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Nonlinear latent variable models are specified that include quadratic forms and interactions of 
latent regressor variables as special cases. To estimate the parameters, the models are put in a 
Bayesian framework with conjugate priors for the parameters. The posterior distributions of the 
parameters and the latent variables are estimated using Markov chain Monte Carlo methods such 
as the Gibbs sampler and the Metropolis-Hastings algorithm. The proposed estimation methods 
are illustrated by two simulation studies and by the estimation of a non-linear model for the 
dependence of performance on task complexity and goal specificity using empirical data. 
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1. I n t r o d u c t i o n  

R e s e a r c h  scient is ts  in  psychomet r ics ,  e d u c a t i o n  a n d  m a r k e t i n g  o f t en  w o u l d  l ike to 

c o n s i d e r  m o d e l s  which  c o n t a i n  q u a d r a t i c  a n d / o r  i n t e r a c t i o n  t e rm s  in the  l a t en t  var iab les .  

A typical  p r o b l e m  is the  e s t i m a t i o n  of  the  s imple  q u a d r a t i c  m o d e l  

Y = 3'0 + 3'1~ + 3'2~ 2 -{- if, (1) 

w h e r e  ff - 0g(0, 4') is a d i s t u r b a n c e  t e r m  which  is u n c o r r e l a t e d  wi th  the  u n o b s e r v e d  

r a n d o m  var iab le  ~ - N ( 0 ,  1). ~ is a l a t en t  var iable .  3'o, 3'1 and  3'2 a re  r eg res s ion  coeff icients  

a n d  y is a r a n d o m  var iab le  tha t  is cond i t i ona l ly  n o r m a l  g iven  {~ wi th  y - 0g(3'0 + 3'1~ + 

3'2~ 2, 4'). Howeve r ,  y is u n c o n d i t i o n a l l y  n o t  n o rm a l ,  bu t  fol lows a d i s t r i bu t i on  which  is a 

c o n v o l u t i o n  of  a s t a n d a r d  n o r m a l  a n d  a X12 var iable .  

T h e  m e a s u r e m e n t  m o d e l  for  ~ is g iven  as a fac tor  ana ly t ic  m o d e l  wi th  

x = v + A ~ + 6 ,  (2) 
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where x - r × 1 is a vector of observed variables, 8 - r X 1 is a vector of measurement 

errors that are uncorrelated with {~. v is a r × 1 vector of regression constants and A is a 

r × 1 vector of factor loadings. As in classical factor analysis (see for instance Lawley & 

Maxwell, 1971) it is assumed that the errors are normal and uncorrelated, that is 8 - 3~(0, 

19) with 19 = diag {'011 . . . . .  Orr}. 
The model (1) and (2) may be extended to a random vector ~ = (~1, ~2, - - - ,  ~,~)' 

allowing to deal with quadrat!c or higher order polynomial terms, ~2, ~3 and/or interaction 

of the form ~1~2, ~1~3 and so forth. It is assumed that the ~ × 1 vector ~ follows a 

multivariate normal distribution N(0, q~). 

Until now, estimation of the parameters y, q~, tO, v, A, O has been carried out 

(Hayduk, 1987; Kenny & Judd, 1984) in the context of LISREL models by writing the 

observed variables in the model of (1) and (2) asxj = vj + hj~ + ~i,J = 1 . . . . .  r and then 
including the variables x f = (vj  + hj~j + 6j) 2 as additional indicators for ~2 in the 

measurement model. Then, a LISREL model with ~ and ~2 as latent regressor variables is 

estimated. This solution is often not optimal in the following ways: 

• Under the assumption that if, ~ and 6j, j = 1 . . . .  , r are normally distributed, the joint 

distribution of (y ,  x l  . . . .  , Xp, x 2 . . . ,  XZp) is not multivariate normal. ML estimation 

based on the normal distribution of (y ,  x l  . . . . .  xp, x 2 . . . .  x 2)  therefore yields con- 

sistent estimators for the parameters (% ~ ,  tO, v, A, O) collected in a vector O but not 

for the asymptotic covariance matrix of the ML estimator bgL. To our knowledge, the 

natural remedy of Pseudo ML estimation (Arminger & Schoenberg, 1989) has not 

been applied to this model to deal with non-normality. However, weighted least 

squares (WLS) estimation (Browne, 1984) has recently been applied to this model by 

J6reskog and Yang (1996). These authors therefore obtain consistent estimates of the 

chi-square statistic for model fit and the standard errors of the estimated parameters. 
• Computing parameter estimates with the LISREL program (J6reskog & S6rbom 

1993; J6reskog & Yang 1996) or equivalent programs such as LISCOMP (Muth6n, 

1988) and MECOSA 3 (Arminger, Wittenberg & Schepers, 1996) is rather cumber- 
some. Although one of the main obstacles, namely the inclusion of all possible cross 

products of observed variables as indicators for a latent interaction model, has been 

removed by J6reskog and Yang by showing that the inclusion of one product variable 
is sufficient for identification, it is still rather tedious to write the nonlinear equations 

for the covariances of cross products as a function of the model parameters. Good 

examples are found again in J6reskog and Yang. 
• The ML and WLS estimation techniques draw on large sample theory and may not be 

suitable for small or medium sample sizes. An additional problem is here the number 

of variables. If the number of observed variables is already large, this number is 

further increased by the addition of squares and cross products of observed variables. 

• The nonlinear models using squares and interactions of latent variables may not be 
general enough to specify more complicated substantive models. Therefore it should 

be possible to specify general nonlinear models as in nonlinear regression analysis. 

We propose to deal with the problems of nonnormality and a general specification of 

nonlinear latent variable models as well as with the problem of small sample sizes by using 
a Bayesian approach to formulate the model and Markov Chain Monte Carlo (MCMC) 

methods such as the Gibbs sampler (Gelfand and Smith 1990, Tanner 1993) and the 

Metropolis-Hastings (M-H) algorithm (Chib & Greenberg, 1995; Hastings, 1970; Metrop- 

olis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Tanner, 1993) to estimate the pos- 
terior distributions of the parameters given the data. 
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2. The Nonlinear Latent Variable Model 

We introduce a nonlinear version of the LISREL model (J6reskog & S6rbom, 1993). 

Let ~i be a fit × 1 vector of random variables that is multivariate normal with ~i ~ 0g(0, 

• ). Let ai = g(~i) a m x 1 deterministic function of ~i that is known. A p x 1 random 

variable vector 71i is connected with oe i through a linear regression model 

~ i  = ~I0 "~ l~oli ~- ~i, (3) 

where the p × 1 random variable ~,/~ ~N~(0, ~ )  is a disturbance, 3'o ~ P × 1 is a vector 

of regression constants and F ~ p × m is a matrix of regression coefficients of ~li on ai. 
It should be noted that the model is linear in the parameters, but is nonlinear in the 

components of ~i- 
The random variables ~i and ~li are connected to observed variables x i ~ r × 1 and 

3', ~ s × 1 with the usual factor analytic measurement models 

x; = v~ + A x ~  + a~, a, ~ ~ ' (0 ,  Oa),  (4)  

y~ = Vy + Ay'lqi + I~i, e i ~ , ~ ( 0 ,  O e ) .  (5)  

For simplicity, it is assumed that O8 and O~ are diagonal matrices according to the classical 

factor analytic tradition (Lawley & Maxwell, 1971). The nonlinear latent variable model 

defined in (3) through (5) is abbreviated as the A-M model. 

This model includes some important special cases. The first special case is a polyno- 

mial regression model in the latent variable ¢i for a univariate dependent variable Yi 

a i  = (¢i '  ¢2 . . . . .  Cp) t 

ni = 3"0 + F a i  + ~ ,  ~ ~ X ( O ,  ~) ,  

x, = v~ + A x ¢ , +  ~,, ~ ~ ~ ( 0 ,  O~), 

(6) 

(7) 

(8) 

(9) 

n~ = 3'o + Fa~  + ~ ,  ~i ~ :¢ (0 ,  q,), 

xi = Vx + Ax(~ + &,  ~ ~ ~0(0, Oa), 

Yi = ~i .  

This model allows for first order interactions of latent variables ¢ij, J = 1 . . . . .  ~ in the 

regression model for Yi. Of course, higher order interactions may be formulated in the 
same way. Again, this model may be also thought of as a nonlinear errors in the variables 
model and as a partially linear and partially nonlinear factor analytic model. 

Finally we consider ~i as a p-th order generalized polynomial and formulate a poly- 
nomial factor analytic model: 

(lO) 

(11) 

(12)  

(13)  

Yi = ?Oi" 

T h e  u s u a l  l i nea r  m o d e l  T/i = 3'0 -Jr 3'1~i "q- ~i is replaced by a polynomial m o d e l  ~i = 3'0 + 

3"]~i + . . .  3"p~ + ¢i. This model allows formulation of a regression model that is non- 
linear in the variables and has errors in the variables. It may also be considered as a 

partially linear and partially nonlinear factor analytic model where Yi is an indicator 
variable that is nonlinearly dependent  on the factor score ~i. 

The second case is a model with a generalized second order polynomial of the vector 

~i and a univariate dependent variable Yi 
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Cl~i = P P ( ~ i l  . . . . .  ~ir~) = ( ~ i l ,  • • • , ~ir~, ~21, • • • , (~ i ( rTt -p+l)  . . . .  ~ i r ~ ) ) ' ,  (14) 

~ i  : a i '  ( 1 5 )  

yi = vy + Ayrl /+ el. (16) 

It is important to note that the A-M model may be overparameterized for certain 
applications. For instance, if the measurement model for Yi = Vy + Ay~li + E i contains 
regression constants that are estimated from the data, ~/0 may not be identified as seen 
from the expected value of the reduced form of Yi given ~i: 

E(yil~/) = vy + Aye'0 + Ayrg(gi). (17) 

In this case, Y0 must be set to a fixed value such as Y0 = 0. Additional identification 
restrictions may be necessary for specific models. 

As one of the anonymous reviewers has pointed out, the choice of g(~) is not com- 
pletely arbitrary. Restrictions have to be imposed to ensure a proper posterior for ~1 and 
g. Examples of a bad choice of g(g) are g(g) = 0 which eliminates the data x or to choose 
a = g(~) so that the components of ot are linearly dependent. In this case, the posterior 
distribution would collapse in dimensionality. The issue of proper posteriors is discussed 

in subsection 3.3. 

3. The Bayesian Framework 

The usual way to estimate the parameters in the vector O = vec {Y0, F, ~ ,  ap, Vx ' Ax ' 
08 ,  Vy, Ay, O~} has been a frequentist approach. Given the normal distribution of ~i, gi, 
6i and ei, the parameter vector O has been estimated with ML method. This approach 
works nicely if the function g in ai = g(~i) is the identity function. However, if g is a 
nonlinear function, such as a polynomial, the unconditional distribution of rli, and there- 
fore of Yi, is not normal. To avoid these complications we switch from the frequentist to the 
Bayesian viewpoint and consider only the data {yi, xi}, i = 1 . . . .  , n as fixed and-- in 
addition to the random variables ~i, gi, 6 /and  e/--the parameter vector O as a random 
variable. A Bayesian framework has been used before in the context of linear factor 
analysis by a number of authors, for instance by Lee (1991) who considered the posterior 
distribution of the matrix of factor loadings, the covariance matrix of factors and the 
covariance matrix of errors and Press and Shigemasu (1989) who considered additionally 
the posterior distribution of factor scores. 

Our aim is to estimate the joint and marginal distribution of ~, ~1, and O given x and 
y. We are interested in the posterior density of ~, rl, and O given the data x, y. For 
conditional density functions we use the formulation of Gelfand and Smith (1990), where 
[ylx] denotes the conditional density of a random vector Y at the value of y conditional on 
a fixed value x. The joint posterior is therefore denoted by [~, rl, Olx, y]. 

3.1 Prior Distributions 

As noted before, the random variables gi, gi, 6 /and  e i are multivariate normal with 

~i  ~ . ] ~ ( 0 ,  ( I ) ) ,  ~i ~ . N ' ( 0 ,  l l l ) ,  ~ i  ~ . ]~ ' (0 ,  0 8 )  and e i ~ .g(O, 0 ~ ) .  ~i, ~i, 6i, and e i are assumed 
to be independent of each other. O 8 and Oe are assumed to be diagonal. The components 
{~0, F}, @, aI~, {Vx, Ax} , 08, {vy, Ay}, Oe of O are assumed to be stochastically indepen- 
dent. The priors for the components of O are chosen as conjugate priors and given in detail 

below. 
We define the p ( m  + 1) dimensional column vector ~, as the vectorized form of ~/0 

and F, that is 



G E R H A R D  A R M I N G E R  A N D  B E N G T  O .  M U T H I ~ N  

~t  = ( 7 0 1 ,  ' ) t l l  . . . .  , Y l r n ,  Y 0 2 ,  "Y21, • • • , Y Z m ,  • • • , ")lpm) t" 

In a similar way, we define 

~x,k = ( Vx,k, Xx,k,1 . . . .  , l~x,k,Fn)t, 

and 

~y,j : (1)y,j a t~y,j,la . ' .  , Ay,j,p)t. 
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(18) 

(19) 

(20) 

as the vectorized forms of the constant and factor loading coefficients for the k-th com- 
ponent of x and thej-th component of y. These vectors are assumed to be independent and 
to follow the conjugate priors 

~/~ N(y*, nv),  (21) 

Ax,~ ~ N(X*,k, nx,) ,  (22) 

~y,j ~ ~ ( X y ,  j ,  ~-~y,j)a ( 2 3 )  

where the expected values y*, A* k, A,*,j and the covariance matrices l~v, ~x e, ~y,j or 
respectively the precision matrices' 1 ~ i  1~, 1, ~£1 are chosen by the researcher. 

Before we turn to the conjugate priors of the covariance matrices ~ and @, we review 
briefly the Wishart and the inverse Wishart distribution. The following definition of the 
Wishart distribution is used. The p × p-dimensional positive definite matrix A follows a 
Wishart distribution with p × p-dimensional positive definite parameter matrix B and d 
degrees of freedom if the density is given by 

A - W(B, d) ~ Igl-d/21Al  - -'/2 exp - ~ tr (B-~A) (24) 

where d -> p (see Anderson, 1984, p. 249; and Carlin & Louis, 1996, p. 168). We note that 
E(A) =dB.  The inverse matrix A* = A -1 with parameter matrix B* = B -1 has the density 

A* ~ W-I(B *, d) ~ IB*Id/2IA*I -(d+p+l)/2 exp - ~ tr (B*(A*) -1) (25) 

as shown by Anderson (1984, p 268). B* is called the precision matrix. Following Anderson 
(1984, p. 269) further, his corollary 7.7.1 says: 

With an inverse Wishart prior for the covariance matrix X, 

2~ ~ W-l(dl'~, d) (26) 

where (dl-l) is a precision matrix and 

we find the posterior 

A = nS - W'(2£, n) (27) 

×IS - ~V-l(nS + d ~ ,  n + d). (28) 

The notation of Anderson (1984) is changed slightly in the sense that (dl~) is the precision 
matrix of the inverse Wishart distribution. Hence, a weak prior for X has a low d and a 
small matrix ~ so that nS dominates in the posterior form nS + d~ .  S is the sample 
covariance matrix computed from n data points centered about the expected value. 

The conjugate prior for the covariance matrix ~ of the random vector ~ - N(0, ~ )  
is given in terms of the inverse Wishart distribution 
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q* -- W - l ( d . ~ . ,  d . )  (29) 

The parameter matrix l-l, I, and the degrees of freedom d,i, in (29) are chosen by the 
researcher. 

Similarly, the conjugate prior for the covariance matrix • of ~ - 0g(0, @) is given by 

-- W - a ( d , l l , ,  d . ) .  (30) 

Since the covariance matrices 08  and O~ are diagonal, we can use the conjugate priors 
for the variances of the error terms in the measurement equations. The prior is given by 
the inverse Gamma distribution for a random variable s with s > 0 

s - , ,~(a,  b) = F(a)-lbas-(a+l) exp ( - b)  (31) 

where a (a > 0) is a shape and b (b > 0) is a scale parameter (see Gelman, Carlin, Stern, 
& Rubin, 1995, p. 474). The expected value ofs  is E(s) = b/(a - 1) for a > 1. The inverse 
chi-square distribution is a special case of the inverse gamma distribution with a = df/2, 
b = 1/2 where df is the number of degrees of freedom. The random variables ®8,jj and 
®,,kk then follow inverse Gamma distributions 

~ ) 6 , j j  ~ ~ ( a s , j j  , b~,jj) (32) 

Taken together, this implies that the posterior distribution [O, ~, rlly, x] is a proper 
posterior distribution. 

~ e, j j  ~ ,.~ C~ ( a ~,jj, b ~,jj ) (33) 

where a~,jj, ba,jj and a~,jj, b~,jj are chosen by the researcher. 
Several of the conditional distributions used in this paper for Gibbs sampling can be 

derived using known Bayesian results for the two linear models discussed in subsection 3.3. 

3.2 Posterior and Likelihood 

It is clarifying to express the joint posterior distribution in terms of the densities of all 
the distributions and write out the likelihood as the product of marginal and conditional 
distributions. The issue of whether proper priors lead to a proper posterior distribution can 
then be also considered. 

Let the parameters of the model be denoted O and let [z] denote a density for the 
random variable z. Using the assumptions of the A-M model, we note that [~llx, ~, O] = 
[~1[~, O] and [y[rl, x, ~, O] = [Y]~I, O]. Denoting the observed data distribution [y, x] as c, 
the posterior distribution [O, ~, ~IIY, x] for the unknown parameters and the latent variables 
conditional on the observed data may be expressed as 

c x [O, ~, nlY, x] = [O][~lO][xl~, O][nl~, O][yln, O] (34) 

where [O] is the prior for the parameters. Here, the conditional distributions [~lO], [xl~, O], 
[~[~, O], and [yl'r I, O] are all multivariate normal according to the A-M model. 

The likelihood L is 

( f 
L = [y, xL< : j j [elo][xle, o][yi,,, o] d,, 

In (34), a proper posterior distribution is obtained if the following integral converges 
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f 
c = [y, x] = J L × [O] dO. (36) 

With g(~) = [, [[, rl] and [y, x] are multivariate normal. In this case, it is well-known 
from Bayesian analysis using conjugate priors that this gives a proper posterior for 19, see 
for example, Gelman, Carlin, Stern and Rubin (1995, pp. 80-81). The propriety of the 
posterior for other choices g(~) v~ ~ needs to be investigated separately for each class of 
g(g). 

3.3 Posteriors for Covariance Matrices and Regression Coeyficients 

3.3.1 Random Case 

We consider a linear model for the p-dimensional vector vi for observation i(i = 1, 
2 . . . .  , n) with known p × r matrix A, r-dimensional random coefficient vector Ki, and 
p-dimensional residual vector e i, 

Vi = AKi + el, (37) 

for which it is assumed that 

K i ~ ~'(1~0, ~ ) ,  ( 3 8 )  

where ]£ is an r × r covariance matrix. We further assume that the residuals eij are 
unco~-elated and have variances 

V(eo) = o'2; j = 1 . . . . .  p. 

The following proper prior distributions are assumed 

t% ~ 3 ( (e ,  D ) ,  

-- neV-l(dIl, d), 

o'] ~ 8~(e ,  f ) .  

(39) 

(40) 

(41) 

(42) 

Here, a vague prior for •0 is obtained by choosing D-1 = 0. As seen below, this results in 
the prior mean c vanishing from the posterior. As in section 3.1, ( d ~ )  is the precision 
matrix for the inverse Wishart prior of 1~. A low value of d relative to n gives a vague 
covariance matrix prior; the smallest admissible value is r, the number of rows in £.  A 
vague prior for o.~ is obtained by choosing e close to zero and f large. 

Well-known results (see, e.g., Anderson, 1984, p. 269; Carlin & Louis, 1996, pp. 
168-169; and Lindley & Smith, 1972) give the condi t iona~oster ior  distribution for K 0 
conditional on Vl, V 2 . . . .  , V n, R1, R E , . . . ,  Kn, 0~1, 0"2 . . . . .  Up, 

K0 - 3¢(V(n~-lk + D-le), V), (43) 

for £ given Vl, v 2 , . . . ,  vn, ~¢1, •2 . . . . .  ~¢n, ~'0, o.2, 0222 . . . . .  O~p, 

~ %r-l(nS + d l ) ,  n + d), (44) 

and for o,2 given vl, v2 . . . .  , vn, K1, •2 . . . .  , •n, K0, °~1, o~ . . . . .  o~p, £-1  

o.2 ~ # ~  + e, 2 ~ (vi - AIci)'(v, .... AKi) + f -1  . (45) 
i=1 

Here, 
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V : ( n X  -1 + D-l) -1, (46) 

k = - Ki, (47) 
t:/ i=1 

nS = ~ ( K / -  ~¢0)(K/- K0)'. (48) 
i=1 

While the above posterior distributions are conditional on the other unknowns, it is 
well-known that the joint posterior distribution is also proper (see Gelman et al. 1995, pp. 
80-81). Hobert and Casella (in press) further discusses properties of posteriors with 
various variance priors for the mixed linear model and show conditions under which 
proper posteriors are obtained even with "power" improper priors on the variance pa- 
rameters. 

3.3.2 Fixed Case 

We consider the q-dimensional vector v i for observations Vl, v2, . . . ,  vn, the known 
q × r matrix Ai, the r-dimensional parameter vector •, and the q-dimensional residual 
vector ei, 

vi = AiK + ei, (49) 

where V(ei) = X, a q × q covariance matrix which is assumed known. 
We assume the proper prior distribution 

K - ~(K0,  1~), (50) 

where ~0 and 1"1 are known. Using well-known results (see, e.g., Carlin & Louis, 1996, p. 
41; Lindley & Smith, 1972), we find that the posterior distribution for K conditional on Vl, 

V2, . . .  , V n is 

-- W(Od, D) (51) 

where 

= A i ~  A i + l-1-1, and (52) 
i=1 

A weak, proper prior is obtained by choosing the precision matrix 1~-1 close to a zero 
matrix. 

4. The Components of Markov Chain Monte Carlo Sampling 

To describe the joint and marginal posterior distributions of ~, ~ and O given x and 
y we use the Gibbs sampler (Gelfand & Smith 1990; Geman & Geman, 1984), the M-H 
algorithm (Chib & Greenberg, 1995; Hastings 1970; Metropolis et al., 1993; Tanner, 1993) 
and a combination of both (Mtiller 1994). Easily accessible descriptions of the Gibbs 
sampler are found in Arnold (1993) and Casella and George (1992). Statistical theory 
underlying Markov Chain Monte Carlo (MCMC) methods such as the Gibbs sampler and 
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the M-H algorithm is found in Chib and Greenberg and Tierney (1994). General refer- 
ences on Bayesian computations are Besag, Green, Higdon and Mengersen (1995) and 
Gilks, Richardson and Spiegelhalter (1996). The relationship between iterative simulation 
techniques and the more familiar EM algorithm is discussed in Rubin (1991). 

In the Gibbs sampler one samples iteratively from the conditional distributions 

[~(k+,), rl(k+l)lX ' y, O(k)], (54) 

where k + 1 denotes the present iteration and the distributions 

[O~qk+,)tx ' y, ~(*), ~)(k), 0 (k+'>l<q , ~l>q-I,'q(k) I ( 5 5 )  

where O(q k+ 1) is the q-th subvector of the vector 0 at the present iteration. After a burn in 
phase, the conditional distributions converge to the posterior distributions of the param- 
eters of interest. 

We start by assuming that ~i and rli are known for the k-th iteration taking on the 
values ~k), rl~k). Then we can compute 

or!k) = g(~jk)). (56) 

4.1 Parameters of the Regression Model 

The conditional distribution of the regression parameters in the model (3)-(5) is 

[3"0, r lx ,  y, )), 0 - (v0, r}] .  (57) 

Here, t9 - {3'0, F} is the set of all parameters in O without the set of parameter that are 
elements of 3'0 or F. 

Since the prior distribution of 3' from (18) is multivariate normal with 3" - N'(3"*, l lv) 
where 3"* is the known a priori expected value and I I  v is the known a priori covariance 
matrix of % the posterior distribution of 3" given ~i and (~i may be derived using the results 
of subsection 3.2.2. The values ai are written in a regressor matrix A i - p x (p(m + 1)) 
defined by 

A, = Ie× , ® (1, or,), (58) 

where ® denotes the Kronecker product. With this notation 

))i = &3" + ~i (59) 

where rti , A i and V(~) = ~ are known in the k-th step of the Gibbs sampler. Application 
of (51) and substituting rti for vi, 3' for re, and W for I~ yields that the posterior distribution 
of 3" is multivariate normal with expected value. 

] ) E(T) ' - '  = A ~  & + ll~ q A~aIt-Jn-~ + f l -~7  * (60) 
i=1 i=1 

and covariance matrix 

)' 
V(3") = A~W-'A~ + ~"~-1 . (61) 

i=l 

Hence 3"(k+1) is drawn from the posterior distribution ./~'(E(3"), V(3")) where ai, ~i and W 
are replaced by a~ (k), r)~ k) and W (k). 

A weak proper prior is obtained by choosing the precision matrix l l~  1 = 0. Then, the 
equations (60) and (61) simplify to 
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E(T) = A ~ - I A i  A i ~  lfli , 
i=1 i=1 

(62) 

and 

V('y)  = i=1 ~ A~r-IAi)-I" (63) 

Alternatively, one might set 3,* to correspond to the expectations of the researcher, 
for instance as a vector of zeros and set g ~ l  to a diagonal matrix with small values, for 
instance 0.01. 

The conditional distribution of 

[~lx, y, ~, rl, O - {~}] (64) 

is found using the inverse Wishart distribution. Since ~ ~ ~ × 1 is multivariate normal 
with J¢(0, ~ )  and • follows the inverse Wishart prior ~h/'-l(d~l~, d~), the posterior 
covariance matrix ~(k+l) follows an inverse Wishart distribution with parameter matrix 

B .  = i=1~ ~(k)~(k)t + d ,~ . )  (65) 

and n + d~ degrees of freedom using equations (44) and (48) and substituting ~i for K i, 
0 for to,0, d~ for d and ~ for 1~. A weak, proper prior for • is obtained by choosing d~ 
small relative to n, say d~ = ~ and setting ~4, to a diagonal matrix with small positive 
values. 

The conditional distribution of 

[~I~lx, y, ~, #, 0 - {W}] (66) 

is also found using the inverse Wishart distribution. Since ~ ~ ~o × 1 is multivariate normal 
i, rl with J¢(O, ~ )  and ~ follows the inverse Wishart prior ~¢¢- ( d ~ , ~ ,  d~), the poste "or 

covariance matrix ~(k+ 1) follows an inverse Wishart distribution with parameter matrix 

---~ - -  " ' i  r ) \ , | i  " - ~  d, f l .  , (67) 
i=1 

and n + d, t, degrees of freedom using (44) and (48) and substituting ~]i --  A i ~  for •i, d,I, 
for d and I-L t, for ft. A weak, proper prior for W is obtained by choosing d,t, small relative 
to n, say d~ = p and setting 1~,~ to a diagonal matrix with small positive values. 

If # is univariate, then ~ - ~'(0, ~ )  and • is assumed to follow an inverse gamma 
distribution ~ ( e ,  f )  as prior. From equations (42) and (45) we find that • has the 
posterior distribution ~ ( a ,  b) with parameters 

n 
a = ~- + e (68) 

and 

n 
b = ~ i=1 ~] (~}k) _ A}k)y(k))2 + f - l .  (69) 
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If e is chosen as an integer × 1/2, for instance e = 1/2, then the variance qAk+0 can be 
sampled from an inverse X 2 distribution with n + 2e degrees of freedom, f - I  is set to a 
small value, for instance 0.01. 

4.2 Parameters o f  the Factor Analyt ic  Models  

Given r/i and the fact that O~ is diagonal, one finds the posterior distribution of the 
vector Xy,j = (vy,/, Ay,j,1 . . . .  , Ayd,p)' for t he j th  component of Yi from the factor analytic 
regression equation 

y~j = vy,j + Ay,j,19Qi 1 -4- . . .  + Ay , j , p~ i  p .4- e i j  (70) 

and the prior for Xy,j ~ Ar(X~,j, fry,j). Application of (51) and substituting Xy,j for re, O~, 1. 

for X -1 and aqj for A i andylj  . . . .  , Ynj for Vl . . . . .  v n shows that the conditional distribution 

[L-, Aylx, Y, g, ~!, O - {vy, Ay}] (71) 

is found by drawing each vector Xy,j from a p + 1 dimensional normal distribution with 
expected value 

- 1 , ' O - I x ,  - 1 ~ *  E(Ay d) = ( ® ~ Z ' Z  + l~y.)) ~ ~,yy yj + l~yjAyj) (72) 

and covariance matrix 

-1 -1 (O~,~Z'Z + fry d) . (73) 

The n × (p + 1) regressor matrix Z is defined as (z!) 
Z = w i t h  z i = (1, nil  . . . . .  nip)" (74) 

The regressand vector yj = (Ylj, Y2j . . . . .  Y~j)'. 
A weak proper prior is obtained by setting the precision matrix 11~,/ = 0. Alterna- 

tively, one might choose X~ ) to reflect the expectation of the researcher, for instance as a 
vector of ones and set Dg~ ~ to a diagonal matrix with small values, for instance 0.01. 

The conditional distribution 

[O,Ix, y, ~, ~!, 0 - {O~}] (75) 

is found by considering that O.  is a diagonal matrix and each element O~,jj follows an 
inverse Gamma distribution (cf. equation (33)) Oe,jj ~ #~(ae, i j ,  b~,yj). From (42) and (45) 
we find that O~,jy has the posterior distribution 3~q3(a, b) with parameters 

n 

a = ~- + a~dj (76) 

and 

n 

b = -~ ~ .  (Yij - Vy,j - Ay,j~i) 2 + b~.~ 
i=1 

(77) 

where A ~  is thej- th  row of A,. To compute o(~k. +1) in the Gibbs" sampler, v,, i, A,, ~ and r/i 
are replaced by v(~ ), A~(k, ) and~r/! k). If a ~ ,  is chosen as an integer × 1/2, for"insta'nce a ~ ,  
= 1/2, then the variance O(~g,y~ 1) can be sampled from an inverse X z distribution with n 
2a~,yj degrees of freedom, b ~ .  is set to a small value, for instance 0.01. 
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Given gi and the fact that O~ is diagonal, similar calculations can be made to find the 

marginal posterior distributions of ( v  x, Ax) and O 8. Since Ax, k -  -- (Vx, k, Ax ,~ l ,  . . . , ;tx,k,,~ ) 

follows the prior N(A*,k, llx,k), (51) may be applied again by substituting Ax, k for J¢, ®~,~k 
for X -1, gk for A/and  x l k  . . . .  , Xnk for Vl . . . . .  vn. 

Then the conditional distribution 

[vx, A~lx, y, ~, *1, O - {v~, A~}] (78) 

is found by drawing each vector Ax,k from a (fit + 1) dimensional normal distribution with 
expected value 

E(AxS) = (O~kU 'U  + -1 -1 -1 , -1 * l-l~j,) (O~,kkU Xk + l-l~j¢A~,k) (79) 

and covariance matrix 

- 1  - 1  v(Xx, ) : (o ,Lu'u + . (80)  

The n x (rh + 1) regressor matrix U is defined as 

U = with ui = (1, ~il . . . . .  ~ir~)- (81) 

n 

The regressand vector Xk = (Xl/¢, X2k . . . . .  Xnk) ' .  

Sometimes, special identification restrictions have to be taken into consideration. For 
instance, if only a single factor ~ ~ 3V(0, ~ )  is assumed with measurement model x i = Vx 

+ Ax~i  + 6i with 6/ ~ N(0, O,)  and error variances greater than 0, then • is only 
identified, if Ax is restricted, for instance by setting A~,11 = 1, so that the equation 

Nil = llx,l + ~i "~- ~il (82) 

holds. Since Ax, H need not be estimated, the parameter vector AxA consists only of the 
element Vx, 1. The n × 1 regressor matrix U in (81) consists of a vector of  ones. The 
regressand vector is given by x k = ( X l k  -- ~1, . . . ,  Xnk -- ~ n ) "  

The conditional distribution 

[O~lx, y, ~, rl, 0 - {O~}] (83) 

is found by considering that 0 8  is a diagonal matrix where each element Oa,kk  follows an 
inverse Gamma distribution. (see (32)) Oa,kk -- .~N(aa ,kk ,  ba,kk ) .  From (42) and (45) we 
find that Oaj~k has the posterior distribution #~3(a, b) with parameters 

n 

a = ~ + a~Sk (84) 

and 

b = -~ (xik -- vx.k -- Ax.k~i) 2 + b~-~k, (85) 
i = 1  

where A x k is the k-th row A x. To compute o~k.~ 1) in the Gibbs sampler, v x k, A x  k and 
are replaced by Vx(.k~, A(k~ and ~k). If aa,kk is chosen as an integer ×1/2,  for instance a a k  k 

= 1/2, then the variance o~k,~ 1) can be sampled from an inverse X 2 distribution with n '+ 
2aa,kk degrees of freedom, b ~ l k  is set to a small value, for instance 0.01. 
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4.3 Drawing from the Distribution of Latent Variables 

The conditional distribution of ~ and ~1 given x, y and O is now considered. Since 
independence of (xi, yi) and ~i, rli, i = 1 . . . . .  n across units has been assumed, it suffices 
to look at the conditional distribution 

[~i, ~/i[x,, y,, O]. (86) 

Unlike for the conditional distributions considered before, we have not been able to 
derive a form of the conditional distribution from which values of (~i, ~i) given xi, Yi, O can 
be sampled easily. Therefore, we use the Metropolis-Hastings algorithm as described in 
Tanner (1993), and Chib and Greenberg (1995) to generate values of (~i, rli) that follow 
the conditional distribution of (86). Let (~0), ~q(0)) be the current value and (~(1) ~(1)) 
denote the value generated by a distribution from which one can easily sample. This easil X 
sampled distribution is called the driver (driving or proposal distribution). Let ~r (°) and zr (1) 
denote the density of (86) evaluated at (~(0), ~(0)) and (~0)  ~0)). Then the value 

( ~r°> } 
c = min ~rg~, 1 (87) 

is calculated. If c = 1, then the value (~(1), ~1(1)) is accepted and becomes the current value. 
If c < 1, then the value (~(1), ~1(1)) is accepted only with probability c, otherwise (~(0), .11(0)) 
stays the current value. This algorithm ensures that the accepted values form a sample 
from the distribution of (86). To use the M-H algorithm we have to compute 7r (°) and 7r (1) 
and to sample from a simple driving distribution. First, we deal with the computation of 
~.(0) and 7r 0). We note that [~i, ~iIXi, Yi, O] may be written as 

[~i, rlilx/, y~, O] oc [~i, #,lO][x,l~i, ~i, O][y,]x~, ~i, ~li, O] 

= n ,  lO][x,l i, O][y~]~li, O]. (88) 

The last equality holds because x i depends only on ~i and not on ~li and because Yi given 
rli does not depend on ~i or x i. Substituting 

[~,, nil O] = [~,lO][n,l~,, O] (89) 
yields the expression: 

[~i, rl,]xi, Yi, O]~[~[O][rlit~i, O][xit~i, O][Y~lrli, O]. (90) 

Since the ratio rr(1)/~ "(°) does not depend on the proportionality constant, it suffices to 
evaluate [gi)o][nilgi, O][xi[~i, O][y~lne, ,9] at the points (~(0), rl(0)) and (~(1), rl(1)). The 
components of this joint density of ~i, ~i, xi and Yi given O are implied by the model in (3) 
through (5). 

An important special case occurs if y = rl, that is, the measurement model for y is 
given by y = rb In this case, we consider the conditional distribution: 

[~ilx~, Yi, o]~[~,tO][x,l~,  O][y~lgl, o] .  (91) 

For the proposal distribution, we take the joint distribution [~i, ~ilO] = [ ilo][nil i, o] 
by first sampling ~ from the a priori distribution X(0, ~ )  and then sampling )1 from X(~/0 
+ Fa(~), ap) where ~ ,  3'0, F, and xI~ are evaluated at the kth iteration step. Alternatively, 
we sample ~ from the conditional distribution [~]x, O] which may be derived from the joint 
normal distribution of x and ~. 
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Hence, the conditional distribution of ~ given x i is multivariate normal with 

E(~lx,  vx, O, Ax, O~) = ~A~'(Ax~A" + O~)-l(xi - u~) (93) 

and covariance matrix 

V(~lxi, v~, 4 ,  A~, 08) = @ - ~ A ~ ( A ~ A "  + O~)-lAxO 

= ( 0  -1 + A~O~IA~) -1. (94) 

Since the proposal distribution does not depend on (~(o), ~1(0)), the M-H chain generated 
in this way is called an independence chain (Tierney, 1994). 

5. Analysis of Simulated Data 

The Bayesian analysis described above is investigated using two simulated data sets, 
the first coming from a model with one latent regressor variable and its quadratic term, the 
second coming from a model with two latent regressor variables and an interaction term 
between the two regressor variables. The sample sizes used are in both cases n = 100, n = 
250 and n = 500. A total of 100 Monte Carlo replications were used to study the variation 
across different generated samples. 

Important questions for the practical implementation of Gibbs sampling are whether 
to use multiple runs with different start values or to use a single run, whether to use--after  
a burn in phase--each value of the Gibbs sampler or to use a subsample and how to judge 
convergence of the Gibbs sampler. Each of these questions has been debated in the 
literature. Following Chib and Greenberg (1996), we have implemented the single run 
method because it is less wasteful in the number of iterations needed. Following the 
arguments of McEachern and Berliner (1994) we use the full Gibbs sample rather than 
subsampling because subsampling is inefficient in comparison to full sampling. Methods of 
judging convergence from multiple runs are found in Gelman and Rubin (1992) and from 
a single run in Ritter and Tanner (1992). Given the massive amount of computing for 
analyzing the Monte Carlo replications and that the number of iterations for each analysis 
should be comparable we have settled for a burn in phase of 500 Gibbs cycles and addi- 
tional 2000 Gibbs cycles from which parameters of the posterior distribution are estimated. 
The number of M-H cycles is critical. We started with 5 cycles yielding unsatisfactory 
results while 20 cycles gave satisfactory results in all simulations performed. The check, 
how many cycles are necessary, can only be done by varying the numbers of cycles sys- 
tematically and checking for convergence of results. In the simulation, the convergence to 

the true values suffices. 
All computations are performed using the program BALAM (Bayesian Analysis of 

Latent Variable Models) which is written in GAUSS 3.2.13 for DOS and 3.2.29 for Unix 
and is run on a Sun Sparc 10 station. The time for one run is approximately 10.00, 18.20, 
and 36.00 minutes (sample size n = 100, 250, 500) in the first model, 10.20, 23.10 and 
44.40 minutes (sample size n = 100, 250, 500) in the second model and 45.20 minutes in 
the third model discussed below. 

The regression model for the first data set is given by 

Yi = 710 + 711~i + 2/12~ + ~i, (95) 

with ~i -- N(0, qb11 ) and ~i - ,g(0, ~11). The factor analytic model connecting the latent 
regressors ~i and the observed indicators xi is 

X i = V + A~i  + 6i,  (96) 

with ~i -- .if(0, 08). For the simulation we use four indicator variables yielding the structure 
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1;34] 
, O~ = diag {O~,u, ®~,z2, 06,33, 06,44}" (97) 

The value of 2,11 is set to 1 to fix the scale of ~. The following proper priors are used for 

the analysis: ~, = (Yl0, 711, 2/12)' ~ N(Y*, fl-/) with 3,* = (1, 1, 1) and l"~Yy 1 = diag {0.01, 
0.01, 0.01}; Oll - ~3(aeo, be) with a ,  = 1/2, b~ 1 = 0.01, XI~ll  ~ ~ C ~ ( a ~ ,  b ~ )  with 

- 1  * • * - t  • a~  = 1/2, b,~ = 0.01, Vx, j ~ 3¢(Vxj, O~,xj ) with Vx, j = 0, and [i,,,x,j = 0.01 forj  = 1 . . . . .  
• • * ' ' ' - 1  • 4; Ax j ~ Ar(hx j, [Ix x j) with hx,j = 1, and O h x j = 0.01 forj  = 2 . . . . .  4; 08 j j ~ ~¢~(as jj, 

bs,jj)'with as,i] = 1/2, b~, 1 = 0.01 for j = 1 ~ : . . ,  4. ' ' 
The results of the simulation are given in Tables 1-3. In these tables, the true pa- 

rameters and the averages of the median, the mean and the standard deviation of the 
posterior distributions of the individual parameters over the 100 Monte Carlo replications 
are shown. These tables also give the 90 percent coverage for each parameter. In Bayesian 
analysis the coverage is computed by considering for each Monte Carlo replication 
whether the interval from the 5th to the 95th percentile in the distribution of the 2000 
values of the Gibbs sampler covers the true parameter and then computing the proportion 
out of the 100 replications for which this event occurred. 

Tables 1 through 3 show close agreement between the true parameter and the average 
median and mean. Judging from the values of the average median and mean, the posterior 
distributions are already symmetric for n = 100. The coverage properties are acceptable 
for all parameters already for n = 100. 

Plotting the frequency estimate of the posterior distribution for individual parameters 
shows that these distributions are approximately normal even for the small sample size n = 
100. As an example we consider the posterior distribution for the parameter of greatest 
interest in this specific nonlinear model, that is 3'12- The estimated posterior density is 
plotted using a histogram in Figure 1 and the k-nearest neighbor (kNN) smooth estimate 
(compare Loftsgaarden & Quesenberry 1965; and Hfirdle, 1990) in Figure 2. Figure 3 
shows how the algorithm samples across the support of the posterior density from iteration 
to iteration indicating fast transition from one area of support to other areas. 

The regression model for the second data set includes two regressor variables and 
their interaction. The regression constant has been set to 0. 

Y~ = Yn~a + %2¢~z + %3~i~,2 + C,, (98) 

with ~ / ~  3¢(0, O) and ~ / ~  de(0, '~11). • is now a 2 x 2 covariance matrix with elements 
{Oll, ~21, ~22}. The factor analytic model connecting ~i with five indicators x i is now 

Xi -= A~ i  + ~i, (99) 

where ~i ~ X(0, Oa) and the regression constants v are set to 0. The matrix of factor 
loadings is given by a 5 × 2 matrix patterned as 

0)1 A = | h 3 1  0 . (100) 

O 8 is a diagonal matrix with O~ = {O~,11 . . . .  , O~,55}. 
The following proper priors are used for the analysis: 3, = (3'11, Y12, 3'13)' ~ ,~('Y*, l~v) 
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T A B L E  1 

Averages  of 100 Monte  Carlo Repl icat ions  

Q u a d r a t i c  Model ,  Sample  Size = 100 

Gibbs: Cycles = 2000, Burn - In  = 500 

Metropol is :  Cycles = 20 

P a r a m e t e r  True  Median  Mean  Std .Dev.  Cover  

"7,0 0.5 0.4802 0.4747 0.1598 0.9500 

")'11 1.0 1.0337 1.0378 0.1713 0.9300 

712 -0.6 -0.6146 -0.6196 0.0747 0.8500 

(I)11 1.4 1.3842 1.4050 0.2325 0.8900 

~11 0.5 0.5117 0.5217 0.1001 0.9000 

ul -0.4 -0.4106 -0.4113 0.1285 0.9700 

v2 -0.2 -0.2144 -0.2151 0.1174 0.9600 

ua 0.2 0.1856 0.1852 0.1193 0.9500 

u4 0.4 0.3752 0.3749 0.1097 0.9200 

/~11 1.0 1.0000 1.0000 - -  1.0000 

/~21 0.9 0.9132 0.9132 0.0567 0.8700 

Aal 0.8 0.8034 0.8034 0.0719 0.9000 

A41 0.7 0.6995 0.6995 0.0694 0.9200 

O~la 0.2 0.1945 0.1984 0.0448 0.9200 

0~22 0.2 0.2006 0.2042 0.0412 0.8900 

®~3a 0.5 0.4989 0.5065 0.0802 0.8700 

0~44 0.5 0.4910 0.4984 0.0773 0.9200 

with Y* = (1, 1, 1) and l-l~ 1 = diag {0.01, 0.01, 0.01}; (I) - ~lf-l(d¢l-lep, d+) where 
1~¢ = diag {0.01, 0.01} and de = 2; ~11 - 9~3(a'I ', b,i,) with a,i, = 1/2, b ~  1 = 0 .01;  hxj 

g" h ,12 wlthh x 1, andlq x 0 0 l f o r j  2, 3, 5,@ ~ J a  ,b  ( x,j h , x , j )  , j  = A, , j  = • = 8 , j j  ~ ( & j j  8 , j j )  
with aa,jj = 1/2, b~,~ = 0.01 for j  = 1, . . . ,  5. 

The results of the Monte Carlo study are collected in Tables 4 through 6. The average 
means and medians of these tables show close agreement with the true parameters. The 
plots of the posterior density estimates of the interaction term 3'13 and the iteration 
behavior are similar to the plots shown for the previous example. 

6. Performance Regressed on Task Complexity and Goal Specificity 

For empirical illustration we use data collected in 1990 from 158 police officers during 
a training course in Mtinster, Germany. Details of data collection are found in Holling 
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Averages of 100 Monte Carlo Replications 

Quadratic Model, Sample Size = 250 

Gibbs: Cycles = 2000, Burn-In = 500 

Metropolis: Cycles = 20 

Parameter True Median Mean Std.Dev. Cover 

710 0.5 0.4983 0.4962 0.0975 0.8600 

711 1.0 1.0075 1.0089 0.1057 0.8600 

7~2 -0.6 -0.6126 -0.6146 0.0446 0.8700 

~ n  1.4 1.3906 1.3989 0.1443 0.8800 

II/11 0.5 0.5083 0.5121 0.0610 0.8500 

vl -0.4 -0.4018 -0.4024 0.0796 0.8800 

u2 -0.2 -0.1981 -0.1982 0.0731 0.9000 

ua 0.2 0.1942 0.1938 0.0745 0.8900 

u4 0.4 0.3969 0.3968 0.0686 0.8900 

All 1.0 1.0000 1.0000 - -  1.0000 

A21 0.9 0.9096 0.9096 0.0347 0.9200 

~31 0.8 0.8051 0.8051 0.0444 0.8800 

X41 0.7 0.7018 0.7018 0.0433 0.9000 

0Sll 0.2 0.1986 0.2001 0.0276 0.9600 

0s22 0.2 0.2000 0.2014 0.0255 0.9000 

O~3a 0.5 0.4977 0.5006 0.0494 0.8900 

0544 0.5 0.4996 0.5025 0.0484 0.9100 

(1995). Background for the psychological theories to be tested are found in Early, Lee and 
Hanson (1990) and Holling. The dependent variable v I is performance, regressor variables 
are task complexity ~1, goal specificity ~2, and their interaction (~1~2). The corresponding 
model is a nonlinear regression model in latent variables 

~i = 3"11~il + 3'12~i2 "{- 3"13(~i1~12) -I- ~i (101) 

with ~ - 3¢(0, $ )  where $ is a 2 × 2 covariance matrix with elements {¢P11, qb21, $22} and 
ffi ~ J~'(0, ~1I)- The proper priors for this part of the model are chosen as: 3' = (3"11, 3"12, 
3"13)' - N(7*, l~r) with T* = (1, 1, -1 ) .  The value of - 1  is chosen since a negative 
interaction coefficient is expected theoretically. 1]~ -1 = diag {0.01, 0.01, 0.01}. • 

w-l(d,l,g~a,, de )  where f~,~ is a diagonal matrix with 12a,,11 = 1.9646 and f~,I,,Z2 = 0.6890. 
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T A B L E  3 

Averages of 100 Monte  Carlo Repl icat ions  

Quadra t ic  Model,  Sample  Size = 500 

Gibbs: Cycles = 2000, Burn- In  = 500 

Metropolis:  Cycles = 20 

P a r a m e t e r  True Median Mean Std .Dev.  Cover 

71o 0.5 0.4848 0.4836 0.0686 0.8900 

711 1.0 1.0147 1.0153 0.0739 0.8800 

712 -0.6 -0.6047 -0.6056 0.0309 0.8800 

(I)ll 1.4 1.3918 1.3957 0.1018 0.8200 

~I/11 0.5 0.4983 0.5002 0.0417 0.9100 

r'l -0.4 -0.4100 -0.4101 0.0563 0.9100 

u2 -0.2 -0.2099 -0.2097 0.0518 0.9000 

ua 0.2 0.1887 0.1886 0.0528 0.8900 

1,'4 0.4 0.3911 0.3910 0.0487 0.9200 

"~11 1.0 1 .0000  1 .0000  - -  1 . 0 0 0 0  

A21 0.9 0.9094 0.9094 0.0243 0.8600 

• ~al 0.8 0.8026 0.8026 0.0313 0.9100 

A41 0.7 0.7019 0.7019 0.0305 0.8900 

0~11 0.2 0.1994 0.2002 0.0192 0.8200 

O~22 0.2 0.1955 0.1962 0.0174 0.8900 

O~aa 0.5 0.5007 0.5022 0.0349 0.9500 

0544 0.5 0.5026 0.5040 0.0342 0.9200 

d o = 2; ~ u  - ~(a , l , ,  b~) with a, I, = 1/2, b~, 1 = 0.6782. The values of ~ and b,-ifl have 
been chosen from the variances of the reference indicators x 1, x4 and Yl of the latent 
variables ~1, ~2 and ~/. 

The indicator variables Yl, Y2, Y3 for the performance ~/are five point Likert scales 
with the questions A57A ("Is the amount of your work achieved during the last year (1) far 
below average to (5) far above average"), A57B ("Is the quality or precision of your work 
achieved during the last year (1) far below average to (5) far above average"), and A57E 
("Is the fulfillment of your goals in your work achieved during the last year (1) far below 
average to (5) far above average"). The factor analytic model connecting the indicator 
variables Yl, Y2, Y3 with ~ is given by: 

Yi = Vy "[- A y l l i  + e i (102) 
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T A B L E  4 

Averages  of 100 M o n t e  Car lo  Rep l i ca t ions  

I n t e r a c t i o n  Model ,  S a m p l e  Size = 100 

Gibbs:  Cycles  = 2000, B u r n - I n  = 500 

Metropol i s :  Cycles  = 20 

P a r a m e t e r  True  Med ian  Mean  S td .Dev .  Cover  

711 0.8 0.8138 0.8176 0.1245 0.9200 

712 1.7 1.8175 1.8476 0.2743 0.8200 

7~3 0.5 0.5400 0.5514 0.1747 0.8700 

(I)11 1.2 1.1522 1.1679 0.2179 0.8500 

(I)21 0.1 0.0829 0.0857 0.0999 0.9400 

(I)~2 0.7 0.6153 0.6298 O. 1638 0.8800 

~ n  0.6 0.6687 0.6858 0.1966 0.9000 

An 1.0 1.0000 1.0000 - -  1.0000 

A21 0.7 0.7361 0.7361 0.0857 0.9100 

A3~ -0.5 -0.5181 -0.5181 0.0773 0.9200 

A42 1.0 1.0000 1.0000 - -  1.0000 

A52 1.6 1.8160 1.8160 0.2862 0.8400 

@sll 0.2 0.2130 0.2195 0.0887 0.9000 

Os22 0.3 0.2885 0.2921 0.0626 0.8900 

0s33 0.4 0.4084 0.4142 0.0656 0.9600 

0~4 4 0.5 0.5250 0.5331 0.1000 0.8400 

Os~s 0.6 0.5321 0.5396 0.1844 0.8800 

with Ei - d¢(O, 0~) and the parameter specification 

,:'t, (1 t Vy = | Vy,21, Ay = h,,n , O~ = diag {O~.., 08.22, 0°.33}. (103) 
\ l]y,3 ] \ /~ 'y,31 / 

The value of Ay,11 is set to 1 to fix the scale of ~/. The proper priors for this part of the 
model are specified as: Vy,j ~ )¢(Vyj, f~,,y,]) where Vyy = O, and l~,ylj = 0.01 for j  = 1, 

* ' * ' - 1  ' '  • 2, 3; Avil . . . . . .  ~ d~'(hvil, ~'~)t.vil) where A,,q:, = 1, and lqx,:,,;]j = 0.01 for j -- 2, 3," @~,,;; 
,9~3(ae,jj, be,jj) witia ae,jj =' 1/2, b~, 1. = '0.01 for j = 1,. '.., 3. 

The indicator variables x 1, x 2, x 3 for task complexity ~1 are A18 ("How many of your 
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Averages of 100 Monte  Carlo Replicat ions 

In terac t ion  Model,  Sample  Size = 250 

Gibbs: Cycles = 2000, Burn-In  = 500 

Metropolis:  Cycles = 20 

P a r a m e t e r  True Median Mean Std.Dev.  Cover 

711 0.8 0.8004 0.8017 0.0738 0.9100 

"h2 1.7 1.6925 1.6992 0.1375 0.9500 

")'13 0.5 0.4971 0.5001 0.0913 0.9600 

(1~11 1.2 1.1687 1.1751 0.1327 0.9200 

(I)21 0.1 0.1041 0.1053 0.0654 0.8900 

(I)22 0.7 0.6698 0.6754 0.1036 0.8800 

~11 0.6 0.6728 0.6792 0.1138 0.8300 

An 1.0 1.0000 1.0000 - -  1.0000 

A21 0.7 0.7087 0.7087 0.0483 0.9100 

/~31 -0.5 -0.5055 -0.5055 0.0452 0.9000 

A42 1.0 1.0000 1.0000 - -  1.0000 

A52 1.6 1.6651 1.6651 0.1384 0.8700 

0511 0.2 0.1930 0.1947 0.0532 0.8300 

0522 0.3 0.3003 0.3019 0.0379 0.8900 

0533 0.4 0.3898 0.3919 0.0388 0.9000 

0544 0.5 0.5058 0.5090 0.0590 0.8800 

0555 0.6 0.5538 0.5567 0.1061 0.8300 

main tasks are the same from day to day" ranging from (1) almost all to (5) almost none), 
A19 ("Are the daily situations in which you have to fulfill your tasks (1) very much the 
same to (5) usually very different"), and A28 ("Are the daily problems which you have to 
solve to fulfill your tasks (1) very much the same to (5) usually very different"). 

The indicator variables x4, x5, x6 for goal specificity ~2 are A45 ("Are the performance 
requirements set by your superior officer (1) very unclear to (5) very clear"), A55A ("Are 
the goals set for your work always clear and specific" ranging from (1) not true at all to (5) 
almost always true), and B09 ("Are the specific goals for your work (1) very unclear to (5) 
very clear"). 

The factor analytic model connecting the indicator variables xl, x2, x 3 with ~1 and x4, 
x 5, x 6 with ~2 is: 
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TABLE 6 

Averages of 100 Monte Carlo Replications 

Interaction Model, Sample Size = 500 

Gibbs: Cycles = 2000, Burn-In = 500 

Metropolis: Cycles = 20 

Parameter True Median Mean Std.Dev. Cover 

")'11 0.8 0.7969 0.7975 0.0505 0.8500 

712 1.7 1.7153 1.7188 0.0941 0.9100 

7a3 0.5 0.4983 0.4997 0.0616 0.9000 

~11 1.2 1.1997 1.2030 0.0952 0.9000 

(I)21 0.1 0.1073 0.1079 0.0473 0.9300 

~22 0.7 0.6858 0.6889 0.0729 0.8500 

q/n 0.6 0.6429 0.6459 0.0779 0.9100 

A11 1.0 1.0000 1.0000 - -  1.0000 

A2a 0.7 0.7010 0.7010 0.0331 0.8900 

),31 -0.5 -0.4966 -0.4966 0.0310 0.8900 

),42 1.0 1 . 0 0 0 0  1 . 0 0 0 0  - -  1 . 0 0 0 0  

),52 1.6 1.6363 1.6363 0.0903 0.8600 

O511 0.2 0.1995 0.2006 0.0375 0.9100 

0522 0.3 0.3026 0.3034 0.0267 0.9000 

O~33 0.4 0.3927 0.3938 0.0275 0.8500 

0544 0.5 0.5013 0.5027 0.0405 0.8900 

0555 0.6 0.5759 0.5773 0.0714 0.8700 

xi = vx + Ax~i + 6i 

with 6i - N(0, @8) and the parameter specification 

l O  
Vx,2 | hx,21 0 

hx31 0 

0 Ax 5z 
\ Px,5] 0 Ax:62 
'~ 1)x,6l 

, 08 = diag {®~,11 . . . . .  ®~,66}. 

(104) 

(105) 
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Again, the values of hx,11 and Ax,42 a re  set to 1 to fix the scales of ~1 and ~2. The proper 
priors for this part of the model are specified as: Vx,k ~ N(~'*,k, l~,,,x,k) where Vx, k = 0, and 

- 1  _ _ . * * _ - 1  

l)v,x, k - 0.01 for k - 1 . . . .  ,6 ,  ) t x , k l  ~ . ] f ( ) t x , k l  , ~'~)~,x,kl) where A.x , k l  - -  1, and UtA,x,kl = 
• * -1  0.01 for k -- 2, 3; Axk 2 ~ .~(Axk 2, l'~Xx,k2) where Axk2 = 1, and ~A,xk2 = 0.01 for k 

5, 6; ®~,kk -- ~3(aS,kk ,  bs,kk) with a~,kk = 1/2, b~,kk = 0.01 for k = 1, . . . ,  6. 
The analysis has been performed with a burn in phase of 500 Gibbs iterations and 

2000 additional Gibbs iterations and 50 Metropolis-Hastings iterations within each Gibbs 
cycle to estimate the posterior distribution. To check convergence we have also used 20000 
Gibbs cycles and have found identical results. 

We first report in Table 7 median, mean and standard deviation of the posterior 
distributions of the individual parameters of a linear regression model (without the inter- 
action term ~1~2) as well as of the non-linear regression model including the interaction 
term with the additional parameter 713. 

While most of the medians and means of most parameters show close agreement, the 
values of 711 and ]t12 are somewhat higher in the non-linear regression model. The sign of 
the interaction parameter 713 is negative, the standard deviation indicates that the inter- 
action term may be considered as significantly different from 0 using a conventional 95 
percent coverage. The median coefficient of determination R 2 increases from 0.1016 in the 
linear model to 0.2750 in the non-linear model indicating a higher predictive power of the 
nonlinear model. Substantively, this result implies that increases in task complexity and in 
goal specificity predict an increase in performance, but the increase is dampened by the 
negative sign of the interaction term. For the interaction parameter 713 we plot the 
smoothed (kNN) density estimate in Figure 4 and the sample path of the MCMC algo- 
rithm in Figure 5. 

In Table 8 the results are reported for the factor analytic model for (Ya, Y2, Y3) as 
indicators for the performance 7. 

The results agree closely for the linear and the non-linear regression model implying 
that the relations in the factor analytic model for the performance are not changed by the 
underlying regression model for 7. Similar results hold for the factor analytic model 
c o n n e c t i n g  ( X l ,  x2, X3) to task complexity ~a and (x4, xs, x6) to goal specificity ~2" 

7. Conclusion 

We have formulated a nonlinear latent variable model including quadratic functions 
and interactions of latent regressors. Estimation of model parameters using conventional 
covariance structure analysis is almost impossible yielding unwieldy mean and covariance 
structures and cumbersome numerical algorithms. Putting the nonlinear latent variable 
model in a Bayesian framework allows the use of the Gibbs sampler to estimate the 
posterior distributions of the parameters and the latent variables given the data. The 
Bayesian framework also allows the incorporation of prior information by specifying prior 
distributions for the model parameters. 

The application of the Gibbs sampler is complicated by the fact that no closed math- 
ematical form of the distribution of the latent variables could be found. Therefore, the 
M-H algorithm is used within iterations of the Gibbs sampler. The proposed model and the 
numerical algorithms are illustrated by two simulation studies and an empirical example 
analyzing the possibly non-linear dependence of performance on task complexity and goal 
specificity. In the future, further checks of the behavior of the proposed algorithm and an 
analysis of the sensitivity of the results to the specification of strong priors will have to be 
performed. 
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TABLE 7 

Linear and Non-linear Regression Model 

Gibbs: Cycles = 2000, Burn-In = 500 Metropolis: Cycles = 50 

Linear regression model Non-linear regression model 

Parameter Median Mean Std.Dev. Median Mean Std.Dev. 

711 0.0921 0.0931 0.0540 0.1323 0.1336 0.0619 

712 0.3649 0.3745 0.2078 0.6099 0.6304 0.2382 

713 . . . .  0.4131 -0.4363 0.1979 

~ax 1.2575 1.2716 0.2506 1.1491 1.1685 0.2321 

~21 -0.0164 -0.0153 0.0525 -0.0233 -0.0239 0.0538 

¢22 0.1827 0.1950 0.0687 0.1983 0.2072 0.0699 

~H 0.3403 0.3438 0.0760 0.2902 0.2961 0.0695 

R~ 0.1016 0.1129 0.0706 0.2750 0.2797 0.1157 

TABLE 8 

Factor Analytic Model for Performance 

Gibbs: Cycles -- 2000, Burn-In --- 500 Metropolis: Cycles - 50 

Linear regressio n model Non-linear regression model 

Parameter Median Mean Std.Dev. Median Mean Std.Dev. 

uy,1 4.3197 4.3215 0.0652 4.3191 4.3174 0.0718 

uy,2 4.3534 4.3527 0.0574 4.3521 4.3505 0.0623 

uy,3 4.2219 4.2211 0.0583 4.2194 4.2158 0.0620 

Av,ll 1.0000 1.0000 - -  1.0000 1.0000 - -  

Av,21 0.9040 0.9174 0.1211 0.8839 0.8915 0.1019 

Av,31 0.9403 0.9522 0.1181 0.9049 0.9102 0.1004 

O d l  0.3135 0.3158 0.0525 0.3015 0.3028 0.0482 

O~,22 0.2063 0.2070 0.0409 0.2037 0.2050 0.0356 

O~,33 0.1821 0.1819 0.0411 0.1883 0.1902 0.0359 
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Factor Analytic Model for Task Complexity and Goal Specificity 

Gibbs: Cycles = 2000, Burn-In = 500 Metropolis: Cycles = 50 

Linear regression model Non-linear regression model 

Parameter Median Mean Std.Dev. Median Mean Std.Dev. 

v~,l 2.6146 2.6195 0.1188 2.6137 2.6119 0.1161 

vx,2 2.8971 2.9050 0.1103 2.8950 2.8920 0.1106 

v~,3 2.7570 2.7588 0.0924 2.7491 2.7496 0.0929 

vx,4 4.0758 4.0735 0.0694 4.0737 4.0735 0.0690 

vx,5 4.3325 4.3305 0.0566 4.3302 4.3310 0.0582 

v~,6 3.8182 3.8163 0.0845 3.8135 3.8147 0.0893 

Ax,11 1.0000 1.0000 - -  1.0000 1.0000 - -  

A~,21 1.0117 1.0272 0.1348 1.0985 1.1060 0.1325 

Ax,31 0.6590 0.6622 0.0886 0.6735 0.6795 0.0914 

A~,42 1.0000 1.0000 - -  1.0000 1.0000 - -  

Ax,s2 0.8117 0.8413 0.2813 0.9112 0.9312 0.2716 

A~,62 1.5850 1.7142 0.6228 1.2884 1.3140 0.3287 

0~,11 0.7218 0.7259 0.1553 0.8099 0.8127 0.1412 

08,22 0.4570 0.4457 0.1512 0.3443 0.3524 0.1374 

O~,33 0.7287 0.7361 0.1059 0.7516 0.7585 0.1054 

06,44  0.5357 0.5396 0.0915 0.5092 0.5110 0.0796 

O~,5~ 0.3742 0.3694 0.0750 0.3377 0.3386 0.0615 

O~,6~ 0.6961 0.6330 0.2812 0.8334 0.8357 0.1369 
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