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Abstract

Molecular markers derived from PCR amplification of genomic DNA are an
important part of the toolkit of evolutionary geneticists. RAPDs, AFLPs,
and ISSR polymorphisms allow analysis of species for which prior DNA se-
quence information is lacking, but dominance makes it impossible to apply
standard techniques to calculate F -statistics. We describe a Bayesian method
that allows direct estimates of Fst from dominant markers. In contrast to
existing alternatives, we do not assume prior knowledge of the degree of
within-population inbreeding. In particular, we do not assume that geno-
types within populations are in Hardy-Weinberg proportions. Our estimate
of Fst incorporates uncertainty about the magnitude of within-population in-
breeding. Simulations show that samples from even a relatively small number
of loci and populations produce reliable estimates of Fst. Moreover, some in-
formation about the degree of within population inbreeding (Fis) is available
from data sets with a large number of loci and populations. We illustrate
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the method with a reanalysis of RAPD data from 14 populations of a North
American orchid, Platanthera leucophaea.

Introduction

Since Lewontin and Hubby (1966) introduced evolutionary geneticists to al-
lozyme electrophoresis almost 40 years ago, molecular methods have been a
vital source of data for evolutionary analysis. Advances in molecular technol-
ogy in the last decade, notably the introduction of PCR-based DNA amplifi-
cation, have resulted in the development of many new methods for assessing
genetic diversity. In particular, random amplified polymorphic DNA (RAPD:
Williams et al. 1990), amplified fragment length polymorphism (AFLP: Vos
et al. 1995), and inter-simple sequence repeat polymorphism (ISSR: Wolfe
and Liston 1998) allow investigators to obtain large amounts of data on varia-
tion within and among populations without detailed prior knowledge of DNA
sequences within the species being studied.

Because these markers are based on PCR amplification, however, a diploid
individual need carry only one copy of the sequence necessary for an am-
plification product to be produced. A homozygote for the “null” allele at
a particular locus will not produce a band, but both a heterozygote and a
homozygote at that locus will. As a result, the fundamental data available
from a population at any given locus is the number of individuals with a
band corresponding to that locus and the number of individuals lacking that
band.

Investigators collecting genetic data from multiple populations are usu-
ally interested in assessing the degree of genetic differentiation among those
populations. When a genetic marker is co-dominant all genotypes are distin-
guishable from one another. Estimating allele frequencies within populations
and the variance of allele frequencies among populations is straightforward.
When a genetic marker is dominant, however, estimating allele frequencies
requires prior knowledge of the inbreeding coefficient. As a result, current ap-
proaches to partitioning genetic diversity as assessed with dominant marker
data involve either assuming that the inbreeding coefficient within popu-
lations is known (Lynch and Milligan 1994; Zhivotovsky 1999) or treating
the multilocus phenotype as a haplotype and using a similarity index (e.g.,
Nei and Li 1979) or Euclidean distance (Schneider et al. 2000) to describe
distances among haplotypes in an analysis of molecular variance (AMOVA:
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Excoffier et al. 1992; Isabel et al. 1999)
In this paper we present a Bayesian hierarchical model appropriate for

analysis of data derived from dominant markers. The method we present is
constructed in terms of the classical F -statistics of Wright (1951) and Malécot
(1948), and it represents a special case of a more general Bayesian approach
to analysis of hierarchical data in genetics described by Holsinger (1999).
Although our method does not provide precise estimates of inbreeding within
populations, it allows us to incorporate the effect of our uncertainty about
the magnitude of inbreeding into our estimates of Fst. We present simulation
results showing that our estimator performs well, even with relatively small
numbers of loci and populations. We also illustrate how the method can
be applied using data derived from a recent survey of RAPD variation in a
North American orchid, Platanthera leucophaea (Wallace 2000, submitted).

Materials and methods

F -statistics as defined by Wright (1951) and Malécot (1948) are the most
widely used method for describing the hierarchical structure of genetic data
derived from multiple populations. Fis is defined as “the average over all
[populations] of the correlation between uniting gametes relative to those
of their own population,” and Fst is defined as “the correlation between
random gametes within [populations], relative to gametes of the total [set of
populations]” (Wright 1969, p. 294). When considering one locus with two
alleles, Fis is equal to the average within-population inbreeding coefficient,

Fis =
K
∑

k=1

(

1 − Hk

2pk(1 − pk)

)

, (1)

where Hk is the frequency of heterozygotes and pk is the allele frequency in
population k. Fst is equal to the variance in allele frequency among pop-
ulations divided by the maximum possible variance given the mean allele
frequency across all populations, p̄,

Fst =
Var(p)

p̄(1 − p̄)
. (2)

Weir and Cockerham (1984, see also Cockerham 1969) introduced an ap-
proach for estimating Fis and Fst derived from analysis of variance. In their
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notation f corresponds to Fis, and θ corresponds to Fst. We follow the
Weir and Cockerham notation because the method we propose is directly
analagous to the random-effects model of population sampling underlying
their analysis of variance approach (compare Holsinger 1999; Roeder et al.
1998; Weir 1996).

The statistical model

The sample consists of data on genetic variation in K populations at I loci,
each locus having 2 alleles A1 and A2. We assume , without loss of generality,
that A1 is dominant to A2 at every locus. Let xA1,ik be the frequency of the
dominant phenotype at locus i in population k, and let nA1,ik be the number
of dominant phenotypes and nA2,ik be the number of recessive phenotypes
in the sample at locus i in population k. If we assume that phenotypes
are sampled at random across loci, which corresponds to assuming that the
magnitudes of gametic and identity disequilibrium within populations are
negligible, then the likelihood of the sample is

P (n|xA1) ∝
I
∏

i=1

K
∏

k=1

x
nA1,ik

A1,ik x
nA2,ik

A2,ik , (3)

where

xA1,ik = p2

ik + fpik(1 − pik) + 2pik(1 − pik)(1 − f) ,

xA2,ik = (1 − pik)
2 + fpik(1 − pik)

= 1 − xA1,ik ,

and f = Fis (see equation (1)). To incorporate the hierachical structure
implicit in the data, we assume that frequency distribution of pik among
all populations of interest (including those not sampled) is given by a Beta
distribution with parameters αi and βi, i = 1, . . . , I. For neutral genetic
markers, the stationary distribution of allele frequency for a single locus
subject to drift, migration, and mutation is a Beta distribution (Crow and
Kimura 1970; Ewens 1979).

Let αi = ((1 − θ)/θ)πi and βi = ((1 − θ)/θ)(1 − πi), be the parameters of
this Beta distribution. Its mean is then

αi

αi + βi

=
((1 − θ)/θ)πi

((1 − θ)/θ)πi + ((1 − θ)/θ)(1 − πi)
= πi
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and its variance is

αiβi

(αi + βi)2(αi + βi + 1)
=

πi(1 − πi)

(αi + βi + 1)

= πi(1 − πi)θ .

Since Fst = Var(p)/ (p̄(1 − p̄)) (see equation (2)), it follows that θ = Fst in
this formulation, if we assume that all loci show the same pattern of within
and among population diversity (Holsinger 1999; Roeder et al. 1998).

Notice that pik and f enter the likelihood only through xA1,ik and xA2,ik. As
a result, pik and f are not identifiable in a likelihood context, and likelihood
methods or other classical methods of analysis are possible only when either
f or the pik are specified before the analysis. In contrast, Bayesian analysis is
possible by specifying separate priors for πi, f , and θ. Prior information may
either be vague and non-informative, or it may use information from previous
comparable studies to refine estimates provided from newly-collected data.

Specifically, if P (πi) is the prior distribution for πi, P (θ) is the prior distri-
bution for θ, and P (f) is the prior distribution for f , the posterior probability
distribution for pik, π, θ, and f is given by

P (p, π, θ, f |nA1,nA2) ∝
{

I
∏

i=1

{ K
∏

k=1

x
nA1,ik

A1,ik x
nA2,ik

A2,ik P (xik|πi, θ, f)
}

P (πi)

}

P (θ)P (f) .

(4)
The posterior mean of θ provides a point estimate of Fst, and the posterior
mean of f provides a point estimate of Fis.

Analytical expressions for the posterior distributions of θ and f derived
from (4) are not available in standard form, but they can be numerically
approximated through the use of Markov chain Monte Carlo (MCMC) simu-
lation. Because the full conditional distributions for some of the parameters
in (4) cannot be sampled directly, we use a single-component Metropolis-
Hastings algorithm (Gilks et al. 1996) in our MCMC implementation.

Validation of the method

MCMC methods depend both on convergence of the Markov chain to its
stationary distribution and on independence of samples taken from the chain
once it has converged. We take samples from the chain only after discarding
a fixed number of initial samples (the burn-in) to ensure that the chain has
converged to its stationary distribution. Once the chain has converged, we
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retain samples from it only at fixed intervals (the thin) to ensure that the
samples are independent of one another.

We assessed convergence of the MCMC sampler in a series of preliminary
simulations using a battery of standard diagnostic tests (Brooks and Gel-
man 1998; Gelman and Rubin 1992; Raftery and Lewis 1992a,b). We then
simulated data derived from a broad range of realistic values for Fis and
Fst and assessed the performance of f and θ as estimates of these parame-
ters by computing three summary statistics for every simulated combination
of parameters: (1) bias, which is the average difference between the known
parameter value and estimated parameter value; (2) root mean squared er-

ror, which is the square root of the average squared difference between the
known parameter value and the estimated parameter value; and (3) realized

coverage, which is the fraction of 95% credible intervals that include the true
parameter value.

Results

Convergence of the sampler

Reliable point estimates for Fis and Fst can be obtained with a burn-in of
5000 iterations and sampling run of 25,000 iterations from which only ev-
ery fifth sample is retained for posterior calculations. Reliable estimates of
the 95% credible intervals, however, requires a burn-in of 50,000 iterations
and a sampling run of 250,000 iterations from which every fiftieth sample is
retained for posterior calculations (data not shown). Figure 1 illustrates re-
sults derived from one run of the sampler (burn-in: 50,000; sample: 250,000;
thin: 50) with simulated data from 10 loci and 5 populations produced when
Fis = 0.1 and Fst = 0.1.

Inspection of the figure illustrates that even with small amounts of data
accurate and precise estimates of Fst are possible. For this example, θ = 0.16
and its 95% credible interval is [0.093,0.24]. Estimates of Fis, not surprisingly,
are uninformative. For this example, f = 0.41 and its 95% credible interval
is [0.027,0.93]. Panels (c) and (d) illustrate that the sampler thoroughly ex-
plores the relevant parts of parameter space, and panels (e) and (f) illustrate
that thinning the sample has successfully produced nearly independent sam-
ples from the posterior distribution. Formal convergence diagnostics (Brooks
and Gelman 1998; Gelman and Rubin 1992; Raftery and Lewis 1992a,b) con-
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Figure 1: Convergence of the sampler and posterior densities for θ and f
with a sample data set generated with Fst = 0.1 and Fis = 0.1. (a) Posterior
density of θ. (b) Posterior density of f . (c) Sample history for θ. (d) Sample
history for f . (e) Autocorrelation for θ. (f) Autocorrelation for f .

firm these subjective impressions.

Performance of the estimtes

To assess performance of θ and f we performed a series of simulations in
which we generated data with known values of Fis and Fst (0.01, 0.05, 0.1,
0.25, 0.5, 0.9). The mean allele frequency at each locus, πi, was chosen at
random from a Beta(2,2). We chose this distribution because we expect in-
vestigators to focus their attention on loci with moderate to high amounts
of variability. 95% of the allele frequencies chosen at random from this dis-
tribution will lie between 9.4% and 90.6%. For a population with genotypes
in Hardy-Weinberg proportions that corresponds to dominant band frequen-
cies between 18% and 99%. We chose a sample size of 25 individuals per
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population as representative of a moderate degree of within-population sam-
pling effort, and we investigated performance of the estimates both with 10
loci and 5 populations and, for a smaller number of parameter combinations,
with 50 loci and 15 populations. We used non-informative (uniform) priors
for θ, f , and πi in all of our analyses.

The results from 100 independently generated data sets for each set of
parameter conditions (shown in Table 1) illustrate that θ provides reliable
estimates of Fst even when the amount of data collected is relatively small.
Both the bias and root mean squared error of θ are consistently smaller than
about 3%. Moreover, the 95% credible intervals for θ cover the true value of
Fst at least 90% of the time. As expected, the bias and root mean squared
error of the estimates are substantially smaller when samples are available
from more loci and more populations, and the 95% credible intervals are also
narrower.

Although these results illustrate that good estimates of Fst are possible,
they also illustrate that very little information about Fis is available from
dominant markers, especially in data sets with a small number of loci and
populations. The posterior mean of f differs only a little from its prior
mean (0.5), and the credible intervals cover most of the range in simulated
data sets with 10 loci and 5 populations (data not shown). Notice espe-
cially that the realized coverage of the credible intervals for Fis is less than
40% with 10 loci and 5 populations when its true value is 0.01. With larger
amounts of data, however, the bias and root mean squared error of f are
smaller, indicating that some inference about Fis is possible even with dom-
inant markers (see also the analysis of data from Platanthera leucophaea in
the next section).

Information on f comes from constraints placed on it through the assump-
tion of a common θ across loci. Although pik and f are not identifiable in
a likelihood context, the posterior distribution for pik is constrained by the
data. Values for pik falling outside the interval [xA1,ik, 1−√

xA2,ik] have a low
likelihood and a small posterior probability, regardless of the value of f . The
posterior distribution of θ depends on the variance in allele frequency among
populations. Thus, it is constrained to values consistent with a high likeli-
hood for the pik. For any single locus, the posterior distribution of f is little
constrained by the data, because for any value of pik in [xA1,ik, 1−√

xA2,ik] a
value of f can be found that provides a high likelihood and a large posterior
probability. With many loci, however, the value of θ is tightly constrained,
because of the constraints on pik imposed by the observed within-population
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θ f
Fst Fis Bias Root MSE Coverage Bias Root MSE Coverage

0.011 0.01 0.0105 0.0149 0.93 0.2969 0.3258 0.33
0.05 0.0095 0.0133 0.94 0.3303 0.3259 0.83

0.05 0.01 0.0219 0.0320 0.87 0.3139 0.3387 0.37
0.05 0.0182 0.0295 0.91 0.3252 0.3606 0.73

0.10 0.10 0.0268 0.0418 0.96 0.2997 0.3293 0.96
0.25 0.0165 0.0354 0.91 0.1823 0.2394 0.99
0.50 0.0064 0.0310 0.97 0.0474 0.1495 1.00
0.90 0.0059 0.0269 0.96 -0.2476 0.2760 0.96

0.25 0.10 0.0465 0.0737 0.87 0.3344 0.3536 0.98
0.25 0.0299 0.0619 0.93 0.2092 0.2426 1.00
0.50 0.0030 0.0518 0.93 0.0439 0.1321 1.00
0.90 0.0071 0.0530 0.96 -0.2975 0.3209 0.96

0.50 0.10 0.0631 0.0971 0.84 0.0348 0.4401 0.98
0.25 0.0409 0.0814 0.88 0.0302 0.2881 1.00
0.50 0.0146 0.0723 0.92 0.0551 0.0877 1.00
0.90 0.0077 0.0717 0.92 -0.3081 0.3173 0.99

0.90 0.10 -0.0551 0.0631 0.91 0.4231 0.4239 1.00
0.25 -0.0466 0.0531 0.90 0.2805 0.2820 1.00
0.50 -0.0571 0.0670 0.87 0.0299 0.0340 1.00
0.90 -0.0508 0.0583 0.86 -0.3690 0.3702 1.00

0.012 0.01 0.0018 0.0031 0.93 0.1231 0.1410 0.61
0.10 0.10 0.0098 0.0145 0.85 0.1421 0.1785 0.87
0.50 0.50 0.0171 0.0598 0.95 0.0751 0.2698 0.80
0.90 0.90 -0.0063 0.0070 0.84 -0.2314 0.2456 1.00
110 loci, 5 populations
250 loci, 15 populations

Table 1: Peformance of θ and f . Fst and Fis are the known parameter values
used to generate the simulated data sets with 25 individuals sampled from
every population. All statistics are based on 100 independently generated
data sets.
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phenotype frequencies. As a result, estimates for f are also constrained, al-
though the constraints on f are much looser than those on θ, as our results
indicate (see O’Hagan 1994, p. 72 for an excellent discussion of nonidentifi-
ability in a Bayesian context).

An example from Platanthera leucophaea

Wallace (2000, submitted) presents data on genetic diversity in a rare orchid,
Platanthera leucophaea. Seven 10-mer primers were used to genotype between
2 and 40 individuals (mean: 14.1) from 14 populations (Maine: 1; Michigan:
5; Ohio: 8). 69 bands were scored, of which 66 were polymorphic in the
sample. Shannon-Weaver diversity indices calculated from band presence-
absence data give an estimate of Fst = 0.426, while AMOVA using squared
Euclidean distances among individuals gives an estimate of Fst = 0.252.
Both are substantially smaller than the estimate of Fst = 0.752 derived from a
survey of 7 polymorphic allozyme loci in the 8 Ohio populations. Because the
allozyme survey revealed substantial inbreeding within populations (Fis =
0.747), the question naturally arises whether neglecting within population
inbreeding in analyses of RAPD data can account for the discrepancy.

Results of our re-analysis of the RAPD data are illustrated in Figure 2.
The posterior mean of f (our estimate of Fis) is 0.889, and its 95% credible
interval is [0.675, 0.996]. Thus, our results are consistent with the evidence
provided by allozymes that there is substantial inbreeding within popula-
tions. Moreover, given the considerable uncertainty associated with our esti-
mate of Fis the values estimated from allozymes and RAPDs do not appear
to be inconsistent with one another.

The posterior mean of θ (our estimate of Fst) is 0.392, and its 95% credi-
ble interval is [0.343, 0.443]. While our estimate is substantially larger than
the AMOVA estimate (0.392 versus 0.252), it is consistent with the estimate
derived from Shannon-Weaver band diversities. More importantly, our es-
timate is substantially smaller than the one derived from allozymes (0.392
versus 0.752), suggesting that the evolutionary processes associated with di-
versification at allozyme loci in these populations occur at different rates
from those associated with diversification at RAPD loci (compare Balloux
et al. 2000). Because of the relatively small number of populations and loci
included in the allozyme survey, however, the apparent difference between
Fst in allozyme and RAPD data should be interpreted as suggestive rather
than definitive.
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Figure 2: Convergence of the sampler and posterior densities for θ and f with
data from Platanthera leucophaea (Wallace 2000, submitted). (a) Posterior
density of θ. (b) Posterior density of f . (c) Sample history for θ. (d) Sample
history for f . (e) Autocorrelation for θ. (f) Autocorrelation for f .

Discussion

Because of the relative ease with which they can be obtained, dominant
markers (RAPDs, AFLPs, ISSRs) are widely used in conservation and evo-
lutionary genetics. Unfortunately, existing methods for estimating Fst from
dominant-marker data either assume that genotypes are found in Hardy-
Weinberg proportions within populations (e.g., Lynch and Milligan 1994;
Stewart and Excoffier 1996; Zhivotovsky 1999) or treat multi-locus RAPD
phenotypes as haplotypes and use similarity or distance indices in an anal-
ysis of molecular variance (e.g., Isabel et al. 1999; Schneider et al. 2000).
We propose an approach that takes full advantage of the data, allowing us
to incorporate uncertainty about the magnitude of the within-population
inbreeding coefficient into estimates of Fst.

11



Simulations demonstrate that estimates of Fst obtained using our approach
are accurate and reliable. Estimates of within-population inbreeding are,
not surprisingly, substantially less reliable. Nonetheless, both simulations
and re-analysis of data from Platanthera leucophaea illustrate that plausible
inferences about the magnitude of Fis are possible when data are available
from enough loci and enough populations.

We developed our approach by assuming that each scorable band in a
gel represents allelic variation at a single genetic locus. Rabouam et al.
(1999) point out, however, that some RAPD fragments may not correspond to
genomic DNA sequences. As a result, some of the variation scored in RAPD
surveys, and possibly in surveys using other dominant markers, may be non-
allelic. To the extent that differences among individuals and populations
in band presence and absence are due to non-allelic differences, conclusions
about the genetic structure of populations are necessarily suspect.

We also assumed that a Beta distribution provides an adequate descrip-
tion of the pattern of allele frequency variation among populations. While
a Beta distribution can accomodate many patterns of allele frequency differ-
entiation, it cannot accomodate all of them. If the actual pattern of allele
frequency variation is multimodal, for example, a Beta distribution will fit
the pattern poorly, and a mixture of Beta distributions may be more appro-
priate. Nonetheless, estimates of Fst depend only on the variance of allele
frequencies among populations, not on the shape of the distribution. We con-
jecture that estimates of Fst will be robust to violations of this assumption,
and we intend to test that conjecture in future work.
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