAP criterion 

function is 

1 
V, , ,~ (~ ,P )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= vklL(e,p) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,(P - P , , ) ~ s ~ - ’ ( P  -pa).  (24) 

This can be interpreted as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAregularized ML criterion. That 

is, the effect of the prior distribution is to force i, to be 

close to the nominal value, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo. If the perturbation parameters 

are identifiable, this effect is diminished as the number of 

snapshots N increases. Thus, the MAP estimate has the 

same asymptotic properties as the ML estimate (i.e., the pure 

auto-calibration technique). However, in many applications of 

interest, p cannot be consistently estimated along with the 

signal parameters. In such cases the prior distribution has a 

crucial influence on the asymptotic properties of the estimates 

of both B and p. 
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B. The MAP-NSF Method 

It has been assumed that the signal covariance matrix has 

full rank; i.e., the signals are noncoherent. Then it is known 

[29] that in the absence of model errors, the ML criterion 

is asymptotically equivalent to the following noise subspace 

fitting (NSF) criterion 

V&F = NTr{A*E:,EiAU} (25) 

where U denotes a consistent estimate of the matrix 

U = a - 2 ~ + ~ , h 2 ~ ; 1 ~ ; ~ + *  = o - 2 ~ ~ * ~ - 1 ~ ~ .  (26) 

In the present case, the term “asymptotic equivalence” is to 

be interpreted as 

Here q refers to any component of B or p, and the symbol 

o, ( l / f i )  represents a term that tends to zero faster than 

l/Jl?i in probability. The extension of this result to the case 

where model errors are also present is immediate since the 

proof only depends on the fact that R = R + O,( l / f l ) .  

By standard first-order arguments, this implies that the MAP 

estimate is asymptotically (for large N )  equivalent to the 

minimizing arguments of the criterion function 

(28) 
1 

h S F ( B . p )  + 5 ( p -  p o ) T f i 2 - 1 ( P  - Po) .  

This criterion depends on its parameters in a simpler way 

than the exact MAP criterion (24). However, it still requires a 

nonlinear minimization over both B and p. 
Making use of the assumption that S1 decreases as 1/N, a 

further simplification of the criterion is possible that enables 
separation with respect to p. Recall the following formulas for 

the vet(.) operator (vectorization of a matrix by stacking its 

columns) and the Kronecker product @ (see [30], [311) 

Tr{ABCD} = vec(D7)‘(CT @ A)vec(B) (29) 

(30) 

(31) 

(32) 

vec(ABC) = (C’ @ A)vec(B) 

(A 8 B ) ( C  @ D) = ( (AC)  @ (BD)) 

(A B B)’ = A~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR B ~ .  

Using (29), the NSF criterion can be rewritten as 

NTr{A*EnE:AU} = Na*Ma (33) 

where 

a = vec(A) (34) 

M = UT @ (Er,EZ). (35 )  

Next, the vectorized steering matrix is approximated locally 

around po as 

a = a(B, p )  = a0 + Dp+ (36) 

where 

P = P - Po.  (39) 

Note that, when evaluated at po, the derivative of a with 

respect to B or p is identical to that of a0 + Dp+. It follows 

that the minimizing arguments of (33) are asymptotically 

identical to the estimates obtained by minimizing the following 

approximate MAP-NSF criterion with respect to B and p :  

1-7 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 -  
(a0 + D,+)*M(ao + D,j) + 2~ P (40) 

Since the criterion function in (40) is quadratic in p ,  we 

(41) 

where we have normalized by N and used (5). 

easily obtain the minimum with respect to f i  (for fixed 0) as 

bMAP-NSF = PO - r-lf 

where 

(42) 
2 

f = Re{D;Mao}. (43) 

Substituting (41) into (40) leads to the following separated 
criterion function 

a;Mao - Pr-9. (44) 

Note that I’ and f depend on 8 through D,, and in principle M 
also depends on 8 through U. However, it will be assumed that 

a consistent estimate of B is available to form the estimates M, 
f and r. Under the stated assumptions, such an, estimate can 

be obtained, for instance, by letting p = po and U = I in (25), 
which leads to the well known MUSIC algorithm (see [25]&fof 

details). As will be seen later, the approximations made in r, f 
and M do not change the asymptotic properties of the final 

estimate. The definitions of the quantities in the MAP-NSF 

cost function are repeated below for easy reference, followed 

by a summary of the proposed algorithm: 

a0 = vec(A(B. Po) )  (45) 

M = 6-2(A+Es(As - 2 1 ) 2 A ; l E ; A + * ) T  @ (EnE;J 

(46) 

Tr{ (I - AAt)R} 
1 

8 2  = - 
111 - d 

(47) 
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(48) 
an arbitrary value. This results in the concentrated approximate 

criterion function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The MAP-NSF Algorithm: Given the sample covariance R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ a p p v W S F  f fl-’]-’apV\VSF (54) 

and an initial estimate e of the DOA’s: 

a) Compute the eigendecomposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = EsAsE; + 
b) Compute the quantities (46)-(48) 

c) Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 as an initial guess, use a numerical method to 

EnAnE;t 

solve the following optimization problem 

Iv .  RELATIONSHIP TO OTHER TECHNIQUES 

This section presents some connections between the pro- 

posed MAP-NSF method and existing techniques for DOA 

estimation under model uncertainties. 

A. Autocalibration 

Autocalibration usually refers to techniques that simulta- 

neously estimate the DOA’s and sensor positions. For most 

geometries, this is possible if the location of one sensor and 

the direction to another is known [20]. Herein, we consider 

a more general model where the array response depends on 

both the DOA’s as well as an arbitrary set of perturbation 

parameters. By assuming an a priari distribution for the 

perturbation parameters, these need not be identifiable from 

the data only, hence allowing for more flexible models. If the 

perturbation parameters are indeed identifiable, one may delete 

the influence of the prior by letting a-’ = 0 in (48). Thus, 

maximum likelihood autocalibration is a special case of the 

MAP approach considered herein. However, it should be noted 

that [17] uses a deterministic signal model as opposed to the 

stochastic Gaussian signal model assumed here. It is known 

that the stochastic signal model leads to superior performance 

regardless of the actual signal distribution, at least in the 

absence of model errors [111, I 131. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. The MAPprox Approach 

The MAPprox (MAP approximation) method is proposed 

in [24] as an alternative approximation of the exact MAP 

estimator. The method is derived in two steps. First, V&,(8, p)  
in (24) is replaced by the asymptotically equivalent signal 

subspace fitting criterion, 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(52)  I/\\~SF = FTr{n’E,W\vs,B:} 

W\\‘SF = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A7 - (T21)2AL1. 

where 

(53) 

Second, an implicit Newton-step over p is performed, starting 

at the nominal value, po. The DOA parameter is kept fixed at 

where dpVLtTSF denotes the gradient of V ~ S F  with respect to 

p ,  evaluated at po and 8. Similarly, d p P V ~ ~ s ~  denotes the ‘‘p 
comer” of the Hessian matrix. In practice, the Gauss-Newton 

Hessian (see [32]) is used to avoid taking second derivatives. 

The MAP-NSF technique can also be derived by essentially 

following the above steps, but using the NSF criterion (25) 

in lieu of (52). It is conceivable that the two approaches 

are asymptotically equivalent when P > 0 (although this 

remains to be formally proved). The asymptotic equivalence 

of the methods is also indicated by the simulation examples in 

Section VI, where it is also observed that the MAPprox method 

appears to have better finite sample properties. The following 

important differences between the approaches should be noted: 

The MAP-NSF method is only applicable if the signal 

covariance matrix is nonsingular. 

The MAP-NSF method allows “more approximations” 

of the criterion function without losing asymptotic effi- 

ciency. In particular, d,,v~\~s~ in (54) cannot be replaced 

by a consistent estimate (see Section V-B). 

This latter fact is the reason why MAP-NSF is preferred herein. 

It implies that the MAP-NSF criterion depends on 8 in a sim- 

pler way than does the MAPprox criterion, which considerably 

simplifies both the analysis and the implementation. 

C. Signal Subspace Fitting 

model for the perturbed array response: 

For the moment, consider the following simple unstructured 

(55)  A(8: p )  = A(8) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

where we define 

Re { vec( A)} 
p = [Imivecc A)]] 

and where the columns of A, denoted a,, are modeled as 

random variables with moments 

E[a,]=O i = l ,  . . . ,  d (57) 

E[(LY6;] = V , k I  Z. k = 1.. . . , d (58 )  

E[6,iiT] = 0 (59) i , k  = 1,. . . , d. 

This model corresponds to an additive, circularly symmetric 

complex array perturbation that is uncorrelated from sensor to 

sensor, but possibly &dependent. It is easy to verify that under 

these assumptions, the covariance of p is given by 

-Im{Y}@I 

where the ‘1, kth element of the matrix r is U&. 

In [18] and [19], an “optimal” signal subspace fitting 

algorithm is derived that takes into account both finite sample 

effects and the above array perturbation model. The algorithm 
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involves minimizing a criterion function identical to (52), but 

using the weighting matrix 

-1 

WosF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (E;A'.r'A'E, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 2  - CP1)-2As)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

(61) 
in place of WWSF. Note that WOSF is just a weighted 

combination of WWSF, the optimal weighting when finite 

sample effects alone are considered, and the optimal weighting 

derived in [6] for the unstructured error model above when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N -+ CO. The use of the term "optimal" here means that 

asymptotically, no other weighting matrix in (52) will yield 

DOA estimates with lower variance. We will now show 

that using WOSF in (52) yields an algorithm that is in 

fact asymptotically equivalent to MAP-NSF for the array 

perturbation model described above. Since the MAP-NSF 

method is asymptotically efficient (see Section V-C), no 

algorithm, whether or not it is in the form of (52), will yield 

asymptotically unbiased estimates with lower variance than 

the minimizing arguments of 

Finally, we have 

where 

Using arguments similar to those in [29], it can be shown 

that the two cost functions 

T~ begin with, note that in this case, = [I j ~ l .  some 
simple algebra then yields (63), at the bottom of this page, 

are asymptotically equivalent for any weighting matrix W ,  

as long as the emitter covariance has rank. Thus, 

we can conclude that MAP-NSF and OSF are asymptotically 

equivalent as well. When both algorithms are applicable, it is 

since OSF is computationally less demanding and can handle 

where we have used the fact that, for any invertible matrix X ,  for the simp1e perturbation described by (55)-(59), 

Im{X-l} Re{X-l} ' 

(64) coherent emitters. 

1 Re{X} -Imixr] - - [Reix-" -lm{x-l} 
preferable to use the OSF rather than the MAP-NSF criterion, 

Multiplying out all terms in (63) and collecting real and 

imaginary parts leads to the simpler expression 

Using the definition of M and an obvious notation, write 

M = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUT c3 (E,Ei), and note that 

l )  
(M + ;Y-l @I) = ( ( U T  + FY-l  @ (EnE:) 

-1 

) -l 
1 

N 
+ -Y-I  c3 (EsE;) 

-1 

= (U' + ..Y-') 1 (EnE;) 

V. ASYMPTOTIC PERFORMANCE ANALYSIS 

In this section, the asymptotic properties of the proposed 

approximate MAP-NSF method are investigated. However, let 

us start the discussion by presenting an approximate bound on 
the achievable performance. 

A. Crame'r-Rao Bound 

The Cram&-Rao bound (CRB) gives a lower bound on 

the (asymptotic) covariance matrix of any (asymptotically) 

unbiased estimator. In the present case, the full parameter 
set contains both the deterministic parameters B ,  P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo', and 

the stochastic parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. We will collectively denote the 

deterministic parameters by the vector q. The CRB on q and 

p is the inverse of the Fisher information matrix (FIM) J.  
Assuming Gaussian signals and perturbation parameters, we 

have from [33] that J = J1 + Jz, where the i j th element of 

f T t - l f  = [Re{Mao}T Im{Mao}T1 

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on August 17, 2009 at 19:23 from IEEE Xplore.  Restrictions apply. 



VIBERG AND SWINDLEHURST A BAYESIAN APPROACH TO AUTO-CALIBRATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3501 

each term is given by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOi denotes the ,ith element of the compound parameter 

vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[$p” ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT .  Unfortunately, J1 is not easily evaluated. The 

p-parameter generally enters in a nonlinear fashion, rendering 

the expectation with respect to p difficult to compute. The 

exact expression has been computed in [20] for some special 

cases involving only a single emitter. However, a more com- 

mon approach is to ignore the expectation with respect to p, 
and evaluate J1 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo [22]. Following [24] and using (3, it 

can be shown that this approximation is of order O(1). Since 

J1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O ( N ) ,  we will thus obtain an asymptotically valid CRB. 

The following “compact CRB” formula involving B and p only 

is given in [24] and*is restated herein for completeness: 

Theorem I :  Let 8 and 3, be asymptotically unbiased esti- 

mates of Bo and po, and assume that s( t )  and p are Gaussian 

distributed. Then for large N we have 

P - Po zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[“-“I i  P - Po 2 CRB 
(73) 

where the i j th element of CRB-l is given by 

2N 
CRB-l %.I = -RRe[Tr{AfIILAJ $ 

x PA* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR- AP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA}I + fl G1 U [ i ,  j )  . (74) 

Here, A; denotes the derivative of A with respect to the ith 

component of BTpT , and , U ( . ,  .) is an indicator function 

such that u ( l , j )  = 0 if either i 5 d or j 5 d j  and u ( i , j )  = 1 

otherwise. All expressions are evaluated at the true parameter 

values Bo and po. 
To obtain a compact expression for the CRB on 0 only, 

introduce the notation 

[ I T  

(75) 

FB = Re{DiMDo} (76) 

C = Re{DzMD8} (77) 

where the matrices are evaluated at the “true” values, &,,Po. 
Then we have the following result: 

Let 8 be an asymptotically unbiased estimate 
of Bo,  and assume that s ( t )  and p are Gaussian distributed. Then, 
for large N the following inequality holds: 

Corollary I :  

1 

2N 
E[(8  - B , ) ( 8  - e,) ” ]  2 CRBg = - [C - Fir-’FO]-’ 

(78) 

Proo) Straightforward from (74). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
Note that, as derived in [ l l ]  and [13], the asymptotic CRB 

on B in the absence of modeling errors is given by Cp1/(2lv). 
We thus confirm the intuitively clear result that modeling 

errors can only deteriorate the attainable estimation accuracy. 

As will be seen later in this section, the proposed MAP-NSF 

method attains the bound given in (78) regardless of the actual 

distribution of s ( t )  and p (although the right hand side of (78) 

is a lower bound on the attainable estimation error variance 

only for Gaussian signals and perturbations). 

B. Consistency 

Let us first verify that the MAP-NSF estimates converge 

with probability 1 (w.p.1) to the true values as ,N -+ CO. This 

holds true for any choice of weighting matrix U > 0, and for 

any value of 8 used in forming A and D,. To see this, note 

that the criterion function (5 1) is the Schur complement of the 

following matrix 

(79) 

Clearly, this matrix is positive definite if acMao > 0, and 

singular otherwise. lhus,  we have V(B) 2 0, with equality 

iff Ma, = 0. Let M denote the limiting (as N i E) value 

of M. Then 

Mao = (U’ @ (E,,E*,))vec(A(B, Po))  

= vec(IILA(B, p,)U) (80) 

where we have used (30) and the fact that E,EZ = I I l .  Since 

the array is assumed to be unambiguous, Mao = 0 iff B = Bo. 
The convergence of the criterion function is uniform in B if the 

derivative of a0 is bounded, and it follows that the minimizing 

argument of (51) converges to Bo w.p.1 as N 
It is interesting to note !hat any consistent estimate of 8 

can be used in forming M in (79), without affecting the 
consistency of the final MAP-NSF estimate. As we will see 

later, this replacement does not even affect the asymptotic 
distribution of the estimate. One might be tempted to guess 

that it would similarly be possible to insert a consistent 

estimate of B into the Hessian matrix ~,,V&F, appearing in 

the MAPprox criterion function (54). However, the resulting 

criterion function then generally becomes unbounded from 

below, and consistency of the estimates cannot be guaranteed. 

Since dppVm~:s~ is usually a complicated function of 0, so 

is (54); therefore (5  1) results in a computationally simpler 

method. 

oc. 

C. Asymptotic Distribution 

Although the estimates were shown to be consistent for 

arbitrary weighting matrices, their asymptotic properties are 

certainly affected by the weighting used. In the following, it 

is assumed that the optimal weightings (46)-(48) are used, 

and that the estimates of, these quantities are consistent, i.e., 

M -+ M, f’ + I’ and f --+ f (in probability) as N .+ ocj. 

Since 8n;rApP.hrsF is consistent, a standard Taylor series 

expansion of the gradient of the criterion function around the 

estimate can be performed. This yields 

(81) 

where e = &,,~AP-NSF - 8 0  denotes the estimation error, V’ is 

the gradient of V(8) ,  and H is the asymptotic Hessian. Both 

V’ and H are evaluated at the true value Bo. 

e = -H-’V’ + o p ( l / J N )  
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Consider first the derivative of (51) with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB i ,  

denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,: 

V ,  = 2Re{aiMai} - 2fTe-’ti 

= 2Re{aZ;Myi} (82) 

where y is defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j r  = a. - D,,r-’f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(83) 

and its derivative with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n n  A 

(84) y .  - a. - D r-lfi 

where denotes the derivative of 1 with respect to B i .  Observe 

that EnE: = IIL + O,( l / f l ) ,  so that a{M = O , ( l / f l )  

for any value of U (see (80)). Therefore, U, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf and f can 

be replaced by their limiting values, denoted U ,  I’, and f 

respectively, without affecting the asymptotic (second-order) 

properties of Vi. The corresponding limiting yi is denoted yi . 
Thus, 

(85 )  

Note that the only stochastic term in (85) is the EnE: term 

of M. To approximate this term we write 

2 -  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 

V, = 2Re{a;Myi} + o,(l/v%). 

Ma0 ‘v vec(8,E;AU) (86) 

where the arguments of a = a(O0,po) have been suppressed 

for notational convenience. The calculations in Appendix A 

show that 

E T L E ; ~  21 -II~RE,A-’E;A. (87) 

By the central limit theorem (see e.g., Lemma 9.A.2 of [34]), 
R = R + O,(l/m) is asymptotically (for large N )  Gauss- 

ian distributed, and it follows from (81) and (85)-(87) that 

also the normalized estimation error has a limiting Gaussian 
distribution 

f i e  E ASJV(O,H-~QH-~) (88) 

where Q is the asymptotic covariance matrix of the normalized 

gradient 

Q = lirn N E [ v ’ v ’ ~ ] .  (89) 

Let e be the minimizing argument of the MAP- 
NSF cost function (51). Then e + 8, as N + 00. and the 
limiting distribution of the normalized estimation error is 

(90) 

where CRBo is the asymptotic CRB given by (78). 

ProoJ We need to verify that H = Q = ( N C R B @ ) - l .  

However, these calculations are deferred to Appendix B. U 
As expected from the fact that the MAP-NSF method is 

derived by first-order approximations to the optimal MAP 

estimator, the former (and hence also the latter) yields asymp- 

totically efficient estimates. Recall that the interpretation of 

this result is that 8 is a minimum variance estimate when 

both N is “large enough” and 0 is “small enough”. The 

requirements on N and 0 for the estimates to be “practically 

efficient” may be quite demanding in difficult scenarios, as 

will be seen in the next section. 

‘V-m 

We thus have the following result: 
Theorem 2: 

JN(e  - e,) E A ~ N ( O ,  NCRB~)  

D. Performance Without Auto- Calibration 

It is of course of interest to assess the relative improvement 

offered by the auto-calibration technique as compared to 

techniques that do not exploit the perturbation model. We 

choose to compare with the WSF estimates [12], obtained 

by minimizing (52 )  with respect to 8. This method is known 

to be asymptotically equivalent with the stochastic maximum 

likelihood technique [28] and also with the NSF method 

(25)-(26) for the case P > 0. Thus, the following result 

applies to these other techniques as well. 

Theorem 3: Let Bwsr be the minimizer of (52). Then 

JN(eLl;sr - e,) E A ~ ( o :  cwsF) 

+ C - ~ F , ” ~ ~ F ~ C - ~ )  

(91) 

where 

(92) c , ~ ’ ~ ~  = z(c-l 1 

and where FB and C are defined in (76) and (77). 

Prooj? This result is a straightforward extension of The- 
n 

Since the WSF method gives asymptotically unbiased es- 

timates under the model considered herein, the Cramer-Rao 

inequality implies that CWSF 2 NCRBo. The difference 

between the two depends, of course, on the scenario. How- 
ever, note that for identifiable perturbation models (i.e., when 

D;MD, > 0), the “efficiency ratio” C \ \ ~ ~ F , ; ; / ( N C R B ~ , ~ ~ )  
may be arbitrarily large for large N ,  since we then have 

CRBo + 0 as N + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc for a fixed value of 0, but C l v s ~ / N  

does not tend to zero unless C! -+ 0 as N + sm. In the 

more interesting case of unidentifiable perturbation parameters 

(D;MD, singular), the performance improvement offered by 

the MAP approach over WSF and other “conventional” DOA 
estimators may be less dramatic. An example is provided in 

the next section. 

orem 1 in [19], and the proof is therefore omitted. 

VI. SIMULATION EXAMPLES 

In this section we study the performance of the MAP- 

NSF method in finite samples and under “moderately sized” 

perturbations. A comparison with the MAPprox and WSF 

methods is also included. As an application of the general 

perturbation model considered herein, we study a model 

suitable for arrays mounted on a flexible structure. The array is 

assumed to be planar, although an extension to the 3-D case is 

straightforward. It is assumed that the distances between the 
sensors is known and fixed. For simplicity, we approximate 

the flexible structure using a piecewise linear model, as 

illustrated in Fig. 1. This approximation is reasonable for small 

perturbations, which is the case of interest herein. The nominal 

array is assumed to be a uniform linear array (ULA) of m = 10 

sensors, oriented along the x-axis of a coordinate system with 

its origin at the first sensor. The interelement spacing (T in the 

figure) is fixed at a half wavelength. In many cases of practical 

interest, there may be physical constraints that relate the 

incremental angles, thus leading to a perturbation model with 

fewer parameters (for example a polynomial model). However, 

here we assume that pz. i = 1, . . . . rri - 1. are independent 

zero-mean Gaussian random variables with variance U*, so 
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- 0  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- 
1 0 . . .  0 

x 2  1 (97) . .  
. .  . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- ' r r~  - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'rri - 2 . . . 1 - 

fY 
I ,e 

Fig. I .  An array mounted on a flexible structure 

that 51 = v21. This is a reasonable model, e.g., for a towed 

array. 

Assume that the sensors have unit gain and zero phase delay 

over the frequency band and DOA's of interest. Let the DOA's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
el; be measured counter-clockwise relative to the x-axis. The 

response of the ith sensor in the direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6' is then 

(93) 

where ( ~ , , i .  r y . i )  are the coordinates of the ,ith sensor location, 

measured in fractions of the wavelength. From Fig. 1, the 

sensor coordinates can be recursively calculated as 

{ u ( ~ ,  p )  \ - c:j2r(rL , (-oh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO t r ,  >in 0)  
1 -  

4r+ l  = 4 L  + P i  (94) 

(95) 

(96) 

with initial conditions rZ.1 = ru:l = q+ = 0. To implement the 

MAP-NSF and MAPprox methods, the derivative of a(H, p)  
with respect to p, evaluated at po = 0, must be calculated. 

After some straightforward algebra, we obtain 

7' , , j+ l  = Tx,z + T c:os @l+l 

1 ' ,~ ,~+1 = r g , i  + Tsin+i+l 

l o ' ,  i 

WSF: - - -  x 

MAP-NSF: - o 

1 oo 

l o ' :  

MAPprox: 

1 0 2 1  I 
l o 2  10 ' 1 on 

Std of angle perturbations (deg) 

Fig. 2. 
the standard deviation of the incremental sensor angle perturbations. 

Theoretical and empirical RMS error of the DOA estimates versus 

using a Newton-type search. The WSF search is initialized at 

B = Bo, whereas the MAP-NSF and MAPprox searches are 

initialized using the WSF estimates. As seen from the figure, 

the theoretical RMS error of the MAP-NSF estimate (i.e., the 

CRB) is slightly but clearly smaller than that of the WSF 

estimate, the difference being more pronounced for large U .  

However, the CRB appears to be difficult to reach in practice. 

The empirical results agree well with the theory only for v 5 
0.1 " (MAP-NSF) and v 5 0.2" (MAPprox). It is interesting to 

see that the empirical performance of the methods is similar for 

both large and small v ,  but there is a certain range of "moderate 

values" where MAP-NSF and MAPprox outperform WSF. 

Notice also that the first-order approximation is better for the 

MAPprox method than for MAP-NSF in this scenario. We 

also tried the MAP-NSF method initialized at Bo,  but this 

modification did not result in any significant improvement. 

Hence, the MAPprox method appears to have the best second- 

order properties. 

As suggested by the analysis, the range of v-values for 

which the Bayesian auto-calibration approaches outperform 

WSF depends on N .  To theoretically achieve the CRB we 

should have v 2  = 0(1/N). Thus, in the next experiment the 

number of snapshots is vaned from N = 100 to N = 10000, 

whereas v 2  is simultaneously decreased as v 2 ( N )  = c / N ,  
where c = 10 is determined such that ~ ( 1 0 0 0 )  = 0.1". Fig. 3 

shows the theoretical and empirical RMS errors for 8, versus 

the number of snapshots. In this case, the empirical RMS errors 

of the MAP-NSF estimates approach the CRB for N > 1000 

and v < 0.1", whereas the MAPprox estimates are efficient 

already at 0.3N = 100 and v =". The RMS error of the WSF 

estimates is about 50% (3.5 dB) higher. 

VII. CONCLUStON 

A method for DOA estimation in the presence of structured 

uncertainty in the array parametrization has been proposed. 

The array model was assumed to be a function of not only the 

DOA's, but also a set of random perturbation parameters with 

known first and second moments. The exact maximum aposfe- 
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(deg) 

I O 0 ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
1 1 

x ’----; 
, , , , , I  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAP-NSF: ~ O 

MAPprox: 

1 o-2 
1 o2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo3 i o 4  

No samples 

Fig. 3. 
the number of snapshots. 

Theoretical and empirical RMS error of the DOA estimates versus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
riori (MAP) method for simultaneous estimation of the DOA’s 

and the perturbations was first derived, assuming Gaussian 

perturbations and noise. A computationally simpler method, 

termed MAP-NSF (noise subspace fitting) that only involves 

a search over the DOA’s was then proposed and analyzed, 

assuming a large number of samples and small perturbations. 

A compact expression for the approximate CramCr-Rao bound 

(CRB) was also derived, and the asymptotic covariance matrix 

of the MAP-NSF estimation error was found to coincide 

with the CRB. As a by-product, we also verified that the 

optimal signal subspace fitting method proposed in [ 181 is also 

statistically efficient for the unstructured perturbation model 

considered therein. 

If the DOA’s and perturbation parameters are simulta- 

neously identifiable from the data only, the improvement 

of autocalibration with or without a prior as compared to 

“traditional” DOA estimation techniques can be quite dramatic 

(see the examples in [24]), at least for large data records. 

However, the case of most interest herein is the unidentifiable 

case for which the prior is necessary for enabling simultaneous 

estimation of all parameters. To investigate the performance 

of the methods under such perturbations, a model of an array 

mounted on a flexible structure was presented and studied. 

This example indicates that our approach is particularly suited 

for the case where the effect of the modeling errors is of the 

same magnitude as that due to having only a finite number of 

noisy observations, i.e. when the variance of the perturbation 

parameters is O(l /N) ,  where N is the number of samples. 

We also verified empirically that the MAP-NSF and MAPprox 

methods do achieve the CRB in the case studied, but the 

MAPprox method performs better in cases involving small 

samples and/or “moderately sized‘’ array perturbations. If finite 

sample effects dominate errors due to model mismatch, the 

more computationally efficient techniques that only use the 

nominal array model should be preferred over the approach 

presented herein. If, on the other hand, the modeling errors 

are the major source of estimation error, the CRB appears 

difficult to reach using a MAP approach. For this latter case, 

it seems more natural to derive optimal estimators that ignore 

the finite sample effects, such as those proposed in [4] and [6] 

for an unstructured perturbation model. Some interesting areas 

for future research would be to extend the methods of [4] and 

[6] to the more general perturbation model considered herein, 

and to theoretically verify the empirical evidence presented in 

Section VI that suggests the MAPprox and MAP-NSF methods 

are asymptotically equivalent. 

APPENDIX A 

PERTURBATION OF THE NOISE EIGENVECTORS 

In this appendix, the calculations leading to (87) are pre- 

sented. Since the noise eigenvectors (the columns of E,) 
correspond to a multiple eigenvalue, they are not uniquely 

defined. Dubious statements involving consistency of the esti- 

mated noise eigenvectors, or functions ,thereof, will therefore 

be avoided. However, the projection E,EL is well-defined, 

and converges to IIL, with an error of order O,( l / f l ) .  

Consider an approximation of the quantity 

EnE:A = (I - E,E;)A. (A.1) 

Expressing E, = E, + E, and neglecting terms of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
oP(1/v‘X) gives 

E,EtA E (I - E,E; - E,E; - E,E:)A 

= -(E,E; + E,E;)A. (A.2) 

Next we make use of the relation 

which gives 

Noting that A = E,E:A then yields 

The perturbation of the noise-projected signal eigenvectors is 

related to the sample covariance in, e.g., [lo], and is obtained 

as 

Clearly, (87) follows from (AS)-(A.6). 

APPENDIX B 

ASYMPTOTIC EFFICIENCY OF MAP-NSF ESTIMATE 

This appendix contains a proof of Theorem 2. The asymp- 

totic Hessian is readily obtained by differentiating (85) with 

respect to 8, and letting N tend to infinity: 

H,, = 2Re{a,*My;}. (B. 1 )  
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From this expression, it is a simple exercise to verify that 

To calculate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,  we first express the sample covariance 

H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( N C R B o ) - l  = C - FFr-lFo. 

matrix as 

where we have defined 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA' 

E='E n(t)n* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t ) .  
t=l 

N 

Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp in (B.2) is regarded as a stochastic variable with 

p - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo = O p ( l / f l ) .  This gives 

I I lR = IIl(APA* + Z*A* + E) + op(1/\/7iJ) (B.6) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = A(flo,p) - A(&hpo) 03.7) 

i.e., vec(A) = D,(p - po) + o p ( l / f i ) .  Inserting (87) and 

(B.6) into (86) gives 

Mao rv - v e c { n l ( A P A *  + Z*A* + E)+} (B.8) 

where we have defined 

Q = E , k l E ; A U  = 0-2E,AA,1EzAt*. (B.9) 

Note further from (1  3) and (26) that PA*@ = U ,  which gives 

A * Q  = P - l U .  Using this and (B.8) in (82), we arrive at 

V,  Vzl + K2 + V,, + o p ( l / f l )  (B.lO) 

where 

V,, = -2Re{vec(IILAU)*yz} (B.11) 

K2 = - ~ R ~ { V ~ C ( I I ' Z " P - ~ U ) * ~ , )  (B.12) 

V,3 = -2Re{vec(IIlEQ)*y,}. (B.13) 

Note that the "cross-terms'' do not contribute to (89), since 

for k # 1 

lim NE[KbV,)] = 0. (B.14) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'9 -m 

Hence, only the "diagonal terms" need to be evaluated. 

Let us first rewrite (B. l l )  using (30) and (46): 

V;1 = -2Re{vec(A)*My,} rv -2p*Re{D;My,}. (B.15) 

This gives immediately 

E[V;1V,1] = 4Re{y;MD,}fiRe(D;Myi} + o( l /N) .  
(B.16) 

To evaluate E[K2&2] and E[K3y3], some useful covariance 
formulas are stated. Let x and y be deterministic vectors of 

appropriate dimensions. Then, 

E[vec(Z*)*xvec(Z*)*y] = 0 (B.17) 

0' 

N 
~ [ x * v e c ( ~ * ) v e c ( ~ * ) * y ]  = -x*(PT 8 I)Y (B.18) 

~ [ v e c ( ~ ) * x v e c ( ~ ) * y ]  = 0 4 x T v e c ( ~ ) v e c ( ~ ) T y  

0 4  + -xT N btr { vec( I)vec( I)T}y 

(B.19) 

E [x* vec( E )vec( E) * y] = c4x* vec( I)vec( ~ ) ~ y  

0 4  

N 
+ -x*y (B.20) 

where btr(A) refers to the matrix A with all blocks trans- 

posed. Next, note that for arbitrary scalars 5 and y, we have 

2Re(z)Re(y) = Re(.Ecy + xy). (B.21) 

Using (30) and (46), (B.12) can be expressed in the form 

I 4 2  = - 2 R e { ~ e c ( z * ) * M ( P - ~  8 IIL)yz}. (B.22) 

Applying (B.17)-(B.18) and (B.21) now gives 

202 

N 
E[V,2V,2] = -Re{ y,*M(P-T @ nl) 

x (PT 8 I)(P-T @ I IL)My,}  

= -Re{y,*M(P-* @ I I l ) M y z }  + o ( l / N ) .  
202 

N 
(B.23) 

For the last diagonal term we note that 

(@T 8 I I l )Tvec ( I )  = vec{(QIIl)T} = 0 

(Q* 8 IIL)Tbtr(vec(I)vec(I)T) = 0 

(B.24) 

(B.25) 

which leads to 

204 
E[K3y3] = --Re{y,*(QT 8 I I*)(@T* 8 IIL)yz}. 

(B.26) 
N 

Applying (B.9) yields 

aTV* = = (uA*E,A-~E:Au)~ ( ~ m )  

which gives 

811L] Myi}. (B.28) 

Equation (14) implies 

p-l+ ~ A * E , A - ~ E ; A  = A*E,(A-~ + 0 2 A - 2 ) ~ ; ~  

= A*E,A-~A,E;A = K ~ u - ?  
(B.29) 
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Combining (B.23) and (B.28)-(B.29) now yields 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

and thus from (B.16) and (B.30) the asymptotic covariance of 
the gradient is obtained as 

E[K2%2] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ E[K3&3] = -{y;My;} + o ( l / N )  (B.30) 

Qij = lFm N E [ K V , ]  = 2Re{y;Myi} 

+ 4Re{ y5 MD,} aRe{ DiMy;}. (B.3 1) 

Next, we go through some calculations to verify that Qij = 
Hij. Using (83) we have 

Re{D;Myj} = Re{D;M(ai - D,r-lfj)} 

= f j  - Re{D;MD,}I’-’fj 

= (I’ - Re{DzMD,))lT1fj 

1 -  

2 
- - -n-Ir-lf. (B.32) 

where in the last step equation (48) is used. The above algebra 
implies 

4Re{y;MD,)aRe{ DzMyi} = 2fFlT1Re(D;Myi}. 

(B.33) 

Next, note from (B.l) that 

2Re{y,’My;} = Hij - 2Re{fFI’-1D;Myi) 

= Hij - 2f?lT1Re{D;Myi). (B.34) 

Inserting (B.33)-(B.34) into (B.31) shows that 

Q . .  - - H . .  23 (B.35) 

which was the original goal of the proof. 
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