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Abstract

We present a new approach for macromolecular structure determination from multiple particles in electron
cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging approaches are based on
3D data models, we propose to optimise a regularised likelihood target that approximates a function of
the 2D experimental images. In addition, analogous to Bayesian polishing and CTF refinement in single-
particle analysis, we describe approaches that exploit the increased signal-to-noise ratio in the averaged
structure to optimise tilt series alignments, beam-induced motions of the particles throughout the tilt series
acquisition, defoci of the individual particles, as well as higher-order optical aberrations of the microscope.
Implementation of our approaches in the open-source software package RELION aims to facilitate their
general use, in particular for those researchers who are already familiar with its single-particle analysis
tools. We illustrate for two cases that our approaches allow structure determination from cryo-ET data to
resolutions sufficient for de novo atomic modelling.

1 Introduction

In recent years, electron cryo-microscopy (cryo-EM)
has allowed the 3D imaging of an increasing number
of biological macromolecules at resolutions sufficient
for de novo atomic modelling. This development, orig-
inally driven by advances in detector technology, was
further facilitated by novel, robust image processing
algorithms. In single-particle analysis, images of mul-
tiple copies of isolated macromolecular complexes, or
particles, that are suspended in random orientations
in a thin layer of vitreous water are combined in a
3D reconstruction. Nowadays, many aspects of single-
particle analysis workflows can be performed with only
minimal human supervision, e.g. the detection, extrac-
tion and initial classification of particles in the images
[27, 2, 24], 3D reconstruction [27, 14], as well as re-
finement of the optical parameters [27, 29, 14, 21] and
per-particle tracking of electron beam-induced motion
[26, 28]. Many of the algorithms that underlie these
modern methods are built on solid statistical founda-

tions that require few tuneable parameters. This de-
creases the need for operator expertise and provides
objectivity, as well as robustness, in obtaining optimal
structures.

The single-particle approach is, however, limited
to investigating isolated protein complexes that are
purified to relative homogeneity. To examine these
complexes in their biological context, electron cryo-
tomography (cryo-ET) may be used instead. In the
tomographic approach, the sample is tilted multiple
times during image acquisition, yielding a so-called
tilt series of images from which a 3D tomogram can
be computed. In the same manner as single-particle
analysis, repeated occurrences of particles in those to-
mograms can then be aligned and averaged to obtain
higher-resolution reconstructions. This process is re-
ferred to as subtomogram averaging. Unlike the field
of single-particle analysis, many of the tools used for
subtomogram averaging still require considerable levels
of expertise from the operator, often in order to tune
parameters that arise from heuristics in the underlying
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algorithms. This not only provides a barrier for new
scientists entering the field, but can also lead to the
calculation of suboptimal structures.

Compared to single-particle analysis, subtomogram
averaging faces several unique challenges. In addition
to estimating the position and orientation of each par-
ticle, the algorithm also has to consider the geometry of
the tilt series. Typically, this is solved through a set of
pre-processing steps that include estimation of contrast
transfer function (CTF) parameters and alignment of
the tilt series, followed by the reconstruction of, often
inconveniently large, tomograms for the entire field of
view. Smaller subtomograms surrounding selected par-
ticles are then extracted from the tomograms and used
in a separate process of subtomogram alignment and
averaging. The separation between tomogram recon-
struction and subtomogram averaging can lead to an
accumulation of errors, as errors in the CTF estima-
tion or tilt series alignments are hard to correct. In
addition, because the sample cannot be rotated 180
degrees within the microscope, the subtomograms con-
tain empty regions in Fourier space, the so-called miss-
ing wedge, which are difficult to deal with in subtomo-
gram averaging.

A fundamental problem with subtomogram averag-
ing as described above is that it transforms the original
2D image data into 3D subtomograms, which are then
used as a substitute for experimental data in the align-
ment algorithm. RELION-3 introduced the concept of
a 3D CTF to describe the transfer of information from
the 2D images to the subtomograms, which dealt to
some extent with the missing wedge and the loss of in-
formation through interpolations in the reconstruction
algorithm [4]. A drawback of the 3D CTF approach is
that it does not deal correctly with the lower resolu-
tion regions of Fourier space, where information from
different tilt images overlaps. A statistically more at-
tractive approach would be to formulate the optimisa-
tion target function directly as a function of the actual
2D images that are measured in the microscope. This
has been proposed in an approach called constrained
single-particle cryo-ET [1], where individually boxed
particles from the tilt series images are processed as in
single-particle analysis, but their relative orientations
are kept fixed. To deal with unknowns in the relative
orientations of the particles from the tilt series images,
as well as their CTFs, the program M recently intro-
duced new optimisation approaches that compare ref-
erence projections against the 2D particle images [21].
M still relies on RELION-3 for alignment and classifi-
cation of 3D subtomograms that are recalculated from
the optimised parameters in M. Nevertheless, this iter-
ative approach allows subtomogram averaging to reso-
lutions that approach those observed for single-particle
analysis, even for particles in complex cellular environ-
ments [21].

Here, we describe a new approach in RELION-4.0
that approaches subtomogram averaging as the optimi-
sation of a regularised likelihood function that depends
directly on the 2D images of the tilt series. In order
to do so at acceptable computational, as well as imple-

mentation costs, we have altered the main refinement
program in RELION-4.0 to work with so-called pseudo
subtomograms : explicitly constructed sets of 3D data
arrays that contain sums of CTF pre-multiplied tilt
series images, together with auxiliary arrays that con-
tain the corresponding sum of squared CTFs and how
often each 3D voxel has been observed. Pseudo subto-
mograms no longer aim to represent the actual scat-
tering potential of the underlying particles. Instead,
they represent a convenient way to implement the 2D
approach within the existing RELION code. Evalua-
tion of the pseudo subtomograms by RELION-4.0 ap-
proximates the likelihood of observing a hypothetical
particle in the images of the entire tilt series, given the
current model. Using that likelihood as a metric, oper-
ations equivalent to those in single-particle analysis can
now be performed on tomographic data, e.g. 3D initial
model generation, 3D classification or high-resolution
refinement. In addition, we describe new methods for
optimising parameters of the tilt series that exploit the
increased signal-to-noise ratio in the average structure.
Besides optimisation of the tilt series alignment itself,
we also describe methods analogous to CTF refinement
[27, 29] for refining descriptors of the optical prop-
erties (defocus, astigmatism and higher-order aberra-
tions) and a method akin to Bayesian Polishing [28] to
model beam-induced particle motion throughout the
tilt series. Once all these parameters have been opti-
mised, new pseudo subtomograms can be constructed
and the alignment can be repeated. The resulting iter-
ative image processing workflow is similar to existing
approaches for single-particle analysis in RELION.

2 Methods

2.1 Particle alignment and averaging

RELION performs maximum-a-posteriori estimation
to find the set of model parameters Θ that maximise
the probability of observing the experimental images
X. Using Bayes’ theorem, we define a regularised like-
lihood optimisation target function as:

P (Θ|X) = P (X|Θ)P (Θ), (1)

where P (Θ) expresses prior information about the
model, i.e. that the reconstructed map has limited
power in Fourier space, and P (X|Θ) is the likelihood
of observing the data given the model. A marginalised
likelihood function is used, where one integrates over
the unknown alignments φ of each individual particle.
For simplicity, these integrals are omitted from the no-
tations used in this paper.

The data model assumes independent Gaussian
noise on the Fourier components of the cryo-EM images
of individual particles p. We therefore write the neg-
ative log-likelihood of observing a particle in a hypo-
thetical alignment φ as a sum over a grid of 2D Fourier
pixels j ∈ R

2:

− log
(
P (X|φ)

)
∝

∑

j

|Xj − CTF(j)V
(p)
j |2

σ2
j

, (2)
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where X is the Fourier transform of the experimental

image, CTF the contrast-transfer function, V
(p)
j de-

notes the 2D slice out of the 3D Fourier transform of
the known map V into the view of the particle, and σ2

j

is the noise variance of the frequency band of j. V
(p)
j

is given by

V
(p)
j = exp(itp · j)V (Apj) (3)

for a 2D vector tp and a 2× 3 matrix Ap that respec-
tively encapsulate the particle’s position and orienta-
tion, and the evaluation of V (Apj) is achieved through
linear interpolation.

In tomography, our aim is to approximate that
same likelihood on tilt-series data. The direct equiva-
lent is a sum over the pixels of the relevant regions of
all images f from the tilt series:

− log
(
P (X|φ)

)
∝

∑

f,j

|Xfj − CTFf (j)V
(p)
fj |2

σ2
j

. (4)

We model the shifts and rotations as compositions of
per-particle and per-image components:

tpf = A⊺

fTpf + tf (5)

Apf = RpAf , (6)

where we keep the per-particle rotation component,
Rp, identical for all images in the tilt series, and only
vary Af , the rotational alignment of the tilt series im-
ages. In turn, the tilt-series alignment Af is shared
among all particles in a given tilt image. The per-
particle part of the translation is modelled as a 3D vec-
tor, Tpf ∈ R

3 that can vary over different tilt images
f . This contrasts with single-particle analysis, where
beam-induced motion of the particle can be corrected
for as a preprocessing step [12, 17, 26, 28], so that each
particle is associated with a single 2D translation in a
motion-corrected image.

For our pseudo-subtomogram approach, we now ap-
proximate the sum over 2D pixels j and tilt images f
in Eq. 4 by a sum over 3D voxels k in the pseudo-
subtomogram:

− log
(
P (X|φ)

)
∝

∑

k

|Dk −WkV (Rpk)|
2

Mkσ2
k

. (7)

Here, the data termD, its weightW , and a multiplicity
volume M are 3D arrays in the Fourier domain. To-
gether, they constitute a pseudo subtomogram. They
are constructed as follows.

Dk =
∑

f,j

l(Apf j− k)CTFf (j)Xfj (8)

Wk =
∑

f,j

l(Apf j− k)|CTFf (j)|
2 (9)

Mk =
∑

f,j

l(Apf j− k), (10)

where l(·) represents linear interpolation with forward
mapping, i.e. each 2D Fourier pixel j is projected into

3D Fourier space, updating the 8 closest voxels. This
allows the 2D images to be more finely sampled in
Fourier space than the 3D volumes, which is equiva-
lent to larger 2D images than 3D volumes in real space.
This is desirable because the high spatial-frequency in-
formation is spread out by the effect of the CTF in the
2D images. After the 2D image has been modulated
by its CTF again in Eq. 8, half of that signal is relo-
calised, so it fits into a smaller real-space region, which
is equivalent to a less finely sampled Fourier volume.
Note that only half the signal can be recovered this
way – the other half is shifted twice as far and could
only be retrieved by using a very large box, which is
impractical even in single-particle analysis.

Ignoring the difference of pre-multiplying the im-
ages with their CTFs, Eq (7) aims to be equivalent
of Eq (4). It is possible to replace individual Fourier
components Xfj by sums over multiple components

Dk because of the law of total variance: |〈X〉 −C|
2
=〈

|X−C|
2
〉
−Var (X), whereC is a constant and Var(·)

represents the variance. In this case, Var(Xfj) remains
constant for any alignment Rp, so it can be neglected.
The variance σ2

k is equivalent to σ2
j , the power of the

noise in the individual Fourier components in the 2D
images. The additional term Mk in the denominator
of Eq (7) arises from the observation that the variance
in the sum of Mk independent random variables, each
with variance σ2

k, is equal to Mkσ
2
k.

Optimisation of Eq (1) by expectation-
maximization [6], while using Eq (7) to construct the
likelihood function, leads to the following update for-
mulae for V and σ2:

Vk =

∑
p D(R⊺

pk)/σ
2
k∑

p W (R⊺

pk)/σ2
k + 1/τ2k

(11)

σ2
k =

1

Nk

∑

k∈Sk

1

Mk

|Dk −WkV (Rpk)|
2, (12)

where the term τ2k arises from the prior P (Θ) and
expresses the expected, frequency-dependent power of
the signal; τ2k and σ2

k are calculated by averaging over
τ2k and σ2

k resp. in hollow spheres of radius k and thick-
ness 1 described by Sk; Nk is the total number of voxels
in Sk with Mk > 0; and the divisions by τ2k and σ2

k in
Eq (11) are evaluated element-wise.

2.2 Orientational priors

One advantage of the approach to align pseudo subto-
mograms is that the coordinate system of the pseudo
subtomograms themselves can be chosen arbitrarily.
By default, the pseudo subtomograms are created in
the same orientation as the tomogram, but the user
can chose to align them in a more meaningful way.
This is useful, as many proteins are organised in 2D
arrays inside the tomograms, for example inside mem-
branes or as part of capsid-like structures. Often, the
individual protein molecules inside these arrays exhibit
limited rotational freedom with respect to the surface
normal of the array, although they may be able to ro-
tate freely around that normal. By constructing the
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pseudo subtomograms with their Z axis parallel to the
normal of the 2D array, using a rotational prior on
the tilt angle will limit the amount of rocking of the
particles inside the array. This not only accelerates
the refinement, as fewer orientations need to be evalu-
ated, it also makes it possible to solve more challenging
structures because fewer solutions are allowed.

2.3 Tilt series refinement

Averaging over multiple particles leads to an increased
signal-to-noise ratio in the estimated density map V .
We also implemented procedures that exploit V for
subsequent re-estimation of parameters that describe
the tilt series. These procedures do not require pseudo
subtomograms, but are performed by comparing pro-
jections of the density maps directly with the (Fourier)
pixels of 2D boxes that are extracted from the tilt se-
ries images, with a sufficient size to hold the CTF-
delocalised signal. The various tilt series parameters
are then estimated by minimising the negative log-
likelihood as defined in Eq. 4, i.e. the sum over noise-
weighted square differences between the prediction and
the observation.

The tilt-series properties that can be refined fall
into two broad categories: optical and geometrical.
The optical refinement concerns the different parame-
ters of the CTF, while the geometrical refinement aims
to optimise the alignment of the tilt series, as well
as the beam-induced motion of the individual parti-
cles. Both sets of algorithms are closely related to the
corresponding single-particle algorithms in RELION:
optical-aberration refinement [27, 29] and Bayesian
Polishing [28], respectively. In spite of the similarity
between the algorithms, the models that are optimised
differ significantly from single-particle analysis. Details
of the implementation of the optical and geometrical
refinement algorithms are given in the Appendix.

CTF refinement for tomographic data in RELION-
4.0 includes optimisation of scale factors that model
frequency-dependent radiation damage, defocus, astig-
matism, and higher-order symmetrical and antisym-
metrical aberrations. Although individual particles
within a field of view are at distinct defoci in the tilt
series images, their relative defoci are known from the
geometry of the tilt series and the known 3D positions
of the particles in the tomogram. Therefore, one can
efficiently perform defocus estimation in a single pass,
considering all particles in a tilt series image simulta-
neously. In order to do so, we modified procedures that
were developed for higher-order aberration estimation
in single-particle analysis [29], where the information
from all particles in each tilt series image is condensed
into two images that are used to estimate a common
phase shift (see Appendix).

Similar procedures can also be used to model
higher-order symmetrical and antisymmetrical aber-
rations in the tomographic data. Analogously to
our single-particle approach, they are modeled using
Zernike polynomials and estimated in the same way.
Because the higher-order aberrations are often only a

limiting factor at relatively high spatial frequencies, a
large number of particles are needed to estimate them
reliably. Optimally, higher-order aberrations would
thus be estimated globally, over the entire data set, and
only for cases that yield high-resolution averages. Only
aberrations that change too quickly during collection
make it necessary to split the tomograms into optics
groups, and estimate the aberrations per optics group.
Typically, the third-order antisymmetrical aberrations
are the most important ones, i.e. trefoil and axial
coma, which can both be caused by a tilted beam.
The resolution gains that these optimisations will yield
depend on the microscope (mis)alignment. Provided
alignment has been performed reasonably well, higher-
order aberration correction will probably be most use-
ful for reconstructions that extend beyond 3Å resolu-
tion.

The geometric alignment includes both the (rigid)
rotational and translational re-alignment of the tilt se-
ries images, as well as the modelling of beam-induced
motion of individual particles throughout the tilt se-
ries. For the latter, we neglect rotations of the par-
ticles, and only model beam-induced translations. By
doing so, we can precompute the likelihood of each par-
ticle being in each position around its original one, and
then look for an alignment that simultaneously max-
imises the sum of those likelihoods over all tilt series
images and all particles, as well as a prior that ensures
spatially coherent motion. This allows us to evalu-
ate the likelihood of a hypothetical particle-position
by looking up a single interpolated value in an image.
In this formulation, the problem becomes equivalent
to the Bayesian Polishing approach that we originally
developed for single-particle analysis, except for the in-
clusion of a third spatial dimension for the motion.

3 Results

3.1 HIV immature capsid

We tested the workflow above on the cryo-ET dataset
that was used to determine the structure of the im-
mature capsid lattice and spacer peptide 1 (CA-SP1)
regions of the Gag polyprotein from human immuno-
deficiency virus 1 (HIV-1) [18] (EMPIAR-10164). We
used the same subset of 5 tomograms that were also
used to assess the NovaCTF [22] and Warp [20] pro-
grams. Introducing 3D CTF correction, and using
the alignment parameters from the original analysis by
Schur et al, NovaCTF reported a resolution of 3.9 Å
[22]. The Warp program introduced local and global
motion correction in the tilt series images, as well as
optimisation of CTF parameters. The combination of
Warp and subtomogram alignment and averaging in
RELION-3 led to a resolution of 3.8 Å.

We used tilt series projections after movie frame
alignment from the original analysis [18], without any
other preprocessing step, along with the tilt series
alignment data, performed with IMOD package [11],
and CTF parameters estimation using CTFFIND4
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[15]. We used 13,320 particles from the 5 tomograms
subset, reconstructed an initial reference map using the
original published particle alignment and filtered it to
5 Å. A first alignment in 3D auto-refine, followed by
averaging of the initial pseudo subtomograms, led to
a resolution of 3.6 Å. This average was then used
for a full cycle of pseudo-subtomogram improvement
and realignment. We first applied CTF refinement
to optimise the defoci of all particles. This improved
the resolution only marginally. Subsequent optimisa-
tion of the tilt series geometry, including modelling lo-
cal particle motion, improved the resolution to 3.5 Å.
And finally, re-alignment of newly generated pseudo-
subtomograms led to a resolution of 3.4 Å. A sec-
ond cycle of these three steps provided 3.3 Å, while a
third cycle converged to 3.2 Å (Figure 1a). Geomet-
rical refinement was performed estimating local par-
ticle motion. Considering deformations did not show
additional improvement. In the first cycle, where im-
provements in both CTFs and geometry are most ob-
vious, the order of applying those optimisations did
not alter the final result for this data set. These
data and results are also distributed as part of the
subtomogram tutorial in RELION-4.0, as described on
https://relion.readthedocs.io/en/release-4.0/.

Analysis of the complete dataset generated a struc-
ture at 3.0 Å resolution (not shown), which is the same
resolution obtained using the M and RELION-3 work-
flow [21], and is likely limited by flexibility and asym-
metry in the CA hexamer.

3.2 Caulobacter crescentus S-layer

We also applied our approach to thin cellular ap-
pendages of C. crescentus bacteria known as stalks,
which have previously been imaged using cryo-ET [3].
The cell body and cell stalks of C. crescentus cells are
covered by a nearly hexagonal, paracrystalline array
known as the surface layer (S-layer) [19]. The struc-
ture of the S-layer was solved using a combination of
X-ray crystallography, cryo-EM single particle analy-
sis and subtomogram averaging, revealing how the S-
layer is attached to bacterial cells by an abundant gly-
colipid called lipopolysaccharide (LPS) [3, 23]. Previ-
ously, cryo-ET of the S-layer, using 110 tilt series col-
lected with a dose-symmetric scheme, yielded 51,866
hexamers of the S-layer. Using subtomogram averaging
methodology described previously, which is based on a
constrained cross-correlation approach implemented in
the AV3 Matlab suite [8], specifically optimised for the
analysis of macromolecules arranged in a lattice [25],
a 7.4 Å reconstruction of the S-layer was obtained, in
which alpha-helices were resolved [3]. This reconstruc-
tion was improved by application of NovaCTF [22],
leading to a 4.8 Å reconstruction, in which large amino
acid residue side chains were resolved [23]. Moreover,
density for an LPS molecule was observed near the pu-
tative LPS-binding residues of the S-layer, in agree-
ment with a cryo-EM single particle structure of an in
vitro reconstituted complex [23].

We used the tilt series after movie frame align-

ment from the initial analysis [3], without additional
pre-processing, along with the tilt series alignments
performed within IMOD [11], CTF parameters from
CTFFIND4 [15], and the Euler angle assignments and
subtomogram co-ordinates from the original analysis.
These parameters were imported into RELION-4.0, fol-
lowed by multiple cycles of pseudo-subtomogram gen-
eration and refinement, analogous to the immature
HIV dataset described above, leading to a 5.6 Å recon-
struction of the S-layer hexamer (Figure 2a). Next, we
defined a mask around the central pore of the S-layer,
corresponding to the inner domain bound to LPS, to
perform focused refinements. Another cycle of pseudo-
subtomogram reconstruction, CTF refinement and re-
finement within the new mask improved the resolution
to 4.4 Å. Accounting for per-particle motions with ad-
ditional cycles of pseudo-subtomogram improvements
and refinements increased the resolution of the central
pore to 4.0 Å, and the inner domain of the S-layer to
3.7 Å. Further 3D classification without alignments
identified a subset of 42,990 subtomograms that gave
a 3.5 Å resolution reconstruction of the inner S-layer.

The 3.5 Å map is in excellent agreement with the
single particle structure of the in vitro reconstituted
complex, including the LPS binding site [23]. Further-
more, divalent metal ions, known to be tightly bound
to the inner S-layer [10], are resolved (Figure 2b). Sur-
prisingly, at lower isosurface contour levels, we also ob-
served a second LPS binding site (Figure 2c-d). The
size and shape of this density agrees with the struc-
ture of the LPS O-antigen, illustrating how improved
subtomogram averaging in RELION-4.0 can help un-
cover new biology.

4 Discussion

We formulate the problem of averaging over multiple
identical particles in tomographic tilt series in an em-
pirical Bayesian framework that is based on a statisti-
cal model for the two-dimensional experimental data.
The same statistical framework has proven effective
in reducing the number of tunable parameters and
in obtaining high-quality reconstructions from single-
particle data [7]. The two-dimensional data model de-
scribes the experimental images better than alterna-
tive approaches that use 3D reconstructed subtomo-
grams as an intermediate. One example of a problem
with the intermediate 3D data model is the need for
missing wedge correction, which arises from the ob-
servation that the experimental images were acquired,
incompletely, in three dimensions. Artifacts related
to missing wedge correction may affect the classifica-
tion of distinct structural states, by separating par-
ticles according to the orientation of their missing
wedge. By using a 2D data model, missing wedge
correction is no longer required. Instead, the prob-
lem approaches that of single-particle analysis, where
projections from different orientations and of different
structural states are sorted out simultaneously. Pro-
vided the 3D Fourier transform of the distinct classes
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is fully sampled through the orientation distribution
of the raw particles, likelihood optimisation techniques
have been highly successful in tackling this problem in
single-particle analysis [16, 7]. Therefore, the methods
presented here may be particularly advantageous over
existing subtomogram averaging methods when multi-
ple distinct structural states exist in the set of particles.

In practice, the implementation in RELION-4.0
does not use stacks of 2D projection images as input
for the refinement program that performs alignment
and classification. Instead, the concept of pseudo-
subtomograms is introduced, where the tilt series im-
ages are Fourier transformed, pre-multiplied with their
CTF, and inserted as a slice into a 3D Fourier vol-
ume according to the best current estimates for the
tilt series geometry. In order to approach the likeli-
hood of observing the individual 2D tilt series images,
the likelihood calculation from the 3D pseudo subto-
mogram requires separate storage of the accumulated
squares of the CTFs, as well as a multiplicity term
that keeps track how often each pixel in Fourier space
is sampled. In the limit of infinitely fine sampling of
the Fourier transform, the resulting likelihood function
only differs from the exact one by a constant offset.
The use of pseudo subtomograms allowed re-using ex-
isting code for subtomogram averaging in RELION,
while input stacks of 2D images would have required
significant software development efforts. Nevertheless,
in the future one might still choose to implement a
true 2D version of the code, as the number of Fourier
pixels to examine, and hence the computational cost,
will decrease under the currently common tomography
setups. Specifically, a 2D implementation is more effi-
cient when the number of tilt images is small in com-
parison to the particle size measured in pixels. For
example, the current implementation could be used to
process pairs of tilted images, but a 2D implementa-
tion would be more efficient. However, if one were to
collect tilt series in a continuous manner [5], then the
current implementation is preferable.

Besides the alignment and classification of individ-
ual particles, the methods described here also deal with
re-estimation of parameters that describe the optical
and geometrical features of the tilt series. As soon
as an initial average structure has been obtained, its
increased signal-to-noise ratio can be exploited to de-
termine these parameters more accurately than what is
possible from the raw tilt series images alone. The im-
plementations in RELION-4.0 again follow those pre-
viously implemented for single-particle analysis, where
CTF refinement is used for re-estimation of the tilt
series images CTFs, and algorithms akin to Bayesian
polishing are used to re-estimate the tilt-series align-
ment, as well as the movement of individual parti-
cles throughout the tilt series acquisition process. As
better tilt series parameters will allow better pseudo-
subtomograms, particle alignment and classification
are iterated with the optimisation of the tilt series pa-
rameters.

Similar tilt series and CTF optimisation approaches
have been implemented in the program M. Compared

to M, RELION-4.0 uses computationally more effi-
cient algorithms that do not require the computational
power of a GPU. However, both in tomography and in
SPA, RELION-4.0 only models beam-induced transla-
tions of the particles, whereas M also models beam-
induced rotations. Since SPA routinely reaches 2 Å
resolutions without modelling beam-induced rotations,
we assumed that the effect of rotations of individual
particles throughout the tilt series is not large enough
to warrant their correction at typical tomography res-
olutions. In cases where the data do allow for unusu-
ally high resolutions and a GPU is available, M could
still be used in a postprocessing step, following align-
ment and classification of the individual particles in
RELION. It is likely that adaptation of M, in order
to function with the pseudo-subtomograms proposed
here, would lead to increased synergy between the two
programs. In the meantime, external tools to convert
from M parameters to RELION-4.0 are already avail-
able (https://github.com/joton/reliontomotools).

Besides the reduction in tunable parameters that
is characteristic of the Bayesian approach, its uptake
by researchers that are new to the field is further fa-
cilitated through the implementation of a graphical
user-interface. This interface is already widely used
for single-particle analysis, and has been extended for
the processing of tomographic data in RELION-4.0.
Apart from the calculations that will be familiar to
users of single-particle analysis, e.g. 3D classification,
3D initial model generation, 3D auto-refinement, the
new interface also provides convenient access to the
tomography-specific versions for CTF refinement and
Bayesian polishing, as well as pre-processing operations
to calculate the pseudo-subtomograms and to import
data and metadata from pre-processing operations in
IMOD [11]. To further facilitate the uptake of this new
software by the community, we have provided an online
tutorial that uses the publicly available HIV immature
capsid data set to describe and illustrate all steps nec-
essary to obtain the results described in Figure 1.

In summary, we introduce new methods for subto-
mogram averaging to resolutions that are sufficient for
de novo atomic modelling, and increase the accessibil-
ity of this emerging technique. We envision that our
methods will allow more researchers to calculate bet-
ter structures from tomographic data, which will aid
the next revolution in structural biology, where macro-
molecular complexes are imaged, not in isolation, but
in their biologically relevant environment.
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Appendix

CTF Refinement

CTF refinement in RELION-4.0 optimises the fol-
lowing parameters: scale, defocus, astigmatism and
higher-order (even and odd) optical aberrations. Since,
save for the difference in defocus, the same CTF needs
to be valid for an entire micrograph of particles, similar
optimisations can be applied as in our single-particle
algorithms. All the relevant information is first con-
solidated into a minimal form using linear transforma-
tions, and the final, typically non-linear, optimisation
is then performed on that minimal form.

We formulate the CTF for frame f of particle p as
follows:

CTFpf (j) = −αfτf (j) sin(γpf (j)) exp(iρf (j)), (13)

where αf describes the overall scaling factor, τf (j) the
empirical radiation-damage model as defined by Grant
and Grigorieff [9], γpfj the symmetrical phase delay
component and ρfj the antisymmetrical one. Note
that only γ varies between particles. This is because
it contains the quadratic defocus term that depends
on the position of the particle. The phase delays are
parametrised the same way as in single-particle analy-
sis in RELION-3 – as a combination of explicitly named
low-order terms and higher-order Zernike polynomials:

γpf (j) = πλj⊺Dpf j+
π

2
Csλ

3|j|4 − χf +
∑

Zm
n (j),

(14)

Dpf =

[
δzp + a1 a2

a2 δzp − a1

]
. (15)

As before, the astigmatic-defocus matrixDpf is decom-
posed into a defocus term δzp and two linear astigma-
tism terms, a1 and a2, while Cs describes the spherical
aberration of the microscope, χf a constant phase off-
set (owing to amplitude contrast and a phase plate, if
one is used), λ is the wavelength of the electron and
Zm
n are the higher-order even Zernike terms. One key

difference to single-particle analysis is that the defocus
term δzp is no longer a free parameter for each parti-
cle, but it instead depends on the already known 3D
position of the particle. Therefore, in tomography, the
defocus term is only estimated once per tilt-image, and
all the particles contribute to that estimate.

The scaling factor αf is estimated by computing the
following two sums for each micrograph and dividing
them (the † symbol indicates complex conjugation):

αf =
Gf

Hf

(16)

Gf =
∑

p,j

1

σ2
|j|

Re(Xpfj(CTF
′
pf (j)V

(p)
pfj )

†) (17)

Hf =
∑

p,j

1

σ2
|j|

|CTF′
pf (j)V

(p)
pfj |

2. (18)

Note that the CTF′ used in Eq. 18 is missing its scale
factor:

CTF′
pf (j) = −τf (j) sin(γpf (j)) exp(iρf (j)). (19)

Alternatively, we also allow the user to fit the pa-
rameters of Lambert’s extinction model to the data
instead, assuming perfectly flat samples of constant
thickness. In that case, the CTF scale in image f
of tomogram t is expressed as a function of the beam
luminance α0, sample normal nt and optical sample
thickness κt:

αtf (α0, κt,nt) = α0κ
1

|nt·zf |

t (20)

If this option is used, then the CTF scales of all the
tilt series in the data set are estimated together. The
beam luminance α0 is modeled globally, while the sam-
ple thickness and normal are allowed to differ among
tomograms, but not between the images of a tilt series.
The vector zf points in viewing direction of tilt image
f . Note that this model does not allow for separat-
ing the geometrical sample-thickness from its extinc-
tion factor, so we can only estimate the product of the
two. Also, the ice normal is required to be perpendic-
ular to the estimated tilt axis of the tilt series, since
its component pointing in the direction of the axis is
indistinguishable from an increase in ice thickness or
opacity. This global optimisation is performed using
the sums Gtf and Htf computed in Eqs. 17 and 18,
where the subscript t indicates tilt series t. This is
done by finding a global value of α0 and values of κt

and nt ∈ S
2 for all tomograms that produce αtf which

minimise the following quantity and thus maximise the
overall likelihood in Eq. 4:

∑

t,f

(Htfαtf (α0, κt,nt)−Gtf )
2. (21)

To perform defocus estimation efficiently, we apply
the optimisations we originally developed for the es-
timation of higher-order aberrations in single-particle
analysis [29]. It allows us to determine a collective off-
set to γ for a large set of particles that all have different
values of γ. Specifically, it allows the change to the log-
likelihood arising from changing the value of γ at any
Fourier pixel to be expressed as a pair of 2D images,
independently of the number of particles. Therefore,
each pixel of each particle only needs to be considered
once. After that, the log-likelihood can be evaluated
by iterating over the pixels of a single image.
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In single-particle analysis, this approach is used to
estimate the higher-order aberrations that are shared
among all the particles in a data set. In tomography,
we also use this approach to condense the information
from all the particles in a tilt image (all of which ex-
hibit slightly different defoci), into two such images,
and to then determine the optimal change to γ very
efficiently using a nonlinear algorithm.

The two condensed images R and t̂ that we com-
pute are the same as the ones in single-particle analysis,
except for the inclusion of the noise power σ2. The def-
initions are repeated here for the sake of completeness.
Note that each pixel j of R contains a real symmetrical
2× 2 matrix and each pixel of t̂ a C

2 vector:

Rfj =
∑

p

1

σ2
j

|Ṽ
(p)
fj |2dpfjd

⊺

pfj (22)

t̂fj = −R−1
fj

∑

p

1

σ2
j

Re(X†
pfjṼ

(p)
fj )dpfj, (23)

where dpfj ∈ R
2 describes the point on the unit circle

corresponding to the initial phase angle γ(0), which is
given by the initial CTF parameters:

dpfj =

[
cos(γ

(0)
pf (j))

sin(γ
(0)
pf (j))

]
. (24)

The predicted 2D images Ṽ
(p)
f contain the effect of the

initial CTFs, except for the symmetrical aberration:

Ṽ
(p)
fj = −αfτf (j) exp(iρf (j))V

(p)
fj . (25)

The vector-valued condensed image t̂f describes the
most likely phase shift γ for each pixel j, expressed as
a point on a circle, while the matrix-valued one, Rf ,
describes the anisotropic weight of that information.
With these two condensed images computed for a given
tilt image f , the change to the likelihood defined in Eq.
4 resulting from the change to the phase delay γ at any
pixel can be expressed as a quadratic form. Therefore,
we look for a change δD to the astigmatic-defocus ma-
trices Dpf which produces phase delays that minimise
that quadratic form:

Cf =
∑

j

e
⊺

j (δD)Rjej(δD), (26)

where the per-pixel error ej(δD) is given by the devia-

tion from the optimal phase shift t̂j:

ej(δD) =

[
cos(δγ)− Re(t̂j)

sin(δγ)− Im(t̂j)

]
(27)

δγ = j⊺δDj (28)

As an alternative to fitting D independently for each
tilt image, our program also allows the user to apply
an L2 regulariser to the δDf of the different tilt im-
ages in the same series. In that case, the sum in Eq.
26 runs over all the pixels j of all the frames f . This
helps to stabilise the CTFs of the higher tilts, but it

risks impairing the estimates of the CTFs of the more
important lower tilts. Formally, this is done by min-
imising the following cost:

Cglob =
∑

f,j

e
⊺

fj(Df )Rfjefj(Df ) + λ
∑

f

|Df − D̂|2,

(29)
Since the early frames carry more information than
the later ones, their values in R are typically signifi-
cantly greater. Therefore, using this formulation, they
automatically assume a greater weight in the estima-
tion. The optimal weight for the regulariser itself, λ,
depends on the specific hardware setup and cannot be
measured from the data, however.

Geometric Refinement

Analogously to Bayesian Polishing, the log likelihood
of a particle being observed at a position s is given by
twice its cross correlation with the predicted image:

log(P (X|s)) = 2CC(s) (30)

CC = IFT(wXV (p)†) (31)

wj =
1

σ2
j

. (32)

To keep the problem differentiable, the cross correla-
tion CC is always accessed using cubic interpolation.
After the inverse Fourier transformation, each such
cross-correlation table is cropped to a smaller size to
make storing many such tables feasible, and the mem-
ory throughput efficient. The size of the tables can be
controlled by the user, and should be set to the maxi-
mal positional error expected in the data set.

The geometrical model that is optimised this way
projects points s ∈ R

3 in the tomogram to 2D positions
pf ∈ R

2 in each tilt image:

pf = W (lf ) (33)

lf = Jf

[
s

1

]
. (34)

The initial linear projection lf is obtained by multi-
plying s with a 2 × 4 matrix Jf , and then optionally
shifted by the non-linear image distortion W . The cost
Calign that is being minimised consists of the sum over
all (negative) cross-correlation values of all particles in
all images plus all regularisers for all regularised pa-
rameters:

Calign = −
∑

p,f

CC(pf − p
(0)
f ) +R (35)

Although our framework supports arbitrary projec-
tion matrices Jf , our optimisation algorithm only looks
for orthogonal rotations to the initial projection ma-
trix. This is achieved by parametrising that rotation
using Tait-Bryan angles, not Euler angles. The disad-
vantage of Euler angles is that they are gimbal locked
in the initial configuration where all three angles are
zero, i.e. the first and third angle refer to the same
axis. The rigid alignment of the tilt image is never reg-
ularised, because we do not assume to have any prior
information on it.
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The distortion field W can take different forms. We
have implemented models that express the distortion
using the Fourier basis, a cubic spline basis and an
affine linear one. The intended purpose of these defor-
mations is to model distortions of the image that arise
at the image forming lenses at the bottom of the op-
tical system. An imperfect calibration of these lenses
is likely to go unnoticed as long as the microscope is
only used for single-particle analysis, because the same
particle is never observed at starkly different positions
during the collection of a single-particle movie. In to-
mography, a given particle may appear at any image
position in any tilt image, so arbitrary deformations to
the 2D image become relevant. We expect these defor-
mations to be stable over time, so the intended purpose
of the deformation field W is to model only one such
deformation per tilt series. Optionally, we also allow
the user to instead model a different deformation for
each tilt image, but we have not encountered any data
sets where this has produced an improvement. The
deformation fields are optionally regularised by penal-
ising the squared coefficients of the respective model.
This limits the extent of deformation, and it forces the
system to explain changes in position through particle
motion, rather than image deformations.

The quantity that we do expect to change during
the collection of the tilt series is instead the 3D position
of the particle, sf . Analogously to Bayesian Polishing,
we model this change as motion over time. The posi-
tion in image f is given by the sum over its per-frame
velocities vf ∈ R

3 up to that point. Note that the ve-
locity vector vf refers to the motion between images f
and f + 1:

sf = s0 +

f ′<f∑

f ′=0

vf . (36)

It is important to note that the tilt images are implic-
itly assumed to be ordered chronologically. In practice,
this is usually not given, so the images are reordered
by the program based on the cumulative radiation dose
of each image.

As in Bayesian Polishing, the motion vectors them-
selves are expressed in a collective coordinate sytem for
all the particles. This allows the spatial smoothness of
a hypothetical motion field to be evaluated and used
as a prior. For a more detailed derivation, we refer
to the paper on Bayesian Polishing for single-particle
analysis [28]. The formal details will be given in the
following for the sake of completeness and to highlight
differences to the original formulation.

The collective coordinate system for particle mo-
tion is obtained through a low-rank approximation of
a Gaussian Process. This is done by constructing and
then diagonalising the P × P covariance matrix S for
a set of initial particle positions (where P is the num-
ber of particles). The entries of S contain the value
of the following square-exponential covariance function
for each pair of particles p and q:

Sp,q = σ2
V exp(−|sp − sq|

2/σD). (37)

Optionally, the user can instead also use the original
formulation without the square inside the exponential:

S′
p,q = σ2

V exp(−|sp − sq|/σD). (38)

The former option forces particles in immediate prox-
imity to move more similarly, but it allows for a greater
discrepancy at greater distances. Both the single-
particle and the tomography implementations allow
the user to choose either function, but the default has
changed from the latter to the former in tomography.
This choice was motivated by both empirical observa-
tions and the fact that the square-exponential kernel
produces fewer meaningful deformation components,
which speeds up the optimisation for tomograms with
very large numbers of particles.

We perform a singular-value decomposition of the
covariance matrix S,

S = UΛW ⊺, (39)

which allows us to construct the coordinate system as
follows:

bi =
√

λiwi, (40)

where λi ∈ R is the ith singular value and wi ∈ R
P

the corresponding singular vector. Basis vectors with
very small λi are discarded here to speed up the op-
timisation. Let P ′ represent the number of remaining
basis vectors. In this coordinate system, the set of all
particle velocities in a tilt image Vf ∈ (R3)P can be ex-
pressed as Vf = BQf , where Qf is a P ′ × 3 coefficient
matrix that encodes the velocity in three spatial dimen-
sions. Note that the same basis B is shared between
all three dimensions and all frames. In this coordinate
system, the negative log-likelihood of a configuration
of particle velocities is given by the Frobenius norm of
the coefficient vector, ||Qf ||, i.e. the sum of the squares
of its entries. Therefore, the motion regulariser takes
a very simple form:

Rmotion =
∑

f

||Qf ||. (41)

The acceleration regulariser that would penalise
changes in velocity from one frame to the next in single-
particle analysis has been omitted from tomography.
This is because, unlike a single-particle movie, the tilt
images are not collected in one continuous exposure.
Since they are being exposed individually, there is no
reason to assume that the particle velocities will be
continuous between them. Two further differences to
the original Bayesian Polishing are hidden in the nota-
tion: the covariance is now based on the 3D distances
between the particles, and the coefficient matrix Q con-
tains three columns instead of two.

As in the original Bayesian Polishing approach, the
complete alignment of the tilt series is performed by
finding parameters that minimise Calign from Eq. 35
using L-BFGS [13]. The set of parameters that are
being optimised always includes the three Tait-Bryan
angles for each tilt image and the set of initial particle
positions. The latter are essential, because all the in-
formation we have about their 3D positions is derived
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from the tilt images themselves, so changing the align-
ment requires the particles to be able to shift to more
likely positions. Estimating the image deformations
and particle motion is optional. If they are being es-
timated, then a set of deformation coefficients is fitted
either to each tilt image or to each tilt series, while a set
of motion coefficients is fitted to each image transition.

In addition to this local, L-BFGS based refinement,
we also offer two methods to align only the 2D shifts
of all tilt images globally. This means that instead of
trying to obtain the optimal alignment through small
changes to the initial one, we instead look for the best
possible image shift overall, keeping all other param-
eters constant. This is helpful when individual tilt
images are so badly aligned that a local optimisation
cannot converge to the globally optimal position. Note
that the initially assumed angles are rarely as incorrect
as the image shifts, since the angles can be controlled
more effectively through the experimental setup.

There are two variants to this method. If the
sample contains few particles per tomogram, then the
best results are obtained by predicting an entire mi-
crograph and computing its cross correlation with the
original one. The maximum value in that large cross-
correlation image then indicates the optimal image
shift. This approach can in theory deal with arbitrarily
large misalignments. If the sample is very dense, how-
ever, then this whole-micrograph approach can fail. In
that case, better results are obtained by instead adding
up the small, per-particle cross correlation images de-
fined in Eq. 31, and finding the maximum in that sum.
This latter approach can only correct for misalignments
smaller than half the box size of the particle, and it of-
ten produces inferior results on samples with few par-
ticles per tomogram.
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a b c

Figure 1: Subtomogram averaging of the HIV immature capsid. (a) FSC for resolution estimation
of iteratively improved reconstructions using the new RELION-4.0 workflow. (b) Representative region of
reconstructed density in the final map. (c) The same density as in (b), together with the atomic model.

Figure 2: Subtomogram averaging of the C. crescentus S-layer from cell stalks. (a) FSC for
resolution estimation of iteratively improved reconstructions using the new RELION-4.0 workflow, tested on
the S-layer inner domain. (b) Densities for the previously identified LPS (cyan and orange) and Ca2+ ions
(green) in prior cryo-EM single particle analyses are resolved. (c,d) The final map shows two densities for
bound LPS O-antigen chains. Panel (c) shows only the S-layer protein as blue ribbon and (d) shows LPS
O-antigen as orange and cyan sugars corresponding to the N-acetyl-perosamine and mannose moeities
respectively.
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