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Abstract
We develop a Bayesian approach to estimate the parameters of ordinary differential
equations (ODE) from theobservednoisydata.Ourmethoddoes not need to solveODE
directly. We replace the ODE constraint with a probability expression and combine it
with the nonparametric data fitting procedure into a joint likelihood framework. One
advantage of the proposedmethod is that for someODE systems, one can obtain closed
form conditional posterior distributions for all variables which substantially reduce
the computational cost and facilitate the convergence process. An efficient Riemann
manifold based hybrid Monte Carlo scheme is implemented to generate samples for
variables whose conditional posterior distribution cannot be written in terms of closed
form. Our approach can be applied to situations where the state variables are only
partially observed. The usefulness of the proposed method is demonstrated through
applications to both simulated and real data.

Keywords Noisy data · ODE constraint · Nonparametric fitting · Joint likelihood
framework · Hybrid Monte Carlo

1 Introduction

Ordinary differential equation (ODE) is a simple but powerful framework formodeling
the interactions of complex dynamic systems and has been widely used in many
scientific fields including engineering, physics and biomedical sciences. In practice,
we often need to estimate the parameters of ODE models from the observational data.
This is an important but challenging statistical problem because the observed state
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variables are not exactly the ODE solution but rather measured with noise. In addition,
many ODE equations are nonlinear and thus do not have closed form solutions.

Two general strategies are commonly used to tackle parameter estimation problem
for ODE models. The first strategy focuses on solving the ODE and uses the least
square principle to fit the ODE solution to the observed data (Hemker 1972; Bates and
Watts 1988; Seber and Wild 1989; Li et al. 2005). If the ODE has analytical solution,
it is equivalent to a standard nonlinear least square problem. However, in practice,
most of the ODEs do not have closed form solutions due to their nonlinear features.
In this case, numerical methods such as the Runge-Kutta algorithm (see Hairer et al.
1993; Matteij and Molenaar 2002) have to be used to approximate the solution of the
ODEs. This method has highly computational cost because the numerical solutions of
ODEs have to be obtained for every updating of the parameters. In addition, the initial
values of the state variables have to be estimated in this method in order to solve the
ODE and this greatly increases the number of the unknown parameters in the model.

In the second strategy, ODE does not need to be solved explicitly, instead, smooth
nonparametric methods are used. For example, Varah proposed a two-stage smoothing
method to estimate the ODE parameters (Varah 1982). In the first stage, regression
splines were used to estimate the state variables and their derivatives. In the second
stage, parameters were estimated by minimizing the distance between the estimated
derivatives and the derivatives determined by the ODE. Liang and Wu (2008) devel-
oped a similar idea but explored the kernel-based nonparametric methods to estimate
the regression functions and their derivatives. As pointed by Dondelinger et al. (2013)
and Wang and Barber (2014), a drawback of the two-step method is that the nonpara-
metric fit in the first step is based on the data alone without any feedback mechanism
from the ODE system. This limitation leads to rather poor parameter estimation from
data subject to heavy noise. Another drawback of this method is that it cannot be
applied to situations where some components are missing. To overcome this problem,
Ramsay et al. (2007) proposed a parameter cascade approach to estimate the dynamic
parameters in ODE models. In this approach, the smoothing of the state variables and
the estimation of the ODE parameters are considered jointly. A linear combination of
spline basis functions is employed to approximate the regression function and param-
eters are estimated by requiring that the regression functions satisfy the differential
equation and fit the data simultaneously as well as possible. The second strategy avoids
the high computational cost of repeatedly solvingODE.However, its optimization task
is challenging. Efficient optimization techniques are required in practice to obtain the
estimator and the convergence of the computational algorithms needs to be justified.
The conventional gradient-based optimization methods such as the conjugate-gradient
method and Qausi-Newton method may fail to converge or may converge to a local
minimum if the initial values of the unknown parameters are not chosen to be close
enough to the true values.

On the other hand, Bayesian based approachesmay escape the localminimum in the
optimization surface as mentioned by Gelman et al. (1996). For the first strategy, some
Bayesian methods based on the likelihood centered on the numerical ODE solution
of the state variables have been proposed in the literature, examples include Huang
et al. (2006), Huang andWu (2006) among many others. Since the state variables have
no closed form solution, the posterior distribution for the parameters have no closed
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form so the sampling has to be based on Metroplis-Hastings algorithm which is quite
inefficient especially in high dimensional situations. In addition, at each iteration
when new values for the parameters are proposed, the numerical ODE solution has
to be obtained in order to compute the likelihood. This is also quite computationally
expensive.

Bayesian analysis for the second strategy has not been studied until recently when
Gaussian Process (GP) methods were considered as data models to infer the ODE
parameters (Calderhead et al. 2009; Dondelinger et al. 2013; Chkrebtii et al. 2016;
Wang and Barber 2014; Schober et al. 2014; Wang and Barber 2014). GPs provide
a distribution over both the fitted functions and associated gradients. Using priors on
the parameters of the GP model and the ODE model, this gives a flexible Bayesian
parameter estimation procedure. In Calderhead et al. (2009), GP parameters are first
fitted to the data, and subsequently the parameters of the ODE are estimated. The
estimation accuracy of this approach is limited by the lack of feedback from ODE
parameter inference to GP parameter inference. To address this, Dondelinger et al.
(2013) andWang andBarber (2014) introduced bidirectional interaction betweenODE
and GP parameters, demonstrating improved parameter estimation. However, these
GP based approaches have similar computational complexity and all use Metroplis-
Hastings algorithm in sampling the state variables and parameters which leaves room
for improvement. Bhaumik and Ghosal (2015); Ranciati et al. (2016) developed two-
stage Bayesian methods in which samples of the state variables were first generated
from nonparametric regression and then the posterior distribution of the ODE param-
eters were determined by matching the fitted curves through ODE constraints. The
main drawback of the approach is that the state variables are solely determined by the
observed data without the influence of the ODE parameters.

Wepropose to improve on previous approaches by introducing a one-step generative
model that directly combines the smoothness, system observations and ODE together.
We replace the ODE constraints with a probability expression and combine it with
nonparametric regression together into a joint likelihood function. The benefit of this
Bayesian approach to parameter estimation inODEs can bewell-established. For some
special ODE formulations, we can get closed form conditional distribution for every
variable which substantially facilitates the convergence of MCMC process. For more
complicated ODE models, we propose to use hybrid Monte Carlo scheme based on
Hamiltonian dynamics to improve the acceptance rate. Hybrid Monte Carlo requires
the computation of the derivative of the corresponding conditional distribution function
for each variable, which can also be derived in closed forms in our one-step Bayesian
model. Another advantage of our proposed model is that it can be applied to situations
where only partial components of the state variables are observed. A similar idea has
been applied to Partial Differential Equation Models in Xun et al. (2013) and ODE
models in Mazur et al. (2009) and Campbell and Steele (2012). Mazur et al. (2009)
only considered a single state variable and Campbell and Steele (2012), Xun et al.
(2013) employed completely different computation methods.

The remaining of the paper is organized as follows. Section 2 is devoted to the
detailed formulation of our Bayesian method. The Markov chain Monte Carlo proce-
dure for sampling the posterior distribution is provided in Sect. 2.3. Especially, the
implementation of the newly developed Riemann manifold based hybrid Monte Carlo
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scheme is introduced in details. The performance of the proposed method is tested in
Sect. 3 for simulated data and in Sect. 4 for real data. The paper is concluded with a
discussion in Sect. 5.

2 Model formulation

2.1 ODE system description

In a general continuous time dynamical system, the evolution of K states x(t) ≡
{x1(t), . . . , xK (t)} is described by a set of K ODEs

ẋ(t) ≡ d

dt
x(t) = f(x(t), θ , t), (1)

where θ ∈ Rp is the parameter vector of ODE and f(·) = { f1(·), . . . , fK (·)} is a vector
of known appropriately smoothing functions. Without loss of generality, assume that
thefirst K0 states aremeasured at timepoints t1, . . . , tn .A common situation in practice
is that only part of the system ismeasured, i.e. K0 < K . For the k-th observed state, the
n observations yk(t1), . . . , yk(tn) are obtained according to independent additive noise
model yk(t) = xk(t) + εk(t) where the noise εk(t) is Gaussian with a state-specific
error variance σ 2

k , i.e., εk(t) ∼ N (0, σ 2
k ). Other noise models are possible though

not trivial. Further define the state matrix X ≡ [x(t1), . . . , x(tn)] and the observation
matrix Y ≡ [y(t1), . . . , y(tn)], where y(t) ≡ (y1(t), . . . , yK0(t))

T . This gives an
observation model

pOBS(Y|X, σ 2) =
K0∏

k=1

n∏

i=1

pOBS(yk(ti )|xk(ti ), σ 2
k ), (2)

where pOBS(yk(t)|xk(t), σ 2
k ) = N (yk(t)|xk(t), σ 2

k ). Given potentially noisy observa-
tionsY, we aim to estimating the parameters θ . Parameter estimation for ODE system
is challenging because typically Eq. (1) does not have closed form solutions for a
general nonlinear function f(·), thus it is difficult to apply traditional nonlinear least
square method.

2.2 Bayesian ODE parameter estimation approach

In our proposed method, we first generate an estimator of xk from the observation yk
using nonparametric regression in which xk is expressed in terms of a basis function
expansion

xk(t) =
q∑

j=1

ck jφ j (t) = cTk φ(t), (3)

where φ(t) is a vector of q basis functions, the common choices of which include
polynomial bases, B-spline bases, and Laguerre functions. The derivative of xk(t) can
be written as
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ẋk(t) = cTk φ̇(t). (4)

Denote matrix C = [c1, . . . , cK ]. The likelihood function of the model is

pOBS(Y|C, σ 2) =
K0∏

k=1

n∏

i=1

N (yk(ti )|cTk φ(ti ), σ
2
k ). (5)

We tackle the inferential procedure with a Bayesian approach by assigning prior prob-
abilities to the parameters σ 2 = {σ 2

1 , . . . , σ 2
K } and C. For each σ 2

k , we employ an
improper prior p(σ 2

k ) = 1/σ 2
k . For each ck , we employ a Gaussian prior distribution

of the form

p(ck |λk) = N (0,�/λ2k). (6)

The hyperparameter matrix� = ∫ tn
t1

φ′′(t)[φ′′(t)]T dt which is defined in the way that
we want the basis to be penalized. The parameter λk controls the trade-off between
smoothness of the functions xk(t) and fit of the noisy data. The prior for λk is

p(λk) = Gamma(αk, βk), (7)

for some shape and rate hyperparameters (αk, βk).
Assuming additive Gaussian noise with a state specific error variance γ 2

k , one can
include ODE model (1) using

pODE (C|θ , γ 2) ≈
K∏

k=1

n∏

i=1

1

γk
exp

[
−{cTk φ̇(ti ) − fk(CTφ(ti ), θ , ti )}2

2γ 2
k

]
, (8)

where “≈” means “equal up to a constant” and γ 2 = {γ 2
1 , . . . , γ 2

K }. Here we replace
the exactODEconstraint (1)with the probability expression (8)whichmodels a normal
distribution for the discrepancy between ẋ(t) and f(x(t), θ , t). As γ 2

k → 0, we get
an exact ODE constraint for the k-th component. For each γ 2

k , we employ an inverse
Gamma prior

p(1/γ 2
k ) = Gamma(αγ , βγ ),

for some shape and rate hyperparameters (αγ , βγ ). For ODE parameters θ , we assume
the following prior distribution

p(θ |λθ ) = N (0, Ip/λ2θ ), (9)

where Ip denotes the p-dimensional identity matrix. This is equivalent to Bayesian
ridge regression with λθ as a penalizing term. The prior distribution for λθ is
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p(1/λ2θ ) = Gamma(αθ , βθ ), (10)

with hyperparameters (αθ , βθ ).
Combining observation model (5), basis expansions (3) and (4), and ODE require-

ment (8) together, we propose the following joint distribution of the whole system over
state parameters C, ODE parameters θ , observations Y, and remaining parameters

p(Y,C, θ ,λ, γ 2, σ 2, λθ ) = pOBS(Y|C, σ 2)pODE (C|θ, γ 2)p(C|λ)

p(θ |λ2θ )p(λ2)p(γ 2)p(σ 2)p(λ2θ ), (11)

where λ = {λ1, . . . , λK } and

p(C|λ2) =
K∏

k=1

p(ck |λ2k), p(λ2)p(γ 2)p(σ 2) =
K∏

k=1

p(λ2k)p(γ
2
k )p(σ 2

k ).

In this way we combine a smoothness assumption on the state variableX together with
derivative information obtained from theODE in a singlemodel. For those components
of the X which are not observed, they are not included in pOBS(Y|C, σ 2) but can still
be estimated because they appear in pODE (C|θ , γ 2).

The main difference between our model and the traditional Bayesian ODE model
(Huang et al. 2006; Huang andWu 2006) is that we replace the strict ODE requirement
(1) by the probabilistic expression (8). Our method is also different from the two-
step Bayesian approach proposed in Bhaumik and Ghosal (2015) which first sample
the state variables using Bayesian nonparametric method, and then infer the ODE
parameters deterministically by minimizing the distance between the derivatives of
the state variables and those predicted from the ODEs. The drawback of the two-
step approach is that the ODE parameters never feed back into the the first step and
thus have no bearing on the inference of the state variables. In contrast, our model is
described by a one-step expression (11) where the interpolation of the state variables
fits both the noisy data and the derivatives from the ODEs simultaneously, allowing
the system of ODEs to feed back into the interpolation. The smoothness of the state
variables, data fitting, and ODE constraint are balanced in the Bayesian model (11)
through the change of three parameters λ, σ 2, and γ 2. Instead of being treated as
tuning parameters like in Ramsay et al. (2007), they all can be estimated adaptively
through MCMC procedure in our model.

2.3 Parameter estimation

Statistical inference can be obtained based on the joint posterior distribution
p(C, θ ,λ, γ 2, σ 2, λθ |Y) which will be estimated using Markov Chain Monte Carlo
(MCMC) sampling scheme.

The full conditional posterior distributions of σ 2, γ 2,λ, andλθ are inverseGammas.
Generally, the distribution (11) is a complicated function of the state variablesX owing
to the nonlinear dependence via f(x(t), θ , t). The full conditional distributions ofX and
θ depend on the explicit form of function f(·). For situations where f(x(t), θ , t) only
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depends on each argument up to the first order of power, we can derive a closed form
full conditional posterior distribution for each component of X and θ . For example,
if f(·) is a linear function of any component of X, the full conditional distribution of
the corresponding component will be multivariate normal. Similarly, if f(·) is a linear
function of any component of θ , the full conditional distribution of that component
will be normal as well. However, in some applications where f(x(t), θ , t) tends to
have more complicated forms, there is no standard form distribution. The standard
Metropolis-Hastings method using a simple random-walk proposal distribution is not
efficient if the state variables are highly correlated among different time points due
to the slow exploration of the state space. To bypasses this problem, we exploit the
efficient hybrid Monte Carlo (HMC) method, which is also called Hamiltonian Monte
Carlo method to update the state variables and model parameters that do not have
closed form full conditional posterior distribution.

To draw samples for a random variable q ∈ Rd with density p(q), HMC introduces
an independent auxiliary variable p ∈ Rd with density p(p) = N (p|0,M), where M
is a symmetric, positive-define mass matrix. The joint density follows in factorized
form as p(q,p) = p(q)p(p) and the negative joint log-probability is

H(q,p) = − log(p(q)) + 1

2
log((2π)d |M|) + 1

2
pTM−1p.

From the joint distribution of q and p, negating p variable, we will get the marginal
distribution of q. The physical analog of this negative joint log-probability is a Hamil-
ton which describes the movement of a particle with position q and momentum p in a
potential − log(p(q)). The time evolution of the system with respective to a fictitious
time τ is determined by Hamilton’s equations

dq
dτ

= �pH(q,p) = M−1p,

dp
dτ

= − �q H(q,p) = �q log(p(q)). (12)

The HMC procedure is to first assume that the current state is at time 0, denoted by
(q(0),p(0)), and propose a new state at time τ as (q(τ ),p(τ )) by solving theHamilton
equation (12). Then this proposed state is accepted as the next state of the Markov
chain with probability

min[1, exp{−H(q(τ ),p(τ )) + H(q(0),p(0))}].

If the proposed state is not accepted, the next state is the same as the current state.
For practical applications of interest, the differential equations (12) cannot be solved

analytically and numerical methods are required. For implementation, Hamilton’s
equations are approximated by discretizing time, using some small step-size, ε and
starting with the state at time 0, iteratively computing the state at time ε, 2ε, until time
τ . The choice of the step size ε and number of integration steps can be tuned on the basis
of the overall acceptance rate of the HMC sampler. Traditionally, whenM is diagonal,
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a leapfrog method can be implemented to update the state at each step (Neal 1994).
However, as mentioned in Girolami and Calderhead (2011), ifM is chosen adaptively
by allowing its dependence on the position variable q, significant improvement can
be achieved for the overall mixing of the chain. Instead of the diagonal matrix, they
chooseM to be the Fisher information matrix at position q and propose a generalized
leapfrog algorithm which updates the state at each step using

p(ε/2) = p(0) − ε

2
�q H(q(0),p(ε/2)),

q(ε) = q(0) + ε

2
[�pH(q(0),p(ε/2)) + �pH(q(ε),p(ε/2))],

p(ε) = p(ε/2) − ε

2
�q H(q(ε),p(ε/2)).

This modified HMC scheme is also called Riemann manifold hybrid Monte Carlo
(RMHMC) which can give better performance than standard HMC scheme in situa-
tions where the components of x are highly correlated.

The required condition for the HMC sampling scheme is that we need to have
closed form first and second order derivatives for the full conditional density function.
Clearly this is satisfied in our method (11). For example, the conditional distribution
of the spline coefficients ck is

p(ck) ≈ p(ck |λk)pODE (C|θ , γ 2)

n∏

i=1

N (yk(ti )|cTk φ(ti ), σ
2
k ).

To sample ck , we need to compute the derivative �ck log(p(ck)), which has a closed
form expression. The Fisher informationmatrix of p(ck) can also be derived in a closed
form. Therefore, the implementation of the RMHMC algorithms is fairly straightfor-
ward for our method.

3 Simulation

In our simulation studies, we illustrate the performance of ourmethod on three dynam-
ical systems: Lotka–Volterra model, complex reaction model, and Fitzhugh–Nagumo
model. We applied our method to simulated data and test the performance by com-
paring the estimated parameters and state variables with the true ones. In all our
numerical studies, we use 11 cubic B-spline bases to approximate the state variables.
Our numerical studies have shown that the results are not sensitive to the number
of basis functions used in the nonparametric fit. Priors for the Bayesian methods are
taken to be almost noninformative, i.e. the parameters αk, βk, αθ , βθ , αγ , βγ in the
Gamma priors are chosen to be 0.01. For the analysis of the data, the MCMC sampler
was run for a total of 11,000 cycles. The first 1000 cycles were discarded as burn-in,
and the remainder of the chain was thinned by keeping one out of every ten samples,
resulting in a total of 1000 samples for post-MCMC analysis. Our simulations have
also shown that the results are not sensitive to the choice of the starting points for the
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MCMC sampler and our MCMC algorithms converge fast. For comparison, we also
include the results based on the generalized profiling approach (GP) of Ramsay et al.
(2007) and the classic nonlinear least squares method (NLS) by using the R packages
CollocInfer and nloptr respectively. For the GP method, we choose the tuning param-
eter λ through a grid search such that the smallest residual sum square are obtained.
For the NLS method, in addition to the ODE parameters, the initial values of the state
variables also need to be estimated using the optimization package. For each of the
following configurations, we run 100 replications. To evaluate the performance of dif-
ferent methods, we define the average relative estimation error (ARE) of a parameter

θ as ARE = 1
N

∑N
i=1

|θ̂i−θ |
|θ | , where θ̂i is the estimate of θ for the i-th replication and

N is the number of simulation runs (here N = 100).

3.1 Lotka–Volterra model

TheLotka–Volterramodel is an ecological system that is used to describe the periodical
interaction between a prey species S and a predator species W (Lotka 1909)

Ṡ(t) = S(t)(α − βW (t)),

Ẇ (t) = −W (t)(γ − δS(t)), (13)

where θ = [α, β, γ, δ]T and X = [S,W ]. The observed data are generated using
numerical integration over the interval [0,4]with θ = [2, 1, 4, 1] and initial state values
S(0) = 5 andW (0) = 3. Then we add Gaussian noise N (0, σ 2) to the numerical ODE
solution to form the observation Y. We set σ = 0.2 and σ = 1 to represent situations
of small noise and large noise respectively. Data are collected at each time point
with interval 0.1. For this model, the function f(·) is linear with respect to each of its
arguments. Thuswe can get closed form expression for full conditional distributions of
all variables. The full conditional distributions for θ , S(t) andW (t) are all multivariate
normals. This substantially facilitates the convergence speed of MCMC. We consider
two scenarios. In the first scenario, both S andW are observed. In the second scenario,
only S is observed and the observation forW is missing. Then by eliminating variable
W (t) in (13), we can show that the parameter β is not identifiable. Meaning that for
a given data, there are more than one set of parameters resulting in a similar data fit.
However, if the initial value W (0) is known, then all four parameters are structurally
identifiable.

We summarize the point estimation results in Table 1 and the associated AREs in
Table 2. The upper blocks are for the first scenario and the lower blocks are for the
second scenario. Table 1 reports the averages of the estimated values, standard errors,
and the average time for analyzing each data set. The 95% highest posterior density
intervals are also included for our Bayesianmethod. For the second scenario, we didn’t
include the GP results because the software does not provide the option on how to get
the output with the initial value W (0) fixed. Table 1 shows that the point estimates
of the ODE parameters are reasonable close to the true values for all methods when
the noise is small. In terms of the speed, the fastest method is GP. The computational
time increases with the noise for NLS but changes very little for Bayesian and GP.
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Table 1 Summary table of the estimatedODE coefficients for Lotka–Volterramodel based on 100 simulated
data sets for α = 2, β = 1, γ = 4, δ = 1

σ Method α β γ δ Time

0.2 Bayesian 2.00 (0.10) 1.00 (0.05) 3.76 (0.26) 0.93 (0.07) 18.1

[1.60, 2.41] [0.93, 1.06] [3.20, 4.33] [0.82, 1.04]

NLS 2.02 (0.11) 1.01 (0.05) 3.98 (0.21) 1.00 (0.05) 12.0

GP 1.88 (0.12) 0.94 (0.05) 3.39 (0.28) 0.84 (0.07) 7.8

1.0 Bayesian 1.52 (0.47) 0.78 (0.22) 3.14 (1.28) 0.77 (0.35) 18.0

[0.94, 2.13] [0.55, 1.02] [1.75, 4.53] [0.43, 1.10]

NLS 1.78 (0.83) 0.88 (0.40) 4.08 (1.97) 1.01 (0.49) 35.5

GP 1.92 (0.58) 0.93 (0.27) 3.67 (1.62) 0.89 (0.42) 7.0

0.2 Bayesian 1.70 (0.28) 0.87 (0.12) 4.35 (0.50) 1.07 (0.13) 18.7

[0.66, 2.77] [0.73, 1.02] [3.18, 5.47] [0.82, 1.30]

NLS 2.85 (0.46) 1.28 (0.15) 2.87 (0.66) 0.72 (0.16) 20.0

1.0 Bayesian 2.58 (1.34) 1.17 (0.48) 3.50 (1.30) 0.83 (0.34) 18.5

[1.13, 4.07] [0.91, 1.44] [2.35, 4.66] [0.61, 1.10]

NLS 2.62 (1.37) 1.20 (0.46) 6.09 (6.97) 1.51 (1.72) 26.7

The numbers in parentheses denote standard deviations over 100 samples. The numbers in the square
brackets denote the average 95% posterior credible intervals for the proposed Bayesian method. Time
denotes the average time for analyzing each data set in unit of seconds

From Table 2, we can see that in the first scenario, NLS gives the smallest ARE if the
noise is small and GP gives the smallest ARE if the noise is large. The performances
of Bayesian are in-between in both situations. In the second scenario, Bayesian is
consistently better than NLS.

To evaluate the goodness of fit, we obtained the predicted values of S and W
by numerically integrating ODEs (13) using estimated parameters. We present the
predicted curves for the case of σ 2 = 0.5 and the corresponding true curves (by
solving the ODEs using the true parameter values) in Fig. 1 in which the associated
95% confidence intervals of these state variables are also delineated. The upper panel
is for results based on estimation using observed data of both S component and W
component. The lower panel is for results estimated from S component alone with
known W (0). We can see that the predicted curves of S and W have good agreement
with the corresponding true curves. Figure 1 shows that our method can give quite
reasonable estimation even in situations where some components of state variables
are not observable. This is one of the big advantages of our Bayesian method.

3.2 Complex reactionmodel

This model describes the complex reaction with segregation in a semi-batch
reactor which includes five state variables y1, y2, y3, y4, y5 and four parameters
β, Da, θmix , η. The dynamics of the system can be described by the following dif-
ferential equations (Schittkowski 2002)
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Table 2 Relative error for the
simulated data from the
Lotka–Volterra model

σ Method α β γ δ

0.2 Bayesian 0.04 0.04 0.07 0.09

NLS 0.04 0.04 0.04 0.04

GP 0.07 0.06 0.15 0.16

1.0 Bayesian 0.29 0.27 0.32 0.35

NLS 0.31 0.31 0.35 0.36

GP 0.24 0.24 0.34 0.36

0.2 Bayesian 0.18 0.16 0.13 0.12

NLS 0.45 0.29 0.31 0.31

1.0 Bayesian 0.41 0.34 0.28 0.30

NLS 0.65 0.43 1.05 1.04
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Fig. 1 Bayesian inference for Lotka–Volterramodel. The results for state variables S(t) andW (t) are shown
in the left and right panel respectively. The solid lines indicate the true trajectories. The solid circles are the
estimated trajectories with 95% confidence intervals represented by the error bars. The results based on the
observed data of both S and W components are shown in the upper panel. The results based on observed
data of S component alone and W (0) are shown in the lower panel

ẏ1(t) = 1 − y1(t)

�(t)
− y1(t)

θmix
,

ẏ2(t) = 1 − y2(t)

A(t)
− βDa(y2(t)y3(t) − ηy2(t)),

ẏ3(t) = η − y3(t)

A(t)
− βDa(y2(t)y3(t) − ηy1(t)) − Da y2(t)y4(t)
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Table 3 Summary table of the estimated ODE coefficients for complex reaction model based on 100
simulated data sets for β = 10, Da = 5, θmix = 3, η = 0.3

σ Method β Da θmix η Time

0.1 Bayesian 7.41 (0.76) 4.51 (0.37) 2.95 (0.20) 0.31 (0.02) 31.0

[7.13, 7.70] [4.37, 4.65] [2.84, 3.06] [0.31, 0.32]

NLS 5.26 (5.00) 4.57 (0.54) 2.97 (0.08) 0.45 (0.17) 224.9

GP 3.51 (1.75) 4.16 (0.61) 3.00 (0.12) 0.29 (0.12) 469.8

0.5 Bayesian 2.37 (1.58) 3.60 (1.61) 2.61 (0.83) 0.30 (0.17) 29.3

[1.89, 2.87] [3.14, 4.05] [2.14, 3.09] [0.23, 0.38]

NLS 19.9 (61.85) 4.44 (1.18) 3.09 (0.44) 0.45 (0.19) 152.7

GP 0.14 (1.32) 1.63 (0.97) 2.71 (0.58) −0.10 (0.33) 233.7

The notations are the same as in Table 1

Table 4 Relative error for the
simulated data from the complex
reaction model

σ Method β Da θmix η

0.2 Bayesian 0.09 0.08 0.09 0.05

NLS 0.53 0.11 0.02 0.54

GP 0.29 0.14 0.07 0.14

0.5 Bayesian 0.60 0.41 0.27 0.67

NLS 2.00 0.21 0.11 0.63

GP 1.44 0.81 0.17 5.92

ẏ4(t) = −y4(t)

A(t)
+ βDa(y2(t)y3(t) − ηy1(t)) − Da y3(t)y4(t)

ẏ5(t) = −y5(t)

A(t)
+ Da y3(t)y4(t),

where �(t) = t + 0.01 and

A(t) =
{

�(t) i f �(t) ≤ 1.0
1 otherwise

.

We generate data using parameters [β, Da, θmix , η] = [10, 5, 3, 0.3] and initial
state values [y1(0), y2(0), y3(0), y4(0), y5(0)] = [1, 1, 1, 1, 1]. The Gaussian noise
is generated from N (0, σ 2). Data are collected at every 0.03 time unit on the interval
[0, 3]. We consider two situations: σ = 0.1 and σ = 0.5. The averages of the esti-
mated ODE parameters, standard errors, 95% posterior credible intervals, and average
analysis times are summarized in Table 3 based on 100 simulated data sets. Table 4
shows the corresponding AREs. From Table 3, we can see that our Bayesian method
is much faster than the optimization based NLS and GP methods in solving this esti-
mation problem. Table 4 shows that our method gives the smallest AREs for β, Da, η

in situation of σ = 0.1 and also the smallest AREs for β in situation of σ = 0.5. In
other cases, our estimations are not substantially worse. Figure 2 compares the curves
using the estimated parameters with the curves using the true parameters for five state
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Fig. 2 Bayesian inference for complex reaction model. The results for five state variables
y1(t), y2(t), y3(t), y4(t), and y5(t) are shown in five panels respectively. The circles represent the observed
data. The solid lines indicate the true trajectories and the dashed lines represent the estimated trajectories
based on the Bayesian method

variables based on one simulated example in the case of σ = 0.2. The results show
that our estimation can successfully recover the shapes of state variables.

3.3 Fitzhugh–Nagumomodel

The Fitzhugh–Nagumo equations describe the behavior of spike potentials in the giant
axon of squid neurons (Ramsay et al. 2007):

V̇ (t) = c

(
V (t) − V (t)3

3

)
+ R(t),

Ṙ(t) = −(V (t) − a + bR(t)),

where V describes the voltage across an axon membrane and R is a recovery variable
summarizing outward currents. The parameter values used to generate the data are
a = 0.2, b = 0.1, c = 3 and V (0) = 1, R(0) = 3. The simulated values are
then perturbed with Gaussian noise from N (0, σ 2). The data consists of 201 evenly-
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Table 5 Summary table of the estimated ODE coefficients for Fitzhugh–Nagumo model based on 100
simulated data sets

σ Method a b c Time

0.1 Bayesian 0.19 (0.01) 0.10 (0.01) 2.75 (0.08) 50.0

[0.05, 0.32] [0.08, 0.12] [2.62, 2.88]

NLS 0.07 (0.09) 0.12 (0.03) 3.00 (0.07) 126.4

GP 0.29 (0.07) 0.20 (0.02) 2.45 (0.11) 8.7

0.5 Bayesian 0.19 (0.06) 0.10 (0.03) 1.40 (0.27) 48.9

[0.05, 0.33] [0.02, 0.18] [1.06, 1.75]

NLS 0.13 (0.19) 0.12 (0.12) 2.91 (0.41) 99.0

GP 0.11 (0.22) 0.16 (0.08) 0.66 (0.30) 12.1

The notations are the same as in Table 1

Table 6 Relative error for the
simulated data from the
Fitzhugh–Nagumo model

σ Method a b c

0.1 Bayesian 0.08 0.05 0.08

NLS 0.67 0.32 0.02

GP 0.46 1.03 0.18

0.5 Bayesian 0.22 0.24 0.53

NLS 0.89 0.83 0.08

GP 0.95 0.77 0.78

spaced observations in the interval [0, 20]. For this ODE system, the full conditional
distributions for state variable R(t) and parameters a, b and c are multivariate normals
based on ourmodel (11). But there is no closed form expression for state variable V (t).
So special attention needs to be taken. We use RMHMCmethod proposed in Girolami
and Calderhead (2011) to generate posterior samples for V (t). The mass matrixM is
chosen to be the Fisher information matrix at the current value of the position variable.

We consider two situations: σ = 0.1 and σ = 0.5. The averages of the estimated
ODE parameters, standard errors, 95% posterior credible intervals, and average anal-
ysis times are summarized in Table 5 based on 100 simulated data sets. Table 6 shows
the corresponding AREs. From Tables 5 and 6, we can see that GP is much faster than
Bayesian and NLS. With respect to the accuracy, Bayesian gives the smallest errors
for the estimation of parameters a and b while NLS gives the smallest errors for the
estimation of parameter c in both cases.

4 Real data application

4.1 England andWales measles data

The first application of the proposed method is to the data of England and Wales
weekly case reports of measles from 1948 to 1965 taken from http://ns.mcmaster.ca/
~bolker/measdata.html. We use the following model:
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Ṡ(t) = −βS(t)I (t),

İ (t) = −βS(t)I (t) − δ I (t), (14)

where S(t) and I (t) stand for the number of susceptible and infected individuals at
time t respectively. The parameter β represents the infecting rate of the susceptible
individuals while the parameter δ represents the recovering rate of the infected indi-
viduals. Since the right hand sides of euqations in (14) are linear function of all ODE
parameters as well as the state variables, all posterior samples can be generated from
closed form distribution in our MCMC procedure, which substantially reduced the
computational cost.

In this study, S was not measured and only I was collected over time. Similar to
Dattner (2015), we focus on the observations for 53 weeks for the years 1948–1949.
Therefore, n is taken to be 53. For model (14) with observed I (t), parameter δ is not
identifiable and its estimation depends on the intial value S(0). To verify this, we take
integration over the first equation of (14) and obtain

S(t) = S(0) exp

(
−

∫ t

0
β I (s)ds

)
. (15)

Then substitute it into the second equation, we obtain

İ (t) =
{
βS(0) exp

(
−

∫ t

0
β I (s)ds

)
− δ)

}
I (t). (16)

Clearly, for fixed I (t), different combinations of β, S(0) and δ can satisfy the same
equation. Therefore, the solution for (16) is not unique. In practice, δ is usually consid-
ered as fixed and known, then the solution of β and S(0) are unique. In Dattner (2015),
it was assumed that an individual experiences one recovery in 5 days which is equiv-
alent to setting δ = 7/5 because the data are reported weekly. Table 2 shows how the
estimated parameters change with the given recovery time using our Bayesianmethod.
The parameters are estimated by taking average over 1000 posterior samples. It is indi-
cated from Table 1 that β̂, Ŝ(0), and Î (0) increases, decreases and does not change
with δ respectively. Dattner (2015) used the nonlinear least square method (NLS) with
carefully chosen initial values to obtain β̂ = 3.87 × 10−7, Ŝ(0) = 3.95 × 106, and
Î (0) = 2012, which are very close to our results. Our method is computationally
much cheaper because instead of numerically solving the ODE, we only need to draw
Gibbs sampling from closed form distribution in each step (Table 7).

The solutions of (14)with respect to the final estimated parameters for fixed δ = 7/5
are displayed in Fig. 3. The resulting data fit looks very reasonable.

4.2 HIV dynamics data from an AIDS clinical trial

The second application is to the HIV dynamics data from an AIDS clinical trial in
which HIV-1 infected patients were recruited to be treated by antiviral therapies and
immune-based treatment. This study measured HIV viral load V (t) and total CD4 T
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Table 7 EstimatedODE coefficients and initial state values for different given recovery times in the England
and Wales measles study

Recovery time in days δ β̂ Ŝ(0) Î (0)

3 7/3 2.41 × 10−7 1.02 × 107 2595

4 7/4 3.11 × 10−7 6.04 × 106 2595

5 7/5 3.86 × 10−7 3.96 × 106 2595

6 7/6 4.62 × 10−7 2.80 × 106 2595

7 1 5.39 × 10−7 2.10 × 106 2595

S
3.
2

3.
6

4

x10^6

I
0

0.
5

1
1.
5

2

x10^4

time

Fig. 3 The resulting data fit of our method. The solid lines represent the solution of (14) with respect to
the estimated parameters β̂ = 3.86 × 10−7, Ŝ(0) = 3.96 × 106, and Î (0) = 2595 while observations are
displayed with plus signs

cell counts T (t). As discussed in Liang and Wu (2008), the HIV dynamics can be
described by

V ′(t) = α0 + α1T (t) + α2T
′(t) − cV (t), (17)

where the functions V (t) and T (t) are state variables and (α0, α1, α2, c) are unknown
dynamic parameters. If we obtain the estimates of (α0, α1, α2), we can derive the
estimates of important viral dynamics parameters using the relationships: λ =
−α0/α2, ρ = α1/α2. Here λ represents the rate at which new T cells are continuously
generated, ρ is the death rate of T cells, and c is the clearance rate of free virions.
We fitted model (17) to the viral load data using the proposed Bayesian method and
present the parameter estimation results as follows: λ = 45.5, s.e. 3.1, and 95% pos-
terior credible interval [39.9, 52.3]; ρ = 0.085, s.e. 0.006, and 95% posterior credible
interval [0.074, 0.098]; c = 0.2937, s.e. 0.0003, and 95% posterior credible interval
[0.2929, 0.2943]. Our estimates are quite similar to the results reported in Liang and
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Fig. 4 Fitted curves of T (t) and V (t) for a patient from an HIV dynamics study. Circles indicate the
observations and the solid lines are the fitted curves by the Bayesian method

Wu (2008) by using the PsLS method and SIMEX methods. The fitted curves of viral
load and total CD4 T cell counts are shown in Fig. 4. The results show consistence of
our estimation with the observed data.

5 Discussion

In this paper,wedevelop a one-stepBayesian approach to estimate theODEparameters
based on observed noisy data. In contrast to the previous two-step Bayesian methods,
our method jointly analyzes the nonparametric data fitting and ODE equations based
on a single likelihood function. The main advantage is that we allow the system of
ODEs to act back in an adaptive manner on the nonparametric interpolation of the
state variables over the observed data. In this way, we address the main shortcoming
of the method proposed in Bhaumik and Ghosal (2015). Our next step is to study the
asymptotic properties of the proposed and establish Bernstein-von-Mises theorem for
the posterior distribution of the ODE parameter estimation.

We also compared our method to two popular existing methods: the standard
NLS method (Bates and Watts 1988; Seber and Wild 1989) and penalized spline
method (Ramsay and Silverman 2005; Ramsay et al. 2007; Ramsay andHooker 2017).
Although our method is not the best in all situations in terms of accuracy and speed,
we do provide an alternative estimation approach to avoid some critical problems of
these existing methods. Particularly, our method avoids the sensitivity of initial values
of the state variables on the parameter estimation as well as the high computational
cost due to solving the ODEs numerically or due to the complicated optimization tech-
niques. However, as pointed in Liang and Wu (2008), one limitation of the smoothing
spline-basedmethods is that they require frequent measurement data of state variables.
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One possible solution is to combine the proposed method with some existing methods
such as NLS to overcome this limitation.

Another big advantage of our proposed framework is that it can naturally incorporate
the hierarchical mixed-effect to allow the investigation of variability among different
levels. Toward this end, we only need to decompose the ODE parameters θ into two
parts in our model (11), one for fixed effect and one for random effect. Then an extra
layer of MCMC sampling procedure needs to be introduced to accomplish the task.
We will investigate these issues in a new paper.

Acknowledgements The authors thank the editor, associate editor, and three referees for many helpful
comments and suggestions which led to a much improved presentation. This research is supported in part
by Division of Mathematical Sciences (National Science Foundation) Grant DMS-1916411 (Huang, Song).

References

Bates D, Watts D (1988) Nonlinear regression analysis and its applications. Wiley, New York
Bhaumik P, Ghosal S (2015) Bayesian two-step estimation in differential equation models. Electron J Stat

9(2):3124–3154
Calderhead B, Girolami M, Lawrence ND (2009) Accelerating Bayesian inference over nonlinear differ-

ential equations with Gaussian processes. Adv Neural Inf Process Syst 21:217–224
Campbell D, Steele RJ (2012) Smooth functional tempering for nonlinear differential equation models. Stat

Comput 22(2):429–443
Chkrebtii OA, Campbell DA, Calderhead B, Girolami MA (2016) Bayesian solution uncertainty quantifi-

cation for differential equations. Bayesian Anal 11(4):1239–1267
Dattner I (2015) A model-based initial guess for estimating parameters in systems of ordinary differential

equations. Biometrics 71(4):1176–1184
Dondelinger F,HusmeierD,Rogers S, FilipponeM (2013)ODEparameter inference using adaptive gradient

matching with Gaussian processes. In: Carvalho CM, Ravikumar P (eds) Proceedings of the sixteenth
international conference on artificial intelligence and statistics, AISTATS 2013, Scottsdale, AZ, USA,
April 29–May 1, 2013, pp 216–228. JMLR.org

Gelman A, Bois F, Jiang J (1996) Physiological pharmacokinetic analysis using population modeling and
informative prior distributions. J Am Stat Assoc 91(436):1400–1412

Girolami M, Calderhead B (2011) Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J
R Stat Soc Ser B Stat Methodol 73(2):1-37

Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I (2nd revised). Nonstiff
problems. Springer, Berlin

Hemker P (1972) Numerical methods for differential equations in system simulation and in parameter
estimation. In: Hemker HC, Hess B (eds) Analysis and simulation of biochemical systems. Elsevier,
North Holland, pp 59–80

Huang Y, Wu H (2006) A bayesian approach for estimating antiviral efficacy in HIV dynamic models. J
Appl Stat 33(2):155–174

Huang Y, Liu D,WuH (2006) Hierarchical Bayesian methods for estimation of parameters in a longitudinal
HIV dynamic system. Biometrics 62(2):413–423

Li Z, Osborne MR, Pravan T (2005) Parameter estimation of ordinary differential equations. IMA J Numer
Anal 25:264–285

Liang H, Wu H (2008) Parameter estimation for differential equation models using a framework of mea-
surement error in regression models. J Am Stat Assoc 103(484):1570–1583

Lotka AJ (1909) Contribution to the theory of periodic reactions. J Phys Chem 14(3):271–274
Matteij R, Molenaar J (2002) Ordinary differential equations in theory and practice. SIAM, Philadelphia
Mazur J, RitterD,ReineltG,Kaderali L (2009)Reconstructing nonlinear dynamicmodels of gene regulation

using stochastic sampling. BMC Bioinform 10(1):448
Neal RM (1994) An improved acceptance procedure for the hybrid monte carlo algorithm. J Comput Phys

111(1):194–203

123



A Bayesian approach to estimate parameters of ordinary… 1499

Ramsay J, Hooker G (2017) Dynamic data analysis: modeling data with differential equations. Springer,
New York

Ramsay J, Silverman B (2005) Functional data analysis. Springer, New York
Ramsay JO, Hooker G, Campbell D, Cao J (2007) Parameter estimation for differential equations: a gen-

eralized smoothing approach. J R Stat Soc Ser B Stat Methodol 69(5):741–796
Ranciati S, Viroli C, Wit E (2016) Bayesian smooth-and-match strategy for ordinary differential equations

models that are linear in the parameters. Preprint: arXiv:1604.02318
Schittkowski K (2002) Numerical data fitting in dynamical systems: a practical introduction with applica-

tions and software. Kluwer, Norwell
SchoberM, DuvenaudD, Hennig P (2014) Probabilistic ODE solvers with Runge–Kuttameans. In: Ghahra-

mani Z, Welling M, Cortes C, Lawrence N, Weinberger K (eds) Advances in neural information
processing systems 27. Curran Associates Inc, Red Hook, pp 739–747

Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York
Varah JM (1982) A spline least squares method for numerical parameter estimation in differential equations.

SIAM J Sci Stat Comput 3(1):28–46
Wang Y, Barber D (2014) Gaussian processes for Bayesian estimation in ordinary differential equations. In:

Xing EP, Jebara T (eds) Proceedings of the 31st international conference on international conference
on machine learning—volume 32, ICML’14, Beijing, China, pp II-1485–II-1493. JMLR.org

Xun X, Cao J, Mallick B, Maity A, Carroll RJ (2013) Parameter estimation of partial differential equation
models. J Am Stat Assoc 108(503):1009–1020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1604.02318

	A Bayesian approach to estimate parameters of ordinary differential equation
	Abstract
	1 Introduction
	2 Model formulation
	2.1 ODE system description
	2.2 Bayesian ODE parameter estimation approach
	2.3 Parameter estimation

	3 Simulation
	3.1 Lotka–Volterra model
	3.2 Complex reaction model
	3.3 Fitzhugh–Nagumo model

	4 Real data application
	4.1 England and Wales measles data
	4.2 HIV dynamics data from an AIDS clinical trial

	5 Discussion
	Acknowledgements
	References


