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Abstract— In this paper we present a novel procedure for the
identification of hybrid systems in the piece-wise ARX form. The
procedure consists of three steps: 1) parameter estimation, 2) clas-
sification of data points and 3) partition estimation. Our approach
to parameter estimation is based on the gradual refinement of the
a-priori information about the parameter values, using the Bayesian
inference rule. Particle filters are used for a numerical implementation
of the proposed parameter estimation procedure. Data points are
subsequently classified to the mode which is most likely to have
generated them. A modified version of the multi-category robust
linear programming (MRLP) classification procedure, adjusted to use
the information derived in the previous steps of the identification
algorithm, is used for estimating the partition of the PWARX map. The
proposed procedure is applied for the identification of the component
placement process in pick-and-place machines.

I. INTRODUCTION

In this paper we present a novel procedure for the

identification of hybrid systems in the Piece-Wise AutoRe-

gressive eXogenous (PWARX) form. PWARX models are

a generalization of classical ARX models, obtained when

the regressor space is partitioned into a finite number of

polyhedral regions, and where an ARX model is defined on

each of the regions. PWARX models represent a broad class

of systems, as they form a subclass of Piece-Wise Affine

(PWA) models, which are in turn equivalent to other hybrid

modelling formalisms, like Mixed Logic Dynamics (MLD)

and Linear Complementarity (LC) frameworks [1].

The task of the identification procedure is to determine

the parameters of the ARX models together with the regions

of the regressor space where each of the models is valid.

The complexity of the identification problem stems from the

fact that it is not a priori known which data is generated by

which ARX model, and that the determination of the model

parameters and data classification have to be accomplished

simultaneously [2].

The identification of PWARX models has been consid-

ered before, and to date several approaches exist, like the

clustering approach [2], the greedy approach [3] and the

algebraic approach [4]. The clustering procedure has been

successfully applied for the identification of an experimental

setup modelling electronic component placement process in

pick-and-place machines [5], [6].

The main conclusions drawn from this experimental work

were:
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• based on the physical operation of the system, a certain

amount of a priori knowledge is frequently available.

• by proper choice of excitation signals it is sometimes

possible to excite only specific and well chosen modes

of the physical system.

• it is often possible to interpret the modes of the

identified model in terms of modes of the physical

system.

• by a careful analysis of the responses of identified

models, with the physical interpretation, it is possible

to single out modes which are correctly and incorrectly

identified.

These conclusions indicate that in practical situations

there exists a strong connection between the structure of the

identified hybrid models and the physical system. Ideally,

one would like to exploit this connection, for a number of

reasons:

• to supply the available a priori knowledge to the

identification procedure, in order to improve the iden-

tification results.

• to incrementally build hybrid models of increasing

complexity: by exciting different modes of the system,

the model can be obtained from a series of exper-

iments, rather than from one experiment where all

modes of interest have to be excited.

• to identify models that allow an interpretation in phys-

ical terms.

• to design targeted identification experiments that would

improve upon modes that are not correctly identified,

while keeping the correctly identified ones unchanged.

All of the mentioned procedures for hybrid identification

approach the problem as a black-box identification problem,

and provide no easy way of accomplishing the above stated

goals.

The idea of using and refining the a priori knowledge is

central in the procedure proposed in this paper. We will treat

the unknown parameters as random variables, to reflect the

fact that parameter values are known only with a certain

degree of confidence. Parameters will be described with

probability density functions (pdf). A priori knowledge on

parameters can be incorporated by choosing an appropriate

pdf. As new information becomes available, knowledge on

the parameters can be updated, and a posteriori pdf can be

obtained using Bayes rule.

Another central idea of the proposed procedure is that

the available information on the parameters can be used to

associate the data to the mode that most likely generated it.

In this way we aim to resolve the complexity issues.

43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

0-7803-8682-5/04/$20.00 ©2004 IEEE

TuA01.3

13

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:36 from IEEE Xplore.  Restrictions apply.



To implement the proposed procedure we use particle fil-

ters to represent and compute probability density functions.

For the region estimation we use the modification of the

Multi-category Robust Linear Programming classification

procedure (MRLP) [7].

The class of PWARX models and the identification prob-

lem will be formally introduced in section II. In sections

IV and V we discuss the parameter estimation algorithm,

and a particle filtering approach, as a way to implement it.

In section VI we present a modified MRLP procedure. In

section VII we give an example that illustrates the presented

ideas. The procedure is applied to the experimental setup

in section VIII. Conclusions are given in section IX.

II. PROBLEM STATEMENT

We consider piece-wise AutoRegressive eXogenous

(PWARX) models of the form:

y(k) = f(x(k)) + e(k) (1)

where k ≥ 0, and:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ�1

[
x

1

]
if x ∈ X1

...

θ�s

[
x

1

]
if x ∈ Xs

(2)

is a piece-wise affine map, and x(k) is a vector of regres-

sors, defined as

x(k) = [y(k − 1) . . . y(k − na)

u(k − 1) . . . u(k − nb)]
�

, (3)

where y(k) and u(k) are the output and the input of the

system at time k, respectively.

The parameters na and nb in (3) and the number of modes

s are assumed to be known. Therefore, θi ∈ Θi ⊆ R
n+1,

where n = na +nb. The sets Xi are assumed to be bounded

polyhedrons, described by:

Xi = {x |Hix ≤ hi} (4)

where Hi, hi are of appropriate dimensions, and the in-

equality holds element-wise. The set X =
⋃s

i=1 Xi is a

bounded polyhedron, and we assume that {Xi}s
i=1 is a

partition of X . We also assume that parameter vectors θi

and θj are different over different Xi:

Assumption II.1 θi �= θj , whenever i �= j.

The realization of the additive noise e in (1) is assumed

to be a sequence of independent, identically distributed

random values, with a known probability density function

pe.

The identification problem consists of estimating the val-

ues of the unknown parameter vectors θi, for i = 1, . . . , s,

and the regions {Xi}s
i=1, described by (4), given the data

pairs (x(k), y(k)), for k = 1, . . . , T .

III. PRELIMINARIES

When the partition {Xi}s
i=1 is known we can define the

mode µ(k) of the data pair (x(k), y(k)), k = 1, . . . , T
uniquely as:

µ(k) := i if x(k) ∈ Xi. (5)

When the partition of the regressor space is not known, we

will treat the mode as a random variable with integer values,

that can be described with the following probability density

function (pdf):

p(µ(k) = i) = pi;k
µ (6)

where pi;k
µ ≥ 0 and

s∑
i=1

pi;k
µ = 1, ∀ k = 1, . . . , T. (7)

The mode can now be estimated as:

µ̂(k) = arg max
i

pi;k
µ (8)

Note that this estimate is not necessarily unique, as it may

happen that pi;k
µ = pj,k

µ for i �= j. In that case either of the

values i, j can be taken as µ(k).
Before we start the identification procedure we need to

formulate our assumptions on the mode sequence, i.e. we

need the a priori probability density of µ(k). If some a pri-

ori information of the mode of the data pair (x(k), y(k)) is

available it can be incorporated in the coefficients pi;k
µ . For

example, if it is known that µ(k) = i then

pi;k
µ = 1, pj;k

µ = 0, j �= i. (9)

When no a priori information about the mode sequence

distribution is known, we will assume that all modes are

equally probable, i.e. we set

pi;k
µ =

1
s
, i = 1, . . . , s, k = 1, . . . , T. (10)

The unknown parameters θi will be treated as random

variables and we will describe them with their probability

density functions (pdf) pθi
. Ideally, if the pdf pθi

takes the

form

pθi
(θ) = δ(θ − θ0

i ), (11)

where δ is the Dirac delta distribution, then θi = θ0
i , with

probability one, and the parameter value is known exactly

.

From the probability density functions of the parameters,

different estimates of the parameters can be easily obtained.

For instance, the expectation of θi is given as

θ̂E
i = E[θi] =

∫
Θi

θ pθi
(θ) dθ (12)

and the maximum a posteriori probability (MAP) estimate

is given as:

θ̂MAP
i = arg max

θ∈Θi

pθi
(θ). (13)
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The covariance matrix Vi, which is a measure of the quality

of the estimate θ̂E
i , is defined as:

V E
i =

∫
Θi

(θ − θ̂E
i )(θ − θ̂E

i )�pθi
(θ)dθ. (14)

V MAP
i can be defined in the analogous way for θ̂MAP

i . The

quality of the estimate of θi is defined as the spectral radius

of the covariance matrix of the estimate:

ρE
i = ρ(V E

i ) = λmax(V E
i ) (15)

where λmax(·) denotes the maximal eigenvalue. ρMAP
i is

defined in an analogous way for V MAP
i . This measure is

useful for comparing two different estimates of the same

parameter vector, where the smaller value of ρ indicates

the better estimate.

To initialize the identification procedure we will assume

that an a priori pdf of the parameters is available. A

priori pdfs of the parameters can be obtained form physical

insights, or by using some of the black-box procedures for

hybrid identification [2–4].

IV. PARAMETER ESTIMATION

We assume that the initial (a priori) pdf of µ(k) is given

by (6) for each k, and that a priori pdfs pθi
are available.

Our parameter estimation algorithm will have T iterations,

and in each iteration we will refine the pdf of one of the

parameters. We will denote the pdf of the parameter θi at

step k by pθi
(·; k), with pθi

(·; 0) denoting the a priori pdf

of θi.

In the k-th iteration of the algorithm we will compute

the a posteriori pdf of µ(k), using available a priori pdf (6)

and available pdfs of the parameter vectors, assign the data

pair (x(k), y(k)) to the mode i that most likely generated

it, and compute the a posteriori pdf of θi, using as a fact

that the pair (x(k), y(k)) was generated by mode i.
The probability that the mode of data pair (x(k), y(k)) is

i, p(µ(k) = i|(x(k), y(k))) can be computed from the a

priori probability that µ(k) = i, using Bayes rule:

p(µ(k) = i|(x(k), y(k))) =
p((x(k), y(k))|µ(k) = i) pi;k

µ
s∑

j=1

pj,k
µ p((x(k), y(k))|µ(k) = j)

. (16)

To compute the probability p((x(k), y(k))|µ(k) = i) we

use the available information on the pdf of the parameter

θi from the step k − 1, i.e. pθi
(θ; k − 1). Noting that

p((x(k), y(k))|θ) = pe(y(k) − θx(k)), (17)

and using the formula of the total probability we compute:

p((x(k), y(k))|µ(k) = i) =∫
Θi

pe(y(k) − θx(k)) pθi
(θ; k − 1) dθ (18)

Note that (16) is just a normalized version of (18), but

for the expression (16) to hold it is necessary that the

denominator is not equal to zero. The interpretation of

this condition is that the likelihood that the data pair

(x(k), y(k)) is generated by at least one of the available

parameters should be bigger than zero.

Finally, if the data pair (x(k), y(k)) is assigned to mode

i, this assignment is used to update the pdf of the parameter

vector θi. Again, using Bayes rule we compute:

pθi
(θ|(x(k), y(k)); k) =

p((x(k), y(k))|θ; k − 1) pθi
(θ; k − 1)∫

Θi

p((x(k), y(k))|θ; k − 1) pθi
(θ; k − 1) dθ

, (19)

which is the a posteriori pdf pθi
at step k.

Now, we are ready to formally state the algorithm for

parameter estimation.

Algorithm IV.1 (parameter estimation)
• step 1: obtain the a priori probability density functions

pθi
(·; 0) and pµ(·; 0) for i = 1, . . . , s; set k = 1.

• step 2: for the data pair (x(k), y(k))compute the like-

lihood p(µ(k) = i|(x(k), y(k))), using (16). Assign

the data pair to the mode with the highest likelihood,

i.e.

µ̂(k) = arg max
1≤i≤s

p(µ(k) = i|(x(k), y(k))) (20)

• step 3: compute the a posteriori pdf of the parameter

θµ̂(k), pθµ̂(k)(·; k) using (19); for all j �= µ̂(k), set

pθj
(·; k) = pθj

(·; k − 1).
• step 4: k = k + 1; goto step 2 until k > T ♦

The schematic representation of the algorithm IV.1, for the

case s = 2 is given in figure 1.

maximum
likelihood

decision logic

computation of
the a posteriori

p.d.f.

computation of
the a posteriori

p.d.f.

))(),(( kykx

),(1 kp ⋅θ

),(2 kp ⋅θ

)0,(:init 1 ⋅θp

)0,(:init 2 ⋅θp

Fig. 1. Schematic representation of Algorithm IV.1 for two modes

V. PARTICLE FILTERING APPROXIMATION

Analytical solutions to (16),(18),(19) are in general in-

tractable. We opt for the particle filtering approach as an

efficient way to numerically compute probability density

functions [8]. The basic idea of particle filtering methods is

to approximate the pdf pθi
(·; k) defined over the dense set

Θi with a pdf supported in a finite number of points of Θi
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(these points are called particles). We therefore approximate

pθi
as:

pθi
(θ; k) ≈ p̂θi

(θ; k) :=
N∑

l=1

wl,k
i δ(θ − θl,k

i ). (21)

where {θl,k
i } ⊂ Θi, l = 1, . . . , N is a set of particles at step

k, and wl,k
i > 0 is a weight associated with the particle θl,k

i .

Algorithms that sample particles θl,k
i according to any

given probability density function can be found in the lit-

erature (i.e. Metropolis-Hastings algorithm, Gibbs sampler,

etc. [9]).

Estimates of (12) and (14) can be obtained from (21) in

a straightforward way. Combining (21) with (18) we obtain

the following approximation to (18):

p((x(k), y(k))|µ(k) = i) ≈
N∑

l=1

wl,k−1
i pe(y(k) − θl,k−1

i x(k)) (22)

To compute the recursion (19) we use a modification of

the Sample Importance Resampling (SIR) particle filtering

algorithm [8].

Algorithm V.1 (SIR particle filtering)
• FOR l = 1 : N

- diversify particles: θl,k
i = θl,k−1

i + εl, where εl ∼
N (0,Σε)

- compute wl,k
i = p((x(k), y(k))|θl,k

i ) using (17)

END FOR

• compute total weight q =
∑N

l=1 wl,k
i

• normalize: wl,k
i := q−1wl,k

i , for l = 1, . . . N
• resample the distribution (21) to obtain the new set of

particles θl,k
i , where wl,k

i = N−1 ♦
Algorithms for sampling distributions of the type (21) are

standard (see for instance [8, algorithm 2]). Since we

are using the SIR algorithm for estimating the constant

parameter it is necessary to diversify the particles [10].

For this purpose we add the normally distributed random

term εl to each particle in the first step of the Algorithm

V.1. The variance matrix Σε is the tuning parameter in

the algorithm. This method of particle diversification is

simple, but increases the variance of the estimates. Other

particle filtering algorithms with better statistical properties

but higher computational load, can be found in the literature

(see for instance [10]).

VI. PARTITION ESTIMATION

Once the pdfs of the parameters pθi
(·;T ) are available

data points can be attributed to the mode with the highest

likelihood, using (20). After this classification standard

techniques from pattern recognition can be applied to de-

termine the regions {Xi}s
i=1 (see e.g. [7]).

However, the method of highest likelihood classification

does not necessarily classify the data points to the cor-

rect mode. This problem is especially important when the

hyperplanes defined by two parameter vectors θi and θj

intersect over the region Xj . Then, data points near this

intersection may be wrongly attributed to the mode i. This

issue will be illustrated in the example in section VII.

Wrongly attributed data points may in turn lead to errors

in determining separating hyperplanes. In this section we

propose a modified version of the MRLP algorithm from

[7] that aims to alleviate this problem.

For i = 1, . . . , s define the set Di as:

Di = {x(k) | µ̂(k) = i} (23)

where µ̂ is computed as in (20), with pθi
(·;T ).

Definition VI.1 [7] The sets {Di}s
i=1 are piecewise-

linearly separable if there exist wi ∈ R
n, γi ∈ R for

i = 1, . . . , s such that ∀i, j = 1, . . . , s, i �= j and ∀x ∈ Di

the following holds:

〈
[

x
1

]
,

[
wi

γi

]
〉 > 〈

[
x
1

]
,

[
wj

γj

]
〉 (24)

where 〈·, ·〉 denotes the standard inner product in R
n+1.

Given wi, γi the mode of the data point x can be

estimated as:

µ̃(x) = arg max
i

〈
[

x
1

]
,

[
wi

γi

]
〉. (25)

and the hyperplane that separates regions Xi and Xj is given

by:

{x ∈ R
n | (wi − wj)x = γi − γj}. (26)

Matrices Hi, hi describing the region Xi defined in (4) can

be formed as:

Hi = colj{(wi − wj)�}, hi = colj{γi − γj}, (27)

where j = 1, . . . , s, j �= i, and the operator col{·} stacks

its arguments into a column vector. Note that only regions

with up to s − 1 vertices can be described in this way.

If the sets Di are not separable some data points are going

to violate (24). If the regressor x ∈ Di is classified to the

region Xj (i.e. if µ̃(x) = j) the violation ζij(x) : Di → R

is given as

ζij(x) = (−x(wi − wj) + (γi − γj) + 1)+ (28)

where q+ = max{q, 0}. Standard MRLP algorithm finds

wi, γi by minimizing the sum of averaged violations (28),

through a single linear program [7].

In our case we will weight the violations (28) accord-

ing to the following principle: if the probability that the

regressor x ∈ Di belongs to the mode i is approximately

equal to the probability that it belongs to mode j, then the

corresponding violation ζij(x), if positive, should not be

penalized highly. We define the weighting function ξij :
Di → R as

ξij(x(k)) = log
p((x(k), y(k))|µ(k) = i)
p((x(k), y(k))|µ(k) = j)

. (29)
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Since for any j �= i

p((x(k), y(k))|µ(k) = i) > p((x(k), y(k))|µ(k) = j)

the weight (29) is always nonnegative, and is equal to zero

when the two likelihoods are exactly equal.

The weighting function (29) takes into account only the

relative size of the mode likelihoods. If outliers are present

in the data set, mode likelihoods may be negligible, but their

ratio, formed as in (29), may still be significant. Another

possible choice of the weighting function ξij , which also

takes the absolute sizes of mode likelihoods into account

is:

ξij(x(k)) = p((x(k), y(k))|µ(k) = i) −
p((x(k), y(k))|µ(k) = j). (30)

The optimization problem can be stated as:

min
wi,γi

s∑
i=1

s∑
j=1
j �=i

∑
x∈Di

ξij(x) ζij(x). (31)

Problem (31) can be further cast as a linear program, in the

same way as in [7].

VII. EXAMPLE

Let data (x(k), y(k)) be generated by the system of type

(1) where:

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0.5 0.5

] [
x

1

]
, if x ∈ [−2.5, 0)

[
−1 2

] [
x

1

]
, if x ∈ [0, 2.5]

(32)

and e(k) is a sequence of normally distributed random

numbers, with zero mean and variance σ2
e = 0.025. The

data set of T = 100 data points together with the true

model is shown in figure 2.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 2. True model (solid), identified model (dashed) and the data set
used for identification

A priori pdfs are chosen as the uniform distributions

pθ1(θ1) = pθ2(θ2) = U([−2.5, 2.5]×[−2.5, 2.5]). A particle

approximation to this pdf, with N = 200 particles for each

pdf, is given in figure 3, left. The particle filtering algorithm

V.1 is applied, with Σ2
ε = diag{0.001, 0.001} and the final

particle distribution at the step k = 100 is shown in figure

3, right. The estimates of the parameter vectors are:

θE
1 =

[
0.4143
0.5340

]
, θE

2 =
[ −0.8467

1.8432

]
(33)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3. left: Particle approximation to the initial pdfs of the parameters
θ1, θ2 (red dots: particles of pθ1 , blue dots: particles of pθ2 ) right: Final
pdf of the parameters θ1 (red dots), θ2 (bluedots)

Data points are classified using (20), and the results are

depicted in figure 4a. Several data points that belong to

mode 1 are attributed to mode 2. These points are near

the virtual intersection of the two lines defined by the

parameter vectors. Figure 4b shows the weighting function

(29) for misclassification of points is shown. The weight

for misclassification of wrongly attributed points is small in

comparison to the weight for misclassification of the cor-

rectly attributed points. The region for mode 1 is estimated

as x ≥ 0.0228 while the region corresponding to mode 2

is estimated as x < 0.0228. The identified model, together

with the true model and the data set is depicted in figure 2.

−3 −2 −1 0 1 2 3
0

100

200

300

400
b)

−3 −2 −1 0 1 2 3
0

1

2

3
a)

Fig. 4. a) Data points attributed to modes b) Price function for the wrong
classification

VIII. EXPERIMENTAL EXAMPLE

In order to demonstrate the proposed identification pro-

cedure we applied it to the data collected from the experi-

mental setup made of the mounting head from a pick-and-

place machine. The same experimental setup was previously
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successfully identified using the clustering procedure [2].

The experimental setup and the identification results with

the clustering procedure are described in more detail in [5],

[6].
A photo and the schematic representation of the exper-

imental setup are given in figure 5. The setup consists of

the mounting head, from an actual pick-and-place machine,

which is fixed above the impacting surface. The upper part

of the figure 5b (mass M , spring c1, friction blocks d1 and

f1) schematically represents the mechanical assembly of the

mounting head, while the lower part (spring c2 and friction

blocks d2 and f2) represents the impacting surface.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 5. left: a) Photo of the experimental setup right: b) Schematic
representation of the experimental setup

The dynamics of the experimental setup exhibits, in a

first approximation, four different modes of operation:

• upper saturation: the head is in the upper retracted

position (i.e. can not move upwards, due to the physical

constraints)

• free mode: the head is not in contact with the impact-

ing surface, but is not in the upper saturation

• impact mode: the head is in contact with the impacting

surface, but is not in lower saturation

• lower saturation: the head is in the lower extended

position, (i.e. can not move downwards due to the

physical constraints)

We stress that the switch between the impact and free modes

does not occur at a constant head position, because of the

movement of the impacting surface. For the upper and lower

saturations, although they occur at a fixed position, they

introduce dynamic behaviors due to the bouncing when

hitting the constraints.
The control input is the voltage applied to the motor,

which is converted up to a negligible time constant to the

force 
F . The input signal for the identification experiment

should be chosen in a way that modes of interest are

sufficiently excited. To obtain the data for identification,

the input signal u(t) is chosen as:

u(t) = ak when t ∈ [kT, (k + 1)T ) (34)

where T > 0 is fixed, and the amplitude ak is a random

variable, with uniform distribution in the interval [a, b]. By

properly choosing the boundaries of the interval [a, b] only

certain modes of the system are excited. For instance only

free and impact modes can be excited, without reaching

upper and lower saturations.

Physical insight into the operation of the setup facilitates

the initialization of the procedure. For instance, although the

mode switch does not occur at a fixed height of the head,

with a degree of certainty data points below certain height

may be attributed to the free mode, and, analogously data

points above certain height may be attributed to the impact

mode. Data points that belong to saturations can also be

distinguished. This a priori information may be exploited

in the following way.

If m > n + 1 data pairs,

(x(k1), y(k1)), . . . , (x(km), y(km)) are attributed to

the mode i, the least squares estimate of the value of the

parameter vector θLS
i may be obtained as:

θLS
i = (Φ�

i Φi)−1Φ�
i yi, (35)

Φi =
[

x(k1) x(k2) · · · x(km),
1 1 · · · 1

]�

yi =
[

y(k1) y(k2) · · · y(km)
]�

.

The empirical covariance matrix of θLS
i can be computed

as [11]:

Ṽi =
y�

i (I − Φi(Φ�
i Φi)−1Φ�

i )yi

m − (n + 1)
(Φ�

i Φi)−1. (36)

This information is sufficient to define the parameter θi as

a normally distributed random variable:

pθi
(·; 0) = N (θLS

i , Ṽi) (37)

Samples from the normal distribution can be easily obtained

with some of the mentioned algorithms for sampling from

general multidimensional distributions (or using built-in

MATLAB functions).

We present an identification experiment in which the free,

impact and lower saturation modes are excited. Collected

data sets consist of 750 points which are divided into two

overlapping sets of 500 points: one is used for identification,

while the second is used for validation of the identified

models. Weighting function (30) is used. As a probability

density function of the noise we used pe ∼ N (0, 1).
The data set used for identification is depicted in figure

6. Portions of the dataset that are used for initialization of

free, impact and saturation mode are marked with ×, ◦ and

+, respectively. Models with s = 3, na = 2, nb = 2 are

identified.

Final classification of data points is depicted in figure

7a. In figure 7b spectral radii of variance matrices ρE
1,2,3 at

each step of the classification are depicted. Simulation of

the identified model, together with the modes active during

the simulation is depicted in figure 8.

From figure 7a we see that data points are classified

into three groups, corresponding to the impact, free and

saturation modes. From 7b we see that the estimates of

the parameters are improving during the iterations of the
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Fig. 6. Identification with saturations. Data set used for identification a)
position (portion marked with +: data points used for the initialization of
the lower saturation mode; portion marked with ◦: data points used for
initialization of impact mode; portion marked with ×: data points used for
the initialization of free mode b) input signal
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Fig. 7. Identification with saturations. a) Classified data points (◦: free
mode, ×: impact mode; + lower saturation) b) ρE

1,2,3 (solid line: free
mode; dashed line: impact mode; dotted line: lower saturation)

algorithm. From figure 8 we see that the simulated re-

sponse is satisfactory, and that the modes active during

the simulation correspond well to intuitive classification

of data. Response in the free mode does not match the

measured response precisely, while the responses in impact

and saturation modes are predicted remarkably well.

IX. CONCLUSIONS

In this paper we presented a novel method for the

identification of hybrid systems in PWARX form. The

presented method facilitates the use of the available a priori

information on the system to be identified, but can also

be used as the black-box method. Unknown parameters

are treated as random variables described with probability

density functions (pdf), and the Bayes rule is used to refine

a priori pdfs, as new information is considered. Modified

MRLP procedure is used for estimation of the regions. The

applicability and effectiveness of the developed method is

illustrated on an experimental example.

The approach taken in this paper is to refine the parameter
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Fig. 8. Identification with saturations. a) Simulation of the identified
model (solid line: simulated response, dashed line: measured response b)
modes active during the simulation

pdfs by taking one data point at each step of the algorithm.

Another possible approach would be to first classify all

available data on the basis of a priori knowledge, and

compute the a posteriori parameter pdfs in one step. This

approach will be considered in the further research. Further

research will also focus on the investigation of convergence

properties of the presented method, and on generalization

to other classes of hybrid systems.
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