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1. INTRODUCTION 

The desire to acquire economically valuable information provides a powerful explanation 
for many empirically observed economic phenomena. Two examples which have been 
extensively studied by economists are investment in " human capital " through education 
and expenditures on research and development. In these examples, information is explicitly 
purchased. In economic contexts where individuals and firms learn from experience, the 
demand for information may be manifested in other ways. One such example, arises when 
new and untested products such as new drugs are introduced to the market. It is plausible 
to hypothesize that consumers confronted with new products experiment with them to 
gain information. The demand for experimental consumption might be expected to 
increase total demand for new products over what it otherwise would be. 

Firms which enter new and unfamiliar markets may also learn from experience. 
Indeed, firms facing unknown demand curves will often find it profitable to experiment with 
price in an effort to improve the information acquired through experience. The exact 
nature of the effect which firm experimentation has on observed prices and supplies would 
appear to be less predictable than the consumer response to new products, however. 

This paper analyses the phenomena of learning and experimentation in the context of 
a dynamic economic model which incorporates a Bayesian expectation-revision mechanism. 
In this model, the individual (or firm) responds to new information as it is received, but he 
is not passive about the information he obtains. Indeed, he recognizes that his future 
expectations, and therefore his future decisions, will depend on the information which is 
acquired by observing the consequences of his present actions. He is also aware that the 
quality of information acquired from experience may be affected by the specific course of 
action followed in the present. In this model, individuals find it profitable to modify their 
behaviour as a means of improving the information on which future decisions are based. 
In deciding exactly how much experimentation to engage in, individuals weigh the benefits 
from more informed future decisions against the costs incurred because present experi- 
mental actions differ from those which would be optimal if learning from experience did 
not occur. 

The model is first interpreted as a description of the situation faced by a consumer who 
buys, in addition to other goods, a drug of unknown reliability. If the consumer's health is 
affected by random factors as well as by the drug, his experience with the drug provides less 
than completely dependable, i.e. " noisy ", information about its reliability. In this model, 
the consumer's drug purchases reflect a desire to learn through experimentation. We 
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formulate a dynamic model to analyse the effects of experimentation on the amount of the 
drug consumed. The consumer is assumed to maximize the present value of the expected 
utility derived from consumption of the drug and other goods. The formal mechanism 
by which the information acquired through experimentation is assimilated is Bayes' Rule. 

It is shown that, when drug consumption affects health through a linear regression 
equation, the possibility of learning from experience induces experimentation which in 
turn causes the consumer to buy more of the drug than he would if no learning took place, 
other things being equal. This result generalizes to a broader class of probability distri- 
butions a result obtained earlier by Prescott [13]. 

The final section of the paper reinterprets the model and our conclusions to analyse the 
effects of experimentation by monopolists who are attempting to learn their demand curve. 

The idea that learning from experience affects economic behaviour has been investi- 
gated by Arrow [1]. Arrow assumes that over time firms accumulate experience which 
increases productivity. His paper is not, however, founded on a formal statistical model of 
the information generating process which results in " learning by doing". The present 
paper can be interpreted as providing a model of this process. 

This paper can also be viewed as a complement to the papers of Kihlstrom [9], [10] 
which study the demand for information about product quality on the part of Bayesian 
consumers. In Kihlstrom's work information is actually purchased in markets which exist 
for the explicit purpose of selling information; consumers do not experiment to learn about 
product quality. In the model studied here, information demand arises in an implicit form 
and it is satisfied by the consumer himself when he experiments with his consumption 
choices. 

2. THE MODEL 

Consider the idealized problem of a consumer who receives a stationary income over time 
and uses it in each period to buy two goods, one of which is a drug of unknown quality. 
The other good can be interpreted as a composite good which provides fixed proportions 
of all other commodities. 

We let 

Yt = drug consumption in period t, 
and 

xt = consumption of the other good in period t. 

The consumer's periodic income is I>0. Prices are normalized so that the price per 
unit of the composite good is 1. The per unit price of the drug is p-> 0. 

The fact that drug quality is unknown is assumed to imply that the consumer views 
the effect of drug consumption on health as a random, but non-cumulative relationship. 
Specifically, it is assumed that health in period t can be measured by a variable zt which is 
related to drug consumption in period t by the linear equation 

2t = a + lRYt +9t 

where {et} is a sequence of intertemporarily independent and unobserved normal random 
variables each, with mean zero, and variance one. (In this equation, as in the remainder 
of the paper, random variables are denoted by a ".. ".) This specification implies that 
random variations in health are unrelated to drug intake and occur even if the consumer 
abstains from drug use. Without drug use, health is measured by cx + t which is a normal 
random variable with mean cx and variance 1. It is plausible to assume that the consumer 
knows the distribution of health when no drugs are used. Thus he is assumed to know his 
" average health" parameter a and the variance of st which, for convenience, we assume 
to be 1. 

The parameter f, is the contribution of each unit of drug consumption to health. This 
parameter measures drug quality and is unknown. The consumer has beliefs about the 
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true value of fi which change from period to period as experience with the drug accumulates. 
These beliefs are assumed to be represented by a probability distribution, which is revised 
in each period as information is received. We assume that there are n numbers which 
could possibly be the true value of fi. That is, there exists a set {f1, fl2, ..., fl&} of possible fi 
values each of which has positive probability in the " prior " probability distribution that 
represents the consumer's initial beliefs. This assumption is made strictly for expositional 
convenience. The results obtained hold for a more general class of prior measures which 
are concentrated on a compact set. We will return to this point several times in the 
exposition which follows. 

It is hypothesized that the consumer behaves as though he were a Bayesian statistician 
who uses Bayes' Rule to revise his expectations when new information is received. If the 
consumer buys yi units of the drug in period i and observes a health level zi in that period, 
then his experience in period i is summarized by the vector wi = (zr, yi). If we let ft be 
the probability that fl = f3i given the information available at time t, and let 

ftJ2 .. (f fnDi 

then ft is the posterior mass function which represents the consumer's beliefs in period t, 
before the random vector w-t is observed. The posteriorft reflects his previous experience 
as well as the a-priori mass functionf0 which describes his initial beliefs about drug quality. 
We let gt be the function (implied by Bayes' Rule) which relatesft to experience and tof?. 
The experience acquired up to and including period t is summarized by the vector 
wt = (w0, wl, ..., wt). Let zt _ (zo, zl, ..., zt) and yt =(Yo'Yyl ..., Yt). We will some- 
times write wt = (zt, yt). The set of possible wt vectors is denoted by Wt. Thus we can 
express Bayes' Rule asft = gt(f0; wt 1). Then 

ft g1(ft-l.; wt1). 

In making his drug and goods purchase decision in each period the consumer is assumed 
to maximize expected utility. In period t, the utility of (xt, zt) is u(xt, zt), where u is a 
strictly concave utility function with positive marginal utility of both goods. Since the 
utility function u is invariant over time, the consumer's preferences for health and other 
goods are stationary. In spite of this stationarity, the consumer's preferences for drugs 
and goods are not invariant over time. These preferences are represented by an expected 
utility function that varies with beliefs formed on the basis of experience. In period t, 
this expected utility function is 

U(xt, Yt ift) = _1 Ju(xt, a + ,iyt + st)h(st I O)ftdst 

= J'u(xt, zt)m(zt I f t; yt)dzt, ... (1) 

where h(. I 4u) is the normal density function with mean p and variance 1 and m( Ift; Yt) 
is the predictive density defined by 

m(zt I ft; Yt) = 
n 

h(zt I o+Ijyt)f/. 

At the beginning of period t the consumer has observed some realization of w 1, say 
w 1. Given this information he makes a decision about how much xt and Yt to consume. 
Each period the consumer faces the budget constraint 

PYt+Xt =I, ...(2) 

where p and I are respectively the (positive) price of drugs and the consumer's (positive) 
income. 
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In each period t, the consumer can, therefore, be viewed as choosing Yt, and setting 
Xt = I-PYt. The Yt level chosen must, of course, satisfy the restriction 

0 < Yt < (/p). ...(3) 

In addition, the Yt choice will be influenced by wt 1, the experience accumulated to time t. 
Expected utility at time t, U(I-Pyt, Yt I ft) is influenced by current beliefs as repre- 

sented by ft. But ft = gt(f ' wt 1), where wt- = (zt -1, yt- 1) This means that the 
process of information assimilation, captured in the function gt, introduces an intertemporal 
element to the problem of choosing an optimal drug purchase. Intuitively, the beliefs 
which provide the basis for preference formation in period t are arrived at by interpreting 
previously observed health levels zt-1 in the light of earlier drug consumption choices 
y . In particular, earlier drug consumption levels determine the extent to which observed 
health levels can be relied on as evidence about ,B. The consumer's problem, then, is to 
choose a level of drug demand which attains an optimal balance between informational 
gains that accrue later and current health gains. 

The possibilities for experimentation in this model can be made explicit if we state 
the problem in the framework of dynamic programming. To do this let VT(f) be defined as 

VY(f) max E[U(I-pyo, Yo I f)+ It- 1 [tU(I-PYt, Yt I gt(f; w-`))], .*(4) 
Yo, {Yt}t = 1 

whereyo e [0, Ilp], 2t: Gt-+[O, Ilp], Gt {ft: ft = gt(f; wt -); wt e Wt} the set 
of possible posteriors. We will give a more explicit form for (4) just before the proof of 
Lemma 2. Lemma 3 proves that VT(f) is well defined. At this point, it should be noted that, 
in the definition (4), the consumer's strategy at t is a drug consumption choice yt(ft) which 
depends on his posterior at that date. Thus in (4) yt refers to a realization of 

Yt = Yt(gt(f; t 1)); 

i.e. Yt = yt(gt(f; wt- 1)), where wt-1 is a realization of wt It follows from (4) that, for 
T ?0, 

VT(f) = max {U(I-py, y If)+E[V (g(f, w))]}, (5) 
O _< y !S I/p 

and 

VT(f) - 0 if T ? 0. 

In (5), we have omitted the subscript " zero " on y and z and the superscript " zero" 
on w. Thus in (5), w = (z, y). We will continue to use the more convenient notation 
throughout the remainder of the paper. The expression VT(f) is the maximum future utility 
attainable when T periods remain and consumer beliefs are represented by f 

Note that 

E{V [g(f, w)]} = { vTl[gl(f; z, y)]m(z If; y)dz. ...(6) 

Equation (6) is an expression for the expected future utility when y units of the drug are 
consumed in period zero. In computing the expectation (6), the value VT-l[gl(f; z, y)] 
associated with each posterior gl(f; z, y) is weighted by the probability m(z I f; y). Define 
the function 

HT(y, f) _ E{VT[gl(f; w)]}, ...(7 

where it will be recalled that w = (z, y). Using (7), equation (5) may be rewritten as 

vT(f) = max [U(I-py, y If)+ 6H(y, f)]. ...(8 
O _< y ! I/p 

An " experimenting " consumer will choose y to maximize 

U(I-py, y f)++HT(y, f). 
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A maximizer, which may not be unique, is denoted by yT(f). Lemma 3 below will 
demonstrate that yT(f) exists by establishing that the function in (9) is continuous. 

The experimental design aspects of the consumer's choice problem are apparent in (5) 
and its alternative expression (9). The first term in (5) and (9) measures the present utility 
of y units of drug consumption. The second term measures the expected future utility 
of the improvements in information made possible because y was chosen. In choosing 
yT(f) to maximize the sum of these utilities the consumer is, as stated above, arriving at an 
optimal balance between present utility and future information. 

As we are interested in the effect of experimentation on consumption we propose to 
investigate the relationship between the (possibly non-unique) strategy yT(f) and the con- 
sumption strategy which would be optimal if the possibilities for learning from experience 
are non-existent or ignored. To facilitate this comparison we first study the optimal consump- 
tion decisions made by a consumer who assumes that his future beliefs will be unchanged by 
his current experience. Such a consumer will choose a sequence of drug consumption 
levels to solve the problem 

max El tU(I-pyt, Yt If) ...(10) 
Ytt =.I 

The solution to this problem is obtained by choosing, in each period t, the consumption 
level which satisfies (3) and maximizes 

U(I-PY, Y If). ...(11) 

The value y which maximizes (11), is denoted by y?(f), and is called the optimal non- 
experimental consumption policy. Under our assumptions y?(f) is unique. 

To emphasize the difference between y?(f) and yT(f) recall that, from (9), the function 
which yT(f) maximizes is a sum of two terms. The first term represents expected current 
utility, while the second term measures the extent to which learning from current experience 
enables the consumer to increase his utility by making more informed future decisions. 
If we compare (9) with (11), it is seen that (11) is the first term in (9), i.e. (11) is the current 
expected utility of consumption. Thus y?(f), unlike yT(f), is chosen without regard to the 
effects of learning from experience. 

Since zt observations provide information about , when Yt is positive, the consumer can, 
in essence, produce information by consuming drugs. The " amount " of information 
he produces will depend on the amount of drugs he consumes. This relationship between 
information and drug consumption can be interpreted as a technology for information 
production in which the " input " is Yt. The " output " (measured in expected utility terms) 
can be interpreted as 3HT(y, f). Of course an experimenting consumer who avails himself 
of this technology pays a price. Indeed, one can think of the cost of the information pro- 
vided by y as C(y, f), where 

C(y, f) U[-PA(, yf If]-U(I-py, y If) 

C(y, f) > 0 because y?(f) maximizes (11). C(y, f) gives the one-period cost of choosing a 
drug consumption which is designed to give more future information about fi than the drug 
consumption which is non-experimentally optimal provides. 

We can now prove that the possibility of experimentation causes consumers to buy 
more of the drug than they would otherwise; i.e. yT(f) > yl(f). (Since yT(f) may not be 
unique, we must show that this inequality holds for all yT(f) which maximize (9).) We 
prove this by showing that the inequality holds precisely because larger drug consumptions 
lead to more " informative " experiments in the sense of Blackwell [2]. (In Blackwell's termi- 
nology, observation of the consumer's health level when a large amount of the drug has 
been consumed is an experiment which is sufficient for the observation of health when small 
amounts of the drug have been used.) The most complicated part of the proof involves 
showing that this fact implies that HT(y, f) is an increasing function of y-Theorem 1. 
Theorem 2 uses Theorem 1 to show that yT(f) _ y?(f). 



538 REVIEW OF ECONOMIC STUDIES 

These theorems and their proofs use the notation appropriate to the case in which the 
prior measure is finite-discrete, i.e. concentrated on a finite number of possible values. As 
mentioned earlier the proofs of these theorems can be extended to a more general class of 
cases in which the support of the prior is contained in a compact set. 

Theorem 1. HT(y, f) is a non-decreasing function of y for each f. We defer the proof 
of Theorem 1 until later. 

Theorem 2. Assume that f u(I, a + /iIl/p + e)h(e I O)de< oo, for i = 1, 2, ..., n. Also 

suppose that a yT(f) exists. Then yT(f) > yo(f). 

Proof. The Lebesgue dominated convergence theorem implies that U(x, y If), 
defined in (1), is a continuous function of (x, y) for all (x, y) such that py+x ? I, since 

u(x, x+fliy+s) < u(I, oc+flaI/p+e) for all i = 1, 2, ..., n. 

Therefore U(I-py, y If) is a continuous function of y for 0 < y ? I/p. Thus a maximizer 
of ( 1) exists. The maximizer is unique for eachfbecause u(x, y) is assumed strictly concave 
in (x, y). Hence y0(f) is well defined. 

Suppose a yT(f) exists such that yT(f) <yO(f). Since y?(f) is uniquely maximal 

U[I-pyT(f), yT(f) If] < U[I-py0(f), YO(f) If]. ... (12) 
By Theorem 1 

H T[yO(f), f] > HT[yT(f), f]. ... (13) 

Adding (12) and (13) implies 

U[I-py"T(f), yT(f) I f] + 6HT[yT(f), f] < U[I-pyl(f) I f] + 6HT(y0(f), f). .. .(14) 

But (14) contradicts the assumption that yT(f) is a maximizer of 

U(I-py, y If)+H T(y, f). 11 

Theorem 1 is the key to Theorem 2. Theorem 1 states that more valuable information 
is provided by larger drug consumptions. The proof of this result is based on Blackwell's 
approach to the comparison of experiments, which we now digress to discuss. In the course 
of this discussion, we will make clear the formal meaning of the term " more informative" 
which has been used informally up to here. 

As in the previous discussion, h(z I a +fly) is a normal density function of z with mean 
c. +fly and variance 1. Define 

k(z I ,B, y)_ h(z j fly). ...(15) 

Let F -[k(- I *, y)l y E R]. F is called a family of experiments. (If k e F, k' e F, then 
k = k' if and only if k = (z l P, y) = h(z ax+fly), k' = (z I fl, y') = h(z I +fly') and y = y'.) 
An experiment k is sufficient for an experiment k', if there exists a function v(z' I z) > 0 such 
that for all z' and all ,B 

00 

k(z' 1 P, y') = v(z' I z)k(z j /, y)dz, ..4.(16) 
- 00 

and for all z 
00 

{v(z' I z)dz'= 1. ... (17) 
J-co 

Note that v(z' I z) must not depend on ,. To interpret this definition one might envisage 
an experimental apparatus k which yields observations z. Since the distributions of z 
and z' depends on ,B, k or k' can be used to learn about f,. When (16) and (17) hold an 
observer who only has access to the apparatus k can reproduce the apparatus k' using 
v(* I .). This can be done as follows. If the apparatus k yields an observation z, then draw 



GROSSMAN, KIHLSTROM & MIRMAN LEARNING INFORMATION 539 

an observation z' from an urn for which the density of z' is given by v(z' I z). If this pro- 
cedure is followed, then z' will have a density given by h(z' I /3, y') which is exactly what the 
apparatus k' would have yielded. Note that v(z' I z) must not depend on /3. If it does, the 
observer who does not know / cannot construct the urn. We will sometimes refer to k 
as more informative -than k' if k is sufficient for k'. See De Groot [5, p. 433] and Kihlstrom 
[101 for more details and references to the literature on Blackwell's sufficiency theory. 

In the remainder of the paper, comparisons of experiments based on sufficiency are 
used to determine the relative value of alternative experiments. In Theorem 3, which follows, 
it is shown that if one experiment k is more informative than another k', then k is more 
valuable to observers than k'. 

As a preliminary to this theorem let il be a real valued function with domain 
{OD ... /3#} x A. The set A is interpreted as a set of possible decisions. A generic element 
of A is denoted by (. 

Now let 
V*(f) sup ( ii(/3(, OAf . (18) 

As above, CeA 

gl[f; (z, y)] E fik(z I pi, y) ...(19) 

and >~~~~i[f 
z Y i 

jJ>fk(z I /.,' y) and 

g~{f; (z', ~)] fik(z' I /3i, y') 9 i Uf; (zt ") 
_ 
fi(fkAs ,)- ... (20) 

=l 
' 

fjk(z' I fl,y')'.. () 

wherefi is the prior probability that P3i is the true value of ,B. The vector 

g1[f; (Z, y)] = {gi[f; (Z, Y)], ... gn[f; (Z, Y)]} 

is the posterior mass function that results when experiment k is run and z is observed. 
The mass function gl[f; (z', y')] is similarly defined. 

Theorem 3. If k is sufficient for k', then 

where EV*{gl[f; (z, y)]} ? EV*{gl[f; (z', y')]}, 

EV*{gl[f; (z, Y)]} = J y *{gl[f; (z, y)]} 
n 
1 h(z I /3i, y)fidz 

- 00 

and 

EV*{gl[f; (z', y')]} = V*{gl[f; (z, y')]} i n h(z' I p3i, y')fidz'. 

Theorem 3 shows that a " more informative" experiment is more valuable. That is, 
if a decision maker's choices depend on his beliefs about ,, he will achieve higher expected 
utility if his beliefs are formed on the basis of a more informative experiment. Marschak 
and Miyasawa [12] and Blackwell [3] also prove this result. 

The following Lemma, which states a result about sufficiency for the family F, is used 
to prove Theorem 1. 

Lemma 1. If y>y'>O, then k is sufficient for k'. 

Proof. From (15), k(z I /3, y) = h(z I oc+,By) and k(z' I /3, y') = h(z' I oc+,By'). Consider 
two random variables z and z' which are jointly normally distributed such that 

Ez _oc +y, Ez' _ a +y', var (z) var (z') = 1, 

and covariance (z, z') y'/y. From elementary normal distribution theory, the con- 
ditional density of z' given z, v*(z' I z), is of the normal form with mean 

E[z I z] = Ez1 + y(z-Ez)/y = (1 -(y'/y)) + y'z/y .. .(21a) 
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and variance 
var [z' I z] = 1-(y'/y)2. ...(21b) 

By assumption 0 <y'<y, so var [z' I z] >0. Thus the joint distribution of (z, z') is well 
defined, and the conditional density of z' given z is independent of ,B by (21). By definition 
of z and z', k is the marginal density of z and k' is the marginal density of z'. Since the 
marginal density of z' is equal to the conditional density of z' given z averaged by the density 
of z we have 

h(z' I cx+,By') v*(z' j z)h(z I oe+#y)dz. 
- 00 

00 
Since v* is a density of z' given z, v* > 0 and v*(z' I z)dz' = 1 for all z. Therefore 

J-oo 
v*(. I) is a function that satisfies (16) and (17). 11 

Remark. The following outline of an alternative proof is suggestive of the motivation 
for Lemma 1. Note that, when a is known, observing 

Z = a+py+6 (z' = a+#y'+s) 
is equivalent to observing 

r = (z-o)/y = ,B + (s/y) [r' = (z'-c )/y' = p + (sly')] 

which is normal with mean ,B and variance a2 = y-2 [(a')2 = (y')-2]. Now define r" to 
be a normal random variable (independent of r- and F') with mean /3 and variance 
(a")2 = {[1/a2]-[1/(a')2]} '. It is obvious and easy to prove that joint observation of 
both independent variables r' and r" is sufficient for observations of the single variable r. 
It is also relatively easy to demonstrate that the random variable 

*= , + ( 2"][r - + ] 

is sufficient for joint observation of r' and r". But r* is a normal random variable with 
mean /3 and variance 

[1()2 (a")2 = [(')2 + -a2 (a,)2]] = 

Thus r* has the same distribution as F. As a consequence, observations of r- are sufficient 
for observations of r*. Since Blackwell has demonstrated that sufficiency is a transitive 
relation, the experiment " observe r " must therefore be sufficient for the experiment 
"observe Fr" and k is sufficient for k'. 

Lemma 1 states that larger drug consumptions lead to more informative experiments. 
More informative experiments are more valuable by Theorem 3. So we would expect that 
HT(y, f) is increasing in y because HT gives the informational value of changes in drug 
consumption. Lemma 2, below, is the key to the proof of this fact. However, it is necessary 
to introduce some notation in order to specify the consumer's maximum problem (5) in 
more detail. This we now do. 

As above, we denote the range of the random variable 0', t > 1, by Wtl. For 
t > 1, let yt denote a function with domain Wt- l and range [0, Ilp]; i.e. yt: Wtl -[0, I/p]. 
Denote the set of possible yt's by 

F,= {y Wt- l [0, I/p]}. 

Now let T be a finite integer, to be interpreted as the consumer's horizon. Denote any 
sequence {y}fT 1 by yT and let FT represent the set of possible yT,s; i.e. 

fT = f _rt. 
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For most of the following discussion we will suppress the dependence of FT and T on T, 
and write F and y instead. 

Once y has been chosen, we can define new functions C,; t = 0, ..., T; such that 

Co: r, x [0o I/p] [O, /I/p, 
and 

C,: r1 x R, x [0, Ilp] -+ [O, Ilp], 

where R, is t-dimensional Euclidean space. 
We do this by letting 

Co(Y; Yo) = Yo, 

MY(; Zo, Yo) = Y1(Zo, Y'o), 
and 

Wt(Y; zt-1 YO) = yt[zt-l, ct-(y; Zt2, Yo)] 
where 

4t-I(y; Zt-2, yo) = [o(y; yo), *.. t-_l(y; zt2, YO)] for t =2, ..., T. 

Intuitively, yt is a strategy or contingency plan for period t that specifies the consumer's 
choice of Yt for each " experience vector " wt-I which might possibly be observed. Note 
that the vector of previous decisions is an argument of the function yt. But each previous 
decision, except the first, is chosen as a function of previous experience. Thus the decision 
Yt is ultimately dependent only on the previously observed health levels zt-1 and the first 
decision yo. Of course, the way it depends on these variables is determined by y. The 
functions C, express the functional relationship between Yt and the variables zt- 1, yo and y. 

If we now let At = (zt-, yo) for t = 1, ..., T and AO = yo then the consumer's problem 
is choose yo E [0, Ilp] and a sequence y E F to maximize the expected utility 

JFRTl = 
O t T 

btu[I-pCt(y; it), z]jf fT- 
= 

h[z| a+Th4(i; AT)]dz 
RT+j 

= St - O | L -n u[I-p4pC(y; 2t), zt]jf H9 - t h[z, I AT+)]4(y; ,)Idzt. ...(22) 
Rt+j 

This expected utility can be simplified in a useful way by substituting the expression for the 
posteriorft, when t ? 1. Specifically, 

fit _gi(f?; wt1 

I T 

=1 _ (foH-otZT 

I LX+AYT) t n~~f? 
H 

l- =t' h(z?, I 
+f) 

IfyT = YT(WT1) for T- 1, ..., t; then wt 1 = [zt-l, t-1(y; zt-2, y0)], and 

= gi{f0; [Ztt, 
t 

1(y; Zt2, yo)]} 

f? ]7J T=t- h(z +l(;~? 
TI t- 

T 
) 

T * . ..(23) 

where 
U(Zt-1 1 y, yo) = DWi=f H- 1 

h[z, I+fo(t y T 

(Of course, It should be subscripted by t -1. This is omitted to simplify the notation which 
is already somewhat cumbersome.) 

Substituting the expression (23) in the right side of (22) and using (1), we obtain 

U(I-py0, Yo If0)+ Et at = fI U[l-Ptc(Y; At)], WY(; it) I gt{f0; [zt , ct l(y; At-]} 
R) 

X pl(zt- y, yo)dzt~ 
- 1 
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as the expression which the consumer wishes to maximize by his choice of yo and y. To 
simplify notation, the above expression will often be written simply as 

U(I- PyO, YO If )+ StD-2 tJ U(I-pyt, Yt Ift)1i(ztI I y, yo)dztt. ...(22') 
Rt 

This is clearly equivalent to the expression being maximized in (5). The reader should 
be aware, however, that when this simplified notation is used Yt is always equal to Ct(y; it) 
andft = gt{f?; [zt-1, t-1(y; it-)]}. 

Define 
00 

0(y, o) u(I-py, cx+fly+s)h(e I O)ds. 
-oo0 

Then, from (1) 
U(I-PY, Y I f) = Z - 14'(Y, fPA)f. 

Thus by (3), (4) and the definition of VT 

VT(f 0) = max i' 
= 

n(o if 
(yo, y) e co, I/p] X r 

+ =- 1 at I = 1 b(Yt, f,)f(zt21 yv, y0)dzt i] .. .(24) 
Rt 

It should be recalled that in (24) Yt = t(y; zt- 1, yo) and 

ft g{f0; [zt-1, t-t1(y zt-2, yo)]}, for t > 1. 

The above notation can now be used to prove the following lemma, from which the 
main theorem can be proved immediately. Again it should be emphasized that the proof 
does not depend crucially on the assumption of a discrete prior. 

Lemma 2. If VT(f) is well defined, then there exists a decision set A and a function 

IIT: . .{#1 fl8} xA-+Rl such that 

VT(f) = max E - T(fls { )fin ... (25) 
~eA 

Proof. Substitute equation (23) in (24) to obtain 

VT(f 0) = max )Oi -- nk(Yo, I)f? 
(yo, y) e co, Ilp3 X r 

+ Et-1 bt I =n 
0(yt, fli)f fiT 

=t- h(z z | +iy)dzt] ... (26) 

where Yt = Ct(y; it) and y, = Cr(y; 4). If we now let 

A = [O, (I/p)] xF and =(yo y) 
we can define 1T by 

lT((, fIh) = [?t(YOx pi)+ Et- X bt f (yt, Jh) HT 
=t- 

h(zI c +fliyY)dzt], 

where, as above, Yt = Ct(y; it) and y, = (y; it). Interchanging the order of summation 
and integration in (26) then yields 

VT(f0) = max Ei 1qT('-, Ai)f?. 11 
TeA 

Theorem 1 is an immediate consequence of Theorem 3 and Lemmas 1 and 2. 
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Proof of Theorem 1. From (6) and (7) 

00 

HT(y, f)- { V'[g 1(f; z, y)]m(z If; y)dz. ... (27) 

Suppose y>y', let k = k(z I fli, y) and k' = k(z' i i, y') then by Lemma 1, k is sufficient 
for k'. Using Lemma 2, we may set V*(f)-='T-(f). Then by Theorem 3, if g, and g'1 
are defined as in (19) and (20) then EV*{gj[f; (z, y)]} ? EV*{gl(f; (z', y')]}. Recalling 
that m(z If; y) E= - fih(z I Pi, y) 

HT(yf) EVT-l{gl[f; (z, y)]} > EVT {g1[f; (z', y')]} = HT(yt, 

Prescott [13] proved a similar theorem under the assumption of a normal prior on,f. 
All of the results proved in this paper can also be shown to hold for any prior on f as long 
as VT(J) is well defined. Lemma 3, which follows, uses the assumption that the prior on , 
is finite-discrete to prove continuity of HT(y, f), existence of yT(f) and well definition 
VT(J). This is the only step in any of the arguments of this paper in which the discreteness 
assumption is actually used. The argument used to prove Lemma 3 can be employed to 
prove the same results when the prior probability distribution is concentrated on a compact 
set of possible / values and when the prior is either continuous or discrete with mass concen- 
trated on a countable set. The adaptations required in the proof are discussed in the 
appendix. 

Lemma 3. Letf* = max {fll fl2, *2. fl} Assume that 

Mo _ g u(I, + (fl*IIp) + s)h(? i 0)ds < oo. 
- 00 

Then HT(y, f) is a continuous function of y for all (y,f) such that 0 < y ? Ilp and 
f = (fi, f2 a..., fn), with 0<fi < 1 for all i. Further yT(f) exists and VT(f) is well defined. 

Proof. We prove by induction that, when T is finite, HT(y, f) is continuous in y, yT(f) 

exists and VT(,f) is well defined. 
In the proof of Theorem 2, it was shown that U(I-py, y If) is a continuous function 

of y. Thus y?(f) exists and V?(f)-- max U(I - py, y If) is well defined. By (5)-(7), 
0 S y (I/p) 

H1(y, f) V0[g1(f; z, y)]m(z I f; y)dz. ... (28) 

Since 0(y, ,B) _ Mo, for all (y, /3), U(I-py, y If) < MO, for all y E [0, Ilp], and 

V? [g 1(f; z, y)] <_! Mo 
Thus 

V?[gl(ff z, z)]m(z If; y) < Mof(z), ... (29) 

where 

fh(z I oc), if z ? oc, 

I= I if a < z < x+(fl*Ilp), 

th(z I + (fIl*IIp)), if a + (f*I/p) < z. 

The bounding function +(z) is shown in Figure 1. The right-hand side of (29) integrates to 

Mo(l + (1I/2r)(fl*I/p)) < o 

Therefore (28) and the Lebesgue dominated convergence theorem imply that H'(y, f) is 
continuous in y, for y E [0, I/p]. 
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> = +J(z) 

>> = h(zla) 

a = h(zla + giY) 

00 = h (zfc + e* I) 

p~~~~~~ 

a al+.8L y a+*,8* 

FIGURE 1 

Suppose now that HT(t,f) is continuous in y. We will now show that yT(f) exists, 
that VT(f) is well defined, and that HT+l is continuous in y. From (6) and (7) 

H T (Y, f)=-E VT[gl(f; Z, y)]. ...(30) 

As HT(y, f) is continuous in y, yT(f) exists and VT(f) is well defined by (8). By Lemma 2, 
there exists an 11T(fl, {), and A such that 

VT(f) = max El=- 17T(fi ) ... (31) 
c- A 

It is immediate that VT(f) is a convex function off. Hence it is continuous on open convex 
sets. Without loss of generality, it can be assumed that f is in the open convex set 

3 = [(g1, ., g9): gj>0, -- 1 gi = 1]. Our assumptions guarantee that the probability of 
gl(f; z, y) E S is one. So VT(.) is continuous at every possible posterior. Since g1(f; z, y) 
is a continuous function of y and z, VT[gl(f; z, y)] is also continuous in y. Now by (31) 

VT(f) S?T-oM M-rM T. 

Therefore 

VT[g (f; Z, y)]m(z I f; Y) < MT1J/(Z) .. .(32) 

The right-hand side of (32) integrates to MT[l + (1I 12t)1*(IIp)] <cc. The left-hand side is 
a continuous function of y and integrates to HT+ 1(y, f). Therefore by the Lebesgue 
dominated convergence theorem HT+ 1(y, f) is a continuous function of y for all (y, f) 
such that 0 < y < (Ilp) andf in S. 11 

3. MONOPOLISTS WHO EXPERIMENT TO LEARN THEIR DEMAND CURVES: 
A REINTERPRETATION 

The statistical model described and the theorems proved above can be reinterpreted to 
analyse experimental behaviour on the part of a monopolist who does not know the slope 
of his demand curve. In carrying out this reinterpretation, the monopolist can be viewed 
as choosing either price or quantity. If price is chosen, a stochastic demand curve deter- 
mines the demand which that price calls forth. When quantity is chosen, the price at which 
that quantity can be sold is determined by the stochastic demand curve. Interestingly, the 
conclusions obtained in these two alternative interpretations appear to be contradictory. 
But as we shall show these interpretations are based on different statistical models, so the 
paradox is indeed only apparent. 
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First consider the case where quantity is the decision variable. Then we let 

zt = price in period t, 
and 

Yt = quantity in period t. 

The demand curve in period t is 

zt-=cx+#Yt+ et, * (33) 
where, as above, h(ct I 0) is the density of et. Also as above, a is known but the slope of the 
demand curve, fi, is unknown. The firm's beliefs about fi at time t are described by the 
mass function ft which assigns positive probability to elements of a finite set {/3, ..., fln}. 
In this case, all Pi are negative. (It should be noted that this model has one unfortunate 
feature; the demand function (33) permits negative prices to occur with positive probability.) 

The firm's profit is, of course 
Ztyt - C(Yt), 

where c is a cost function, with c'>0 and c">0. The firm is assumed to maximize the 
expected utility of profit. The utility function, i, is assumed to have Y' >0 and u" <0. 

A firm with horizon T can then be viewed as choosing (yo, y) to maximize (4) with 
UA[zty1- c(yt)] replacing u(I-pyt, zt) in the computation of (4). In this interpretation, yo 
is the quantity supplied in period 0, and yt is a strategy for choosing the supply level in 
period t contingent on the demand experience prior to t. 

The non-experimenting monopolist chooses Yt to maximize 
r+ 

O(Yt If 
t)=- 00 

l W[ytzt - c(yt)]m(zt I ft; yt)dzt. ... (34 

This function is strictly concave under the assumptions made about Pi and c. Thus if a 
solution yO(ft) exists, it is unique. Since the set of possible y levels is [0, oo), it is not compact 
and the continuity of 0 does not guarantee the existence of a maximum, however. The same 
difficulty frustrates attempts to prove Lemma 3 for this example. If, however, yT(f) and 
y0(f) exist, we can define 

(y, ) = J D[y(c+fly+s)-c(y)]h(c I O)de 
-00 

and apply Lemma 2 to prove Theorems 1 and 2. Theorem 2 asserts that the experimenting 
monopolist never chooses to supply less than the non-experimenting monopolist. As a 
result, the average price, cX +flyT(f), paid to an experimenting monopolist will be lower than 
a +,Byo(f), the average price paid in markets supplied by a non-experimenting monopolist. 

If price is the decision variable, then 

zt = the demand at time t, 
and 

Yt = the price at time t. 

With this reinterpretation, the demand curve is (33). Again the set of f's which occur with 
positive probability is assumed to contain only negative numbers. In this case profit at 
time t is 

Ytzt - c(zt). 

As above, the utility function, Pi, is assumed to be strictly concave and exhibit a positive 
marginal utility of income. The utility of profit used in computing (4) is [ytzt -c(zt)], 

i.e. in (4) U(I-py, y I g) is replaced by { a(yz - c(z))m(z I g; y)dz. The decision 

variable yo is the price chosen in period zero; yt is the pricing strategy for period t, which 
is again contingent on previous demand experience. 
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The expected utility function (34) maximized by the non-experimenting monopolist is 
now computed with a[Yyz,-c(z,)] replacing a[Zty,-c(yt)]. Again the strict concavity 
and convexity assumptions made about ti and c respectively, guarantee that (34) is strictly 
concave and that y?(f) is unique if it exists. The existence question remains open. If 
y?(f) and yT(f) exist, Lemma 2 and Theorems 1 and 2 imply y?(f) < yT(f). Thus when 
price is the decision variable, the price charged by an experimenting monopolist is higher 
than that charged by a non-experimenter with the same initial beliefs. This contrasts with 
the situation that results when quantity is chosen. In that case, the average price of an 
experimenter is lower than the average price charged when experimentation is absent. 

These apparently contradictory results are not logically inconsistent. To see why, 
consider the case in which z, is price and Yt is output. Note that the demand curve (33) can 
be transformed to obtain a demand curve 

Yt zt + . ... (35) 

We have just shown that (33) implies a higher average price with experimentation than 
without. However, since the variance of (st/fl) = (I /f2), and / is unknown, the demand 
curve (35) fails to satisfy the assumptions which led us to the conclusion that the experi- 
mental price exceeds the non-experimental price. 

4. CONCLUSIONS 

Uncertainty is pervasive, but it can be reduced at a cost. Rather than assuming some 
ad-hoc cost of information we have modelled a process of endogenous information genera- 
tion. The cost of information turns out to be the utility that must be foregone by the choice 
of a larger control variable than would be optimal given current information and ignoring 
experimentation. This model provides a statistical foundation for the ad-hoc process which 
Arrow assumed and called " learning by doing ". The model is also consistent with the 
empirical observations which motivated his paper: that productivity increases with 
experience. This happens in our model of the consumer because more informed consumers 
choose better combinations of risky drugs and non-risky goods for consumption. 

The model in this paper is one of intertemporal optimization for a consumer who takes 
prices as given. Grossman [6] and [7] analysed a competitive equilibrium model of a 
market where firms are uncertain about the productivity of an input. In the context of a 
rational expectations model he derived an algorithm which could be used to characterize 
the path of equilibrium price random variables as well as the optimal input policy for firms. 
An equilibrium version of our model could similarly be analysed using Grossman's approach. 
This is left for future work. 

APPENDIX 

The proof of Lemma 3 uses the assumption of a finite-discrete prior in two ways. First, 
this assumption guarantees that the posterior distribution is an element of a finite dimen- 
sional simplex. Thus the convex function VT has its domain in a finite dimensional space. 
Because its domain is finite dimensional, VT is easily shown to be a continuous function 
of / on open convex sets. But continuity on open convex sets is a property which convex 
functions may not possess when they are defined on infinite dimensional sets. If the prior 
on / is not discrete, then the domain of VT is indeed infinite dimensional and a more difficult 
proof is required to establish continuity. This is done below under the assumption that 
the prior has compact support. 

The finite discreteness of the prior was also used to obtain equation (19), Bayes' Law, 
which implies that g1(f; z, y) is a continuous function of y and z. When the prior is either 
continuous or concentrated on a countable set, Bayes' Law can be expressed by an equation 
analogous to (19) which again implies continuity in y and z. 



GROSSMAN, KIHLSTROM & MIRMAN LEARNING INFORMATION 547 

We now establish the continuity of VT under the assumption that the prior has its 
support on the compact interval [a, b]. 

Let M([a, b]) be the set of finite measures over the measure space defined by [a, b] 
and its Borel sets. (A measure v on [a, b] is finite, if v([a, b]) < oo.) This set includes but 
is larger than the set of probability measures over [a, b] and its Borel sets. Using natural 
definitions of addition and vector multiplication and using the Prohorov-metric topology, 
i.e. the topology of weak convergence, M([a, b]) can be shown to be a convex topological 
vector space. (The Prohorov metric is discussed in Hildenbrand [8]. A topological 
vector space is defined in Choquet [4].) 

The function VT can be defined on M[a, b] by an expression analogous to (25). Speci- 
fically, if v E M[a, b], 

vY(V) = SUp f fT(fl, 4)v(dfl) .. (A.1) 

The function VT is easily seen to be convex on M[a, b]. The continuity of VT follows 
from the following proposition. 

Proposition. If 
+o+o 

Mo= u(I, ot + (bI/p) + s)h(s I O)ds < oo, ... .(A.2) 
- 00 

then VT is continuous on M[a, b]. 

Proof. Assumption (A.2) and the definition of VT imply that for any K< oo, VT(V) 

is bounded on the set of v's for which v([a, b])<K. Thus condition (iii) of Proposition 
19.9, p. 341 of Choquet [4], is satisfied, and this proposition implies that VT is continuous 
on M[a, b]. 11 
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