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Summary. A surrogate marker (S) is a variable that can be measured earlier and often more easily than the true endpoint
(T) in a clinical trial. Most previous research has been devoted to developing surrogacy measures to quantify how well S
can replace T or examining the use of S in predicting the effect of a treatment (Z). However, the research often requires one
to fit models for the distribution of T given S and Z. It is well known that such models do not have causal interpretations
because the models condition on a postrandomization variable S. In this article, we directly model the relationship among T,
S, and Z using a potential outcomes framework introduced by Frangakis and Rubin (2002, Biometrics 58, 21–29). We propose
a Bayesian estimation method to evaluate the causal probabilities associated with the cross-classification of the potential
outcomes of S and T when S and T are both binary. We use a log-linear model to directly model the association between
the potential outcomes of S and T through the odds ratios. The quantities derived from this approach always have causal
interpretations. However, this causal model is not identifiable from the data without additional assumptions. To reduce the
nonidentifiability problem and increase the precision of statistical inferences, we assume monotonicity and incorporate prior
belief that is plausible in the surrogate context by using prior distributions. We also explore the relationship among the
surrogacy measures based on traditional models and this counterfactual model. The method is applied to the data from a
glaucoma treatment study.
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1. Introduction
A good surrogate marker S usually has a strong association
with the true endpoint T. When T is rare, late-occurring, or
costly to obtain, one could use an effective surrogate marker
to reliably extract information on the effect of the treatment
(Z) on T before T is completely observed. While a typical
surrogate marker can be a laboratory measurement and used
as a substitute for a clinical endpoint such as CD4 counts
for HIV infection and prostate-specific antigen for prostate
cancer, an earlier laboratory measurement has also been con-
sidered as a surrogate marker for a later measurement. By
facilitating the early treatment prediction on the later mea-
surement, the earlier measurement can have enormous poten-
tial benefits in reducing trial duration and size, and lowering
the trial expense. Some examples of using an earlier measure-
ment as a surrogate for a later one include the interim height
for adult height on girls with Turner Syndrome by Venkatra-
man and Begg (1999) and the earlier vision test result for
the later result in a study on patients with age-related mus-
cular degeneration by Buyse and Molenberghs (1998). In the
data example to which we will apply our method, we con-
sider the intraocular pressure (IOP) at the 12th month as S
and the IOP at the 96th month as T among the glaucoma
patients.

Prentice (1989) proposed a formal definition of perfect sur-
rogacy that requires that S fully captures the effect of the
treatment on T. To measure less than perfect surrogacy,
the proportion of the treatment effect explained by S was

proposed by Freedman, Graubard, and Schatzkin (1992) and
further extended by Wang and Taylor (2002). However, these
measures often require one to utilize models for the distri-
bution of T given S and Z. They often do not have causal
interpretations because the models used condition on the
postrandomization variable S (Rosenbaum, 1984). Other sur-
rogacy measures include the trial-level and individual-level
correlations between S and T in a multiple-trial setting
(Buyse et al., 2000) and those based on entropy (Alonso and
Molenberghs, 2003).

To allow for a causal interpretation, we directly measure
the associations among S, T, and Z in a causal modeling
framework through the principal stratification approach in-
troduced by Frangakis and Rubin (2002) (FR). This frame-
work hypothesizes the setting wherein each individual has
two potential outcomes, corresponding to the two possible
treatment regimes (e.g., Z = 1 for treatment and Z = 0 for
placebo). Here, we use the terms causal, counterfactual, and
potential outcomes models exchangeably. When both S and T
are binary, the potential outcomes for S and T are denoted by
(S(Z) = 0, 1) and (T (Z) = 0, 1) with respect to Z. The ap-
proach by FR is to examine the distribution of the potential
outcomes of T with respect to Z within each principal stra-
tum, which is defined by each pair of possible realizations of
the potential outcomes of S. Since the principal strata can-
not be changed by treatment, they can be adjusted for as a
prerandomization variable. As such, the association measures
and the quantities derived have causal interpretations.
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However, there has been little work on estimation methods
using this framework. A review paper by Weir and Walley
(2006) advocates the need for further research. An exception
to this is the paper of Gilbert and Hudgens (2008), where
they proposed the use of causal effect (CE) predictiveness to
assess surrogacy and their context of an HIV vaccine trial al-
lowed them to assume that S(0) = 0. In this article, we relax
this assumption and propose a Bayesian estimation method to
evaluate the counterfactual probabilities associated with the
combinations of different sequences of potential outcomes of
S and T for each individual. We incorporate the prior knowl-
edge by imposing appropriate prior distributions and placing
some reasonable constraints on the model parameters that al-
lows one to reduce the nonidentifiability problem and possibly
increase the precision of the statistical inference.

In Section 2, we describe the glaucoma data example. In
Section 3, we introduce the causal model, assumptions, and
surrogacy measures. In Section 4, we propose a Bayesian es-
timation method. In Section 5, we apply the method to the
glaucoma data and examine the sensitivity of the priors. In
Section 6, we examine the properties of our estimates through
simulations. In Section 7, we explore the connections among
the surrogacy measures based on conventional models and the
counterfactual model. Finally, we provide a discussion.

2. Glaucoma Treatment Study
We will apply the method to the data from the Collaborative
Initial Glaucoma Treatment Study (CIGTS) (Musch et al.,
1999). Glaucoma is a group of diseases that cause vision loss
and is a leading cause for blindness. Elevated IOP in the eyes
is a major risk factor of glaucoma. The Advanced Glaucoma
Intervention Study (AGIS) demonstrated that when IOP re-
duction from baseline is substantial, progression of visual field
loss can be prevented (Musch et al., 2009). The CIGTS is a
randomized trial designed to compare the effects of surgery
(Z = 1) and medicine (Z = 0) on reducing IOP. Patients
were enrolled between 1993 and 1997. The IOP (recorded in
mmHg) level has been measured at different time points fol-
lowing randomization. Our purpose is to examine the property
of the IOP measurement at the 12th month as S and for the
IOP at the 96th month as T. Both S and T are defined as
1 if IOP is less than 18 mmHg and 0 otherwise. It is found
that eyes with IOP of less than 18 at every time point during
at least 6 years of follow-up essentially had no further visual
field loss (AGIS, 2000). There are 607 patients enrolled at the
baseline. Due to drop out, 345 are measured only at month
12 and 228 have IOP measured at both months 12 and 96.

3. The Setup
3.1 Potential Outcomes Model
For each subject i, we have two potential outcomes for each
of S i and T i , denoted by S i (Z i ) and T i (Z i ) with respect to
Z i . The possible realizations of (S i (0), S i (1)) are (0, 0), (0,
1), (1, 1), and (1, 0) and similarly for (T i (0), T i (1)). There
are 16 counterfactual probabilities that are associated with
the combinations of different sequences of potential outcomes
for S i and T i . These probabilities sum to 1 as the 16 cells are
the partitions of a population. Collectively, they completely
describe the causal associations among T i , S i , and Z i .

Table 1
Probabilities from the counterfactual model with monotonicity

assumption

(T(0), T(1))

(s(0), s(1)) (0, 0) (0, 1) (1, 1)

(0, 0) p11 p12 p13
(0, 1) p21 p22 p23
(1, 1) p31 p32 p33

3.2 Assumptions and Identifiability
Since only one of the potential outcomes is unobserved, the
counterfactual model is overparameterized. We make assump-
tions to assist in the identifiability. In addition to the two
standard assumptions, ignorability of treatment assignment
(Rubin, 1978) and stable unit treatment value assumption
(Rubin, 1980), we also assume monotonicity. Under this as-
sumption, a patient who received Z = 1 does not become
worse off than that patient if he or she received Z = 0. As-
sume S = 1 and T = 1 represent better outcomes than S =
0 and T = 0, respectively. The monotonicity assumption re-
quires that S i (1) � S i (0) and T i (1) � T i (0) for all i; hence,
we cannot observe either (S i (0) = 1, S i (1) = 0) or (T i (0) = 1,
T i (1) = 0). The number of free parameters is reduced from 15
to 8 (Table 1). Our data can support only six parameters, as
the probabilities (P (T = t, S = s |Z)) within each treatment
group add up to 1; hence, only some of the probabilities or
certain combinations are estimable.

3.3 Surrogacy Measures
In a traditional model framework, Freedman et al. (1992)
proposed the proportion of the treatment effect explained to
measure surrogacy in a model that assumes no interaction
between S and T. A measure free of this assumption was pro-
posed by Wang and Taylor (2002) as F WT = δγa/τ where
δ = P (S = 1 |Z = 1) − P (S = 1 |Z = 0), τ = P (T = 1 |Z = 1)
− P (T = 1 |Z = 0) and γa = P (T = 1 |Z = 0, S = 1) − P (T =
1 |Z = 0, S = 0). The quantities δ and τ denote the treatment
effects on S and T, respectively; and γa measures the strength
of the association between S and T. Given the effect on T, the
larger the effect on S or the stronger the association between
S and T, the higher F WT will be. Odds ratios (OR), ORg0 and
ORg1, measure the associations between S and T in the Z =
0, 1 groups, respectively.

In a counterfactual framework, the expressions of CEs are
based on the comparisons between two potential outcomes.
In a randomized trial, both CEs on S and T are directly es-
timable. FR proposed the concepts of associative and disso-
ciative effects. If the CE on T i is reflected on the change in
S i , the effect is associative. Conversely, the effect is dissocia-
tive. We describe the sequence of the values of the potential
outcomes (0, 0), (0, 1), and (1, 1) as “non-responsive,” “re-
sponsive,” and “always responsive.” Under the monotonicity
assumption, the overall CE on T (CET) is p+2 = p12 + p22 +
p32,, which measures the fraction of the patients whose T i ’s
are responsive to the treatment. The associative effect is p22

and the dissociative effect is p12 + p32, where p22 refers to the
fraction of the patients whose S i ’s and T i ’s are both respon-
sive to the treatment and the dissociative effect is the fraction
of the patients whose T i ’s are responsive to the treatment
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but whose S i ’s are not. To evaluate the degree of surrogacy,
Taylor, Wang, and Thiébaut (2005) defined the associative
proportion (AP) as p 22

p 12+p 22+p 32
. The dissociative proportion

(DP) is p 12+p 32
p 12+p 22+p 32

. Two other measures are also quantities of
interest: surrogate associative proportion (SAP) = p 22

p 21+p 22+p 23

and surrogate dissociative proportion (SDP) = p 12+p 32
p 1++p 3+

, where

pj+ =
∑3

k=1 pjk , j = 1, 3.
Prentice (1989) defined perfect surrogacy in a traditional

model setup that we refer to as perfect statistical surrogacy.
FR suggested a definition for perfect principal surrogacy that
requires that the CE on T may only exist when that on S
exists; i.e., p12 = p32 = 0. When S and T are binary, we argue
that with more restrictions, p21 = p23 = 0, it ensures that for
every patient, if S i is responsive, T i is also responsive; and
vice versa. Based on this context, we suggest a new measure,
common associative proportion (CAP) = p 22

p 12+p 21+p 22+p 23+p 32
, to

assess the degree of principal surrogacy. When p12 = p21 =
p23 = p32 = 0, S satisfies perfect principal surrogacy and we
have CAP = 1; when p22 = 0, for any individual, no CE on
T i is captured by that on S i and we have CAP = 0. When
CAP = 1, we have SAP = 1, AP = 1, SDP = 0, and DP = 0.
The measure CAP is usually smaller than AP and SAP. Unlike
F WT , CAP, AP, SAP, SDP, and DP always fall in the range
[0, 1].

4. The Methods
4.1 Observed Data, Complete Data, and Likelihood
Let rz denote the number of patients in the Z = z group (z =
0, 1) and r = r0 + r1. Let rzst denote the number of patients
for each combination of Z, S, and T. The observed-data likeli-
hood function can be expressed in terms of the counterfactual
probabilities as follows:

Lobs = (p11 + p12 + p21 + p22)r 000 (p13 + p23)r 001 (p31 + p32)r 010pr 011
33

pr 100
11 (p12 + p13)r 101 (p21 + p31)r 110 (p22 + p23 + p32 + p33)r 111.

The complete data consists of all potential outcomes. Let
njk denote the cell count corresponding to the counterfactual
probability in the cell (j, k) for the jth row and the kth column
of Table 1 for all patients and nz

jk for the treatment group z
where j, k = 1, 2, 3. The complete data likelihood is

Lcom = p
n 0

11+n 1
11

11 p
n 0

12+n 1
12

12 p
n 0

13+n 1
13

13 p
n 0

21+n 1
21

21

× p
n 0

22+n 1
22

22 p
n 0

23+n 1
23

23 p
n 0

31+n 1
31

31 p
n 0

32+n 1
32

32 p
n 0

33+n 1
33

33

= pn 11
11 pn 12

12 pn 13
13 pn 21

21 pn 22
22 pn 23

23 pn 31
31 pn 32

32 pn 33
33 .

There is a one-to-one or many-to-one correspondence between
njk ’s and rzst ’s.

4.2 The Model
Let S∗ = 1, 2, 3 denote the ordered categories of (S(0), S(1)):
(0, 0), (0, 1), and (1, 1) and T ∗ = 1, 2, 3 denote the ordered
categories of (T (0), T (1)). For convenience, we reparametrize
the pjk ’s and use a log-linear model for nz

jk . For simplicity,
we assume equal allocation, i.e., E(nz

jk ) = μjk . The model is
specified as

logμjk = λ + λjS + λkT + λjk , (1)

where λjS and λkT denote the row and column effects, respec-
tively and λjk denote their interaction. For identifiability of

the log-linear model, we use the constraints (λ2S = λ2T =
λj2 = λ2k = 0) which lead to nice and simple expressions for
the following log odds ratios in the four 2 × 2 subtables in
the four corners of Table 1:

log(OR1) = log ((μ11μ22)/(μ12μ21)) = λ11,

log(OR2) = log ((μ12μ23)/(μ13μ22)) = −λ13,

log(OR3) = log ((μ21μ32)/(μ22μ31)) = −λ31,

log(OR4) = log ((μ22μ33)/(μ23μ32)) = λ33.

The parametrization allows us to exploit the associations be-
tween the ordered variables S∗ and T∗. A positive association
between them implies that λ11 and λ33 are positive and λ13

and λ31 are negative. Conditional on the total counts, we can
express the counterfactual probabilities using the parameters
in (1) as:

pjk =
exp(λjS + λkT + λjk )∑

j

∑
k

exp(λjS + λkT + λjk )
.

(2)

To estimate the parameters, we adopt a Bayesian approach.
We treat the unobserved potential outcomes as missing data
and apply imputation techniques.

4.3 Prior Specifications
In clinical trials, the selection of the variable to use as S will
be based on prior scientific knowledge. The surrogate marker
S is often closely related to T, possibly because the marker is
in the causal pathway leading to T. Hence, we assume (S i (0),
S i (1)) is more likely to agree with (T i (0), T i (1)) than not;
and S∗ and T∗ are ordered. That is, when S is nonresponsive
(responsive), T is also more likely to be nonresponsive (re-
sponsive). Similarly it is unlikely that a person will be nonre-
sponsive in S i and always responsive in T i .

The parameters, λ1S , λ3S , λ1T , and λ3T , are identifiable but
the others are less so. We have chosen N (u, v2) as the prior
distributions for λ1S , λ3S , λ1T , λ3T , λ11, λ13, λ31, and λ33. The
prior for exp(λ) is G (a, b) where G denotes the gamma distri-
bution and G(a, b) is parameterized such that the expected
value is ab and the variance is ab2. We choose noninforma-
tive values of a = 0.001 and b = 1000 and let v2 = 9/4. To
incorporate our prior belief and encourage but not force the
ordering restriction, we choose u = 0.7 for λ11 and λ33, and
u = −0.7 for λ13 and λ31, which would suggest moderate pos-
itive associations between the potential outcomes of S and
T. When the ordering restriction and positive association are
not considered, we let u = 0. The characteristics of our prior
choices on the log-linear model parameters are similar to what
Garrett and Zeger (2000) discovered in their work for the
logistic regression. The distributions of the probabilities in-
duced by these priors are relatively flat, not overly skewed,
and appropriate for our study setting with wide 95% per-
centile ranges. On the other hand, if vague priors such as
normal priors with zero means and very large variances are
placed on the log-linear model parameters, they would in-
duce priors on the probabilities whose distributions have point
masses concentrated at either zeros or ones (King and Brooks,
2001). When there are nonidentifiable quantities, vague pri-
ors can give the posterior distributions undesirable properties
and push them toward being overly skewed and nonnormal as
observed by Green and Park (2003).
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4.4 Estimation Procedure
We use data augmentation (Little and Rubin, 2002) to es-
timate the parameters. Let robs = {r000, r001, r010, r011, r100,
r101, r110, r111} and θ = (λ, λjS , λkT , λjk ). The complete data
cell counts are denoted by ncom = {n11, n12, n13, n21, n22, n23,
n31, n32, n33}. To implement this procedure, we iterate the
following I-step and P-step.

I-step: This step consists of distributing the observed
counts into the cells in Table 1. Given θl−1 and robs , we impute
n0l

11, n0l
12, n0l

21, n0l
22, n1l

12, n0l
13, n1l

21, n1l
22, n1l

23, n1l
32, n1l

33, and n0l
31 where

θl−1 denotes all the parameter estimates from the (l − 1)th
iteration, n0l

11 is the draw of the count that contributes to n1
11

from r000 from the lth iteration, n1l
12 is the draw of the count

that contributes to n1
12 from r101 from the lth iteration, and

so on. Let ω l−1
1 = pl−1

11 + pl−1
12 + pl−1

21 + pl−1
22 and ω l−1

2 = pl−1
22 +

pl−1
23 + pl−1

32 + pl−1
33 .

1. (n0l
11, n

0l
12, n

0l
21, n

0l
22) ∼ Multi(r000,

p l−1
11

ω l−1
1

,
p l−1

12
ω l−1

1
,

p l−1
21

ω l−1
1

,
p l−1

22
ω l−1

1
)

2. n1l
12 ∼ Bin(r101,

p l−1
12

p l−1
12 +p l−1

13
)

3. n0l
13 ∼ Bin(r001,

p l−1
13

p l−1
13 +p l−1

23
)

4. n1l
21 ∼ Bin(r110,

p l−1
21

p l−1
21 +p l−1

31
)

5. (n1l
22, n

1l
23, n

1l
32, n

1l
33) ∼ Multi(r111,

p l−1
22

ω l−1
2

,
p l−1

23
ω l−1

2
,

p l−1
32

ω l−1
2

,
p l−1

33
ω l−1

2
)

6. n0l
31 ∼ Bin(r010,

p l−1
31

p l−1
31 +p l−1

32
)

7. nl
11 = n0l

11 + r100; nl
12 = n0l

12 + n1l
12;

nl
13 = n0l

13 + r101 − n1l
12;

8. nl
21 = n0l

21 + n1l
21; nl

22 = n0l
22 + n1l

22;

nl
23 = r001 − n0l

13 + n1l
23;

9. nl
31 = n0l

31 + r110 − n1l
21; nl

32 = r010 − n0l
31 + n1l

32;

nl
33 = r011 + n1l

33

P-step: Generate θl from the posterior distribution,
p(θl |nl

com), where nl
com includes the counts of the complete

data obtained in the I-step from the lth iteration.

exp(λl ) | · ∼ G

⎛
⎜⎜⎜⎜⎝

nl
1+ + nl

2+ + nl
3+ + a,

1
3∑

j=1

3∑
k=1

(
2exp

(
λl

jS + λl
kT + λl

j k

))
+

1
b

⎞
⎟⎟⎟⎟⎠

,

λl
1S | · ∝ V 1S × exp

(
−2exp

(
λl + λl

1S + λl
3T + λl

13

))

× exp
(
−

(
λl

1S − u
)2/

(2v2)
)
,

λl
1T | · ∝ V 1T × exp

(
−2exp

(
λl + λl

3S + λl
1T + λl

31

))

× exp
(
−

(
λl

1T − u
)2/

(2v2)
)
,

λl
3S | · ∝ V 3S × exp

(
−2exp

(
λl + λl

3S + λl
3T + λl

33

))

× exp
(
−

(
λl

3S − u
)2/

(2v2)
)

λl
3T | · ∝ V 3T × exp

(
−2exp

(
λl + λl

3S + λl
3T + λl

33

))

× exp
(
−

(
λl

3T − u
)2/

(2v2)
)
,

λl
11 | · ∝ exp

(
−2exp

(
λl + λl

1S + λl
1T + λl

11

))

×
(
exp

(
λl

11

))n l
11 exp

(
−

(
λl

11 − u
)2/

(2v2)
)
,

λl
13 | · ∝ exp

(
−2exp

(
λl + λl

1S + λl
3T + λl

13

))

×
(
exp

(
λl

13

))n l
13 exp

(
−

(
λl

13 − u
)2/

(2v2)
)
,

λl
31 | · ∝ exp

(
−2exp

(
λl + λl

3S + λl
1T + λl

31

))

×
(
exp

(
λl

31

))n l
31 exp

(
−

(
λl

31 − u
)2/

(2v2)
)
,

λl
33 | · ∝ exp

(
−2exp

(
λl + λl

3S + λl
3T + λl

33

))

×
(
exp

(
λl

33

))n l
33 exp

(
−

(
λl

33 − u
)2/

(2v2)
)
,

pl
j k =

exp
(
λl

jS + λl
kT + λl

j k

)
∑

j

∑
k

exp
(
λl

jS + λl
kT + λl

j k

) ,

where

V 1S = exp
(
−2exp

(
λl + λl

1S + λl
1T + λl

11

))

×
(
exp

(
λl

1S

))n l
1+exp

(
−2exp

(
λl + λl

1S

))
,

V 1T = exp
(
−2exp

(
λl + λl

1S + λl
1T + λl

11

))

×
(
exp

(
λl

1T

))n l
+1exp

(
−2exp

(
λl + λl

1T

))
,

V 3S = exp
(
−2exp

(
λl + λl

3S + λl
1T + λl

31

))

×
(
exp

(
λl

3S

))n l
3+exp

(
−2exp

(
λl + λl

3S

))
,

V 3T = exp
(
−2exp

(
λl + λl

1S + λl
3T + λl

13

))

×
(
exp

(
λl

3T

))n l
+3exp

(
−2exp

(
λl + λl

3T

))
,

“·” represents all the rest of the parameters, nl
j+ =∑3

k=1 nl
j k , nl

+k =
∑3

j=1 nl
j k , and so on. For exp(λ), the con-

ditional draws can be made directly from the gamma distri-
bution using the Gibbs sampler. For λ1S , λ3S , λ1T , λ3T , λ11,
λ13, λ31, and λ33, we use the Metropolis–Hastings algorithm
and the proposal distribution is normal with mean as the cur-
rent value and variance adjusted to give an acceptance rate
of approximately 40%. The mixing behavior of the MCMC
sampler for a nonidentifiable model can be rather slow and
poor (Gelfand and Sahu, 1999). In our case the Markov chain
does not move quickly and the sample autocorrelation is high.
For the CIGTS study, a burn-in period of 200,000 iterations
is needed for the MCMC samples to stabilize. After burn-in,
we sample every 100th MCMC iteration from the posterior
distribution to reduce the autocorrelation and obtain sam-
ples with a good mixing property. The sensitivity toward the
initial values is evaluated by comparing parameter estimates
from five chains, on which we obtained the Gelman–Rubin
Statistic (R̂) (Gelman et al., 2004). Generally, R̂ < 1.2 is con-
sidered sufficient. For all estimates in the CIGTS data, we
have min R̂ ≈ 0.9999 and max R̂ ≈ 1.0007.
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Table 2
Bayesian estimates for the counterfactual model for glaucoma
data. PSD = posterior standard deviation; AP = associative
proportion; DP = dissociative proportion; SAP = surrogate

associative proportion; SDP = surrogate dissociative
proportion; CAP = common associative proportion; CET =
causal effect on T. Prior specifications: a = 0.001, b = 1000,

u = 0.7, and v2 = 9/4.

Parameter Mean Median PSD 95% CI

p11 0.101 0.099 0.028 (0.054, 0.160)
p12 0.033 0.030 0.019 (0.006, 0.077)
p13 0.051 0.048 0.028 (0.007, 0.112)
p21 0.051 0.048 0.024 (0.012, 0.101)
p22 0.047 0.044 0.024 (0.011, 0.101)
p23 0.170 0.170 0.042 (0.085, 0.252)
p31 0.048 0.045 0.026 (0.006, 0.100)
p32 0.063 0.061 0.030 (0.011, 0.128)
p33 0.437 0.437 0.043 (0.356, 0.524)
AP 0.328 0.321 0.108 (0.133, 0.550)
DP 0.672 0.679 0.108 (0.447, 0.866)
SAP 0.174 0.168 0.073 (0.051, 0.334)
SDP 0.132 0.130 0.051 (0.039, 0.240)
CAP 0.126 0.119 0.057 (0.041, 0.239)
CET 0.143 0.144 0.050 (0.048, 0.238)

5. Application to Glaucoma Data
5.1 The Results
We apply the estimation method to the Glaucoma data on
228 patients in the CIGTS for whom S, T, and Z are com-
pletely observed. The observed counts are: r000 = 28, r001 = 29,
r010 = 14, r011 = 55, r100 = 11, r101 = 8, r110 = 10, and r111 = 73.
In Table 2, we report the means, medians, and 95% credible
intervals (CI) from the posterior distributions of the coun-
terfactual probabilities and surrogacy measures. We choose
a = 0.001, b = 1000, u = 0.7, v2 = 9/4. The posterior means
and medians are similar. The estimated CET (p̂+2) has its
mean(95% CI) as 0.14(0.05,0.24). Without the counterfactual
model, we estimate CET directly from the observed data as
P̂ (T = 1 |Z = 1) − P̂ (T = 1 |Z = 0) = 0.13 with its 95% con-
fidence interval (0.014,0.25). The similarity between the two
CET estimates suggests the goodness of fit of the counter-
factual model and the slight difference may result from the
prior assumptions. The mean(95% CI) for AP is 0.328(0.133,
0.550). It shows that about one-third of the CE on T is re-
flected by that on S; however, the wide CI implies that AP
is quite variable. SAP is estimated as 0.174(0.051, 0.334) in-
dicating among the patients whose S i ’s are responsive to Z i ,
only about 17% of their T i ’s are also responsive. As expected,
CAP is smaller than either AP or SAP and estimated as
0.126(0.041, 0.239) showing that S is far from satisfying the
perfect principal surrogacy. In a conventional model setup, the
estimated proportion of treatment effect explained, F̂W T , has
the mean of 0.732 and median of 0.588 with its 95% bootstrap
confidence interval of (0.17, 2.51). The correlation coefficients
between S and T in the medicine and surgery groups are 0.304
and 0.441, respectively. The estimated OR and its 95% con-
fidence interval between S and T in the medicine group is
ORg0 = 3.79(1.73, 8.30) and that in the surgery group is

ORg1 = 10.04(3.26, 30.93). It indicates that the IOP at the
12th month is a good surrogate for that at the 96th month in a
conventional model setting, although the association between
the CE on S and that on T is small.

5.2 Sensitivity of Priors
In Figure 1, we evaluate identifiability by plotting the prior
and posterior distributions against each other (Garrett and
Zeger, 2000), where u = 0.7 and v2 = 9/4. Generally, the
more substantial the average overlap and the more similarity
between the prior and posterior is, the less identifiable the
parameter is likely to be. We find that p11, p33 and the CEs are
more identifiable than p13, p21, p31, and p32. The counterfactual
surrogacy measures are moderately identifiable. OR2 and OR3

appear to be least identifiable.
To further assess the extent of the impact of the priors on

the posterior distributions on the counterfactual probabilities
and surrogacy measures, we vary u of the prior N (u, v2) and
fix v2. Then, we vary v2 but fix u. The results are listed in the
Web Appendix. When we change u, we observe bigger changes
in the posterior means than the posterior standard deviations
(PSD). Relative to those when u = 0.7, with u = 0 or u =
1.4, the extent of the changes in the posterior means is less
than 6% for most of the probabilities and surrogacy measures
except for p31 and p13. When we change v2, we observe more
changes in PSDs than in the posterior means. Compared with
those when v2 = 9/4, with v2 = 1 or v2 = 4, the changes in
PSDs are generally less than 15%. Overall, the quantities of
interest are not overly sensitive to the prior specifications.

6. Simulation Study
We conduct a simulation study to examine the frequentist
properties of the estimates. We simulate 100 data sets under
the parameter specification: λ1S = 0.15, λ1T = −0.3, λ3S =
0.3, λ3T = −0.7, λ11 = 0.5, λ13 = −0.8, λ31 = −0.5, and
λ33 = 0.8. We vary u, v2, and λ: (u = true, v2 = 9/4), (u = 0,
v2 = 1/64), and λ = 2, 3.5, 7 where “true” refers to the true
parameter value and λ controls the sample size. The simula-
tion results from (u = true, v2 = 9/4, λ = 3.5) are listed in
Table 3 and the others are in the Web Appendix. The quan-
tity SD(Est) refers to the standard deviation of Bayesian es-
timates and PSD is the mean of PSDs. Both posterior means
and medians have very little bias. For the less identifiable pa-
rameters, SD(Est) is usually smaller than PSD . When the
5–95 percentile ranges of the priors include all the true val-
ues, we consistently observe over-coverage regardless of the
sample size. However, when the 5–95 percentile ranges of the
priors do not include the true values, we may observe ex-
treme under-coverage or over-coverage. As the sample size
increases, the performance typically becomes better as the
influence of the priors becomes smaller, but we do not usually
have nominal large-sample coverage rates. On the other hand,
regardless of priors, for the identifiable parameters, the cov-
erage rates usually approach the nominal levels as the sam-
ple size increases. These findings are different from the sit-
uations for the identifiable models where Bayesian CIs can
usually asymptotically match frequentist coverage; however,
they are consistent with the literature for nonidentifiable
models (Gustafson, 2005; McCandless, Gustafson and Levy,
2007).
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Figure 1. Prior and posterior distributions on selected quantities of interest. AP = associative proportion; DP = dissociative
proportion; SAP = surrogate associative proportion; SDP = surrogate dissociative proportion; CAP = common associative
proportion; CET = causal effect on T. Dashed lines for the prior distributions and solid lines for the posterior distributions.
This figure appears in color in the electronic version of this article.

7. Surrogacy Measures in the Counterfactual and
Conventional Models

7.1 Perfect Statistical Surrogacy and Perfect Principal
Surrogacy

The perfect statistical surrogacy requires that T and Z are
conditionally independent given S. In the causal framework,
when CAP = 1, S satisfies perfect principal surrogacy.
For S to be meaningful, we require that p22 > 0. When
CAP = 1, we have p12 = p21 = p23 = p32 = 0, and thus
P (T = 1 |S = 0, Z = 0) = p 13

p 11 + p 22 + p 13
, P (T = 1 |S = 0,

Z = 1) = p 13
p 11+p 13

, P (T = 1 |S = 1, Z = 0) = p 33
p 31+p 33

, and
P (T = 1 |S = 1, Z = 1) = p 33+p 22

p 31+p 33+p 22
. We consider two sce-

narios when CAP = 1. Scenario (1): when p13 = p31 = 0,
(S(0), S(1)) = (T (0), T (1)), S(Z) = T (Z); that is, S and
T are identical. In this trivial scenario, S satisfies both
perfect principal surrogacy and perfect statistical surrogacy.
Scenario (2): when p13 and p31 are nonzero, T and Z are not
conditionally independent given S; as such, S does not satisfy
perfect statistical surrogacy. However, this situation seems
less plausible. A marker tends to be chosen as S because
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Table 3
Bias, standard deviation (SD) of posterior estimates, mean of posterior standard deviations (PSD), and coverage rates from 100

simulations. Posterior estimates (Est) are either posterior medians or posterior means. PSD = posterior standard deviation;
AP = associative proportion; DP = dissociative proportion; SAP = surrogate associative proportion; SDP = surrogate

dissociative proportion; CAP = common associative proportion; CET = causal effect on T. Prior specifications: G(0.001, 1000)
for exp(λ) and N (true, 9/4) for all other parameters where “true” refers to the true parameter values. The parameter

specification: λ1S = 0.15, λ1T = −0.3, λ3S = 0.3, λ3T = −0.7, λ11 = 0.5, λ13 = −0.8, λ31 = −0.5, λ33 = 0.8 and λ = 3.5.
E(r) = 565.

Prior
Distributions Est: Median Est: Mean

95%
TRUE 2.5% 97.5% Bias SD Bias SD PSD Coverage

p11 0.166 0.001 0.815 0.003 0.022 0.003 0.022 0.022 95
p12 0.136 0.001 0.476 −0.001 0.021 −0.001 0.022 0.027 98
p13 0.030 0.000 0.520 −0.001 0.009 0.002 0.008 0.020 100
p21 0.087 0.002 0.235 −0.001 0.014 0.000 0.013 0.032 100
p22 0.117 0.002 0.309 −0.007 0.020 −0.005 0.020 0.033 100
p23 0.058 0.001 0.301 −0.003 0.012 −0.002 0.011 0.021 99
p31 0.071 0.000 0.618 −0.001 0.019 0.000 0.017 0.032 100
p32 0.158 0.002 0.495 −0.002 0.022 −0.002 0.021 0.035 100
p33 0.175 0.001 0.892 0.004 0.022 0.005 0.022 0.023 96
AP 0.285 0.024 0.711 −0.011 0.037 −0.008 0.036 0.074 100
DP 0.715 0.288 0.975 0.011 0.037 0.008 0.036 0.074 100
SAP 0.447 0.090 0.611 −0.011 0.041 −0.009 0.040 0.104 100
SDP 0.399 0.020 0.777 −0.006 0.042 −0.006 0.041 0.051 100
CAP 0.211 0.022 0.401 −0.010 0.024 −0.005 0.024 0.060 100
CET 0.412 0.025 0.711 −0.007 0.041 −0.007 0.041 0.038 95

there is a strong biological mechanistic evidence that it is
linked to T. A likely positive association between (S(0), S(1))
and (T (0), T (1)) implies that p31 and p13 are likely smaller
than other probabilities. Hence, p13 and p31 would be zeros
or close to zeros when p12 = p21 = p23 = p32 = 0. The fact
that perfect principal surrogacy precludes perfect statistical
surrogacy holds only in this implausible scenario.

7.2 Surrogacy Measures Under Two Hypothetical Examples
In a conventional model setup, under the monotonicity
assumption, we can express the elements of F WT using the
counterfactual probabilities as follows: δ = p21 + p22 + p23, τ =
p12 + p22 + p32 and γa = p 33

p 31+p 32+p 33
− p 13+p 23

p 11+p 12+p 21+p 22+p 13+p 23
.

Similarly, for the odds ratios, we have ORg 0 =
(p 11+p 12+p 21+p 22)p 33

(p 13+p 23)(p 31+p 32) and ORg 1 = p 11(p 22+p 23+p 32+p 33)
(p 12+p 13)(p 21+p 31) .

To better understand the surrogacy measures in both tra-
ditional and counterfactual model settings with respect to
the underlying causal associations, we calculate the surrogacy
measures in two hypothetical examples (Table 4). In Exam-
ple 1, when the CE on T is the same across three principal
strata, CAP, SAP, and AP are relatively small indicating a
small causal association between S and T; however, the large
values in FWT , ORg0, and ORg1 show that S is closely related
to T in a conventional model setup.

In Example 2, all surrogacy measures indicate a close re-
lationship between S and T in both traditional and counter-
factual model framework. In general, when p11 and p33 are
relatively large compared with the off-diagonal probabilities
in the same rows and columns, S is highly associated with T in
a traditional model setup. When p22 is relative large compared

Table 4
Two hypothetical numerical examples. AP = associative

proportion; DP = dissociative proportion; SAP = surrogate
associative proportion; SDP = surrogate dissociative

proportion; CAP = common associative proportion; CET =
causal effect on T. Example 1: AP = 1/3, SAP = 0.20,

DP = 2/3, SDP = 0.20, CAP = 0.14, F WT = 1.00, ORg0 =
16, ORg1 = 16; Example 2: AP = 0.77, SAP = 0.77, DP =
0.23, SDP = 0.10, CAP = 0.63, F WT = 0.80, ORg0 = 90,

ORg1 = 157.

Potential Outcomes (T(0), T(1))

(S(0), S(1)) (0, 0) (0, 1) (1, 1) Marginal

Example 1
(0, 0) 0.267 0.066 0.001 0.334
(0, 1) 0.133 0.066 0.133 0.332
(1, 1) 0.001 0.066 0.267 0.334

Example 2
(0, 0) 0.310 0.030 0.005 0.345
(0, 1) 0.030 0.240 0.040 0.310
(1, 1) 0.005 0.040 0.300 0.345

with the off-diagonal probabilities in the same row and col-
umn, S is closely associated with T in a counterfactual frame-
work. Although a thorough investigation of the critical values
and the variability of the counterfactual surrogacy measures
and their connections with FWT and ORs is beyond the scope
of this article, it would be very useful as future research.
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8. Discussion
This article examines the association between the effect of Z
on S and that on T, as if we had observed both outcomes
of S and T corresponding to two treatment options for every
patient. Different from those based on the traditional models,
the associations between (S(0), S(1)) and (T (0), T (1)) can
not be changed by the treatment assignment and always have
causal interpretations. The traditional models also ignore the
fact that the effect of Z on T may occur to the patients who
are inherently never-responsive or always-responsive in S re-
gardless of the treatment received, however, the counterfac-
tual model teases out the effect of Z on T in each subgroup of
subjects defined by their responsiveness in S to the treatment
received. The causal framework used here is similar in spirit
to that used in the compliance literature (Balke and Pearl,
1997; Imbens and Rubin, 1997) where the main interest is to
estimate the CE of a treatment for the compliers.

We use a log-linear model to directly model the association
between the potential outcomes of S and T through the odds
ratios of (S(0), S(1)) and (T (0), T (1)). We believe that there
is an ordering in the sequence of the potential outcomes of
(0, 0), (0, 1), and (1, 1). With our model setup, the scien-
tific assumptions can be conveniently incorporated through
the prior distributions for the odds ratios, for which there is
little information from the observed data. The proposed esti-
mation method can be readily extended to the settings when
T is partially missing or when there are multiple trials. Be-
sides the log-linear model, we also fit a multinomial model
with Dirichlet priors. Although it is easier computationally,
the model is less flexible and the impact of the priors on the
estimable quantities such as the treatment effect on T is much
larger than the log-linear model. Like the multinomial models
or logistic regressions for contingency tables, the probabilities
based on the log-linear model are required to be positive and
as such we cannot test whether S is a perfect principal sur-
rogate. Nonetheless, in practice, it is almost certain that no
surrogate exists that either satisfies perfect principal surro-
gacy or perfect statistical surrogacy.

We adopt the framework proposed by FR. Robins and
Greenland (1992) (RG) proposed another counterfactual
framework that allows one to manipulate S. It requires addi-
tional probabilities to describe the likelihood of how T changes
by changing S. This framework has been used by Chen, Geng,
and Jia (2007) and Taylor et al. (2005) to study the surro-
gacy consistency. RG defined direct and indirect effects where
the indirect effect is the part of the effect that Z affects T
by affecting S and direct effect is the part not through this
pathway. The relationships between the direct/indirect effect
proposed by RG and the associative/dissociative effect by FR
are explored in depth by VanderWeele (2008) and Joffe and
Greene (2009). While the elaboration of the relationships is
beyond the scope of this article, we know that if S is in the
causal pathway between Z and T , p22 is large. On the other
hand, a very high p22 only shows that the CE of Z on S is
highly associated with that on T but it does not necessarily
imply that Z affects T by affecting S.

One of the key assumptions is monotonicity that is useful
and necessary to reduce the number of parameters to have
a more identifiable counterfactual model. If this assumption
is correctly specified, we expect our estimates to be more ef-

ficient and less biased than those based on the conventional
model. However, this assumption requires that every single
patient would have done at least as well as that when she or
he receives Z = 1 relative to that when she or he receives
Z = 0. It is perhaps true for most of the patients but not
usually satisfied for all patients. For example, in the CIGTS
study, it is conceivable that some patients may be better if
they received medicine instead of surgery, even though the av-
erage effect of surgery is consistently better. Assessing the im-
pact of the violations of the monotonicity assumption would
be an important extension.

We assumed that missingness is ignorable, and it will be
useful to conduct sensitivity analysis to investigate this as-
sumption. It will also be useful to calculate the nonparametric
bounds free of the prior assumptions and quantify the ranges
of the counterfactual probabilities in our context (Balke and
Pearl, 1997). Extensions to other data types are possible.
Some work has been done by Gilbert and Hudgens (2008)
whose proposal of CE predictiveness surface as a surrogacy
measure can be applied to different types of outcomes and by
Gallop et al. (2009) who considered a normally distributed
outcome with a binary mediator that can be easily adapted
to the surrogacy setting. Nonetheless, the majority of the lit-
erature has focused on binary endpoints. We advocate the
need for research on more complex data structure, for exam-
ple, two failure-time endpoints in oncology, where the settings
are more common and can be more important.

9. Supplementary Materials
The Web Appendix referenced in Sections 5.2 and 6 is avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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