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Abstract

DNAmethylation is an epigenetic modification critical for normal development and dis-

eases. The determination of genome-wide DNA methylation at single-nucleotide resolution

is made possible by sequencing bisulfite treated DNA with next generation high-throughput

sequencing. However, aligning bisulfite short reads to a reference genome remains chal-

lenging as only a limited proportion of them (around 50–70%) can be aligned uniquely; a sig-

nificant proportion, known as multireads, are mapped to multiple locations and thus

discarded from downstream analyses, causing financial waste and biased methylation infer-

ence. To address this issue, we develop a Bayesian model that assigns multireads to their

most likely locations based on the posterior probability derived from information hidden in

uniquely aligned reads. Analyses of both simulated data and real hairpin bisulfite sequenc-

ing data show that our method can effectively assign approximately 70% of the multireads

to their best locations with up to 90% accuracy, leading to a significant increase in the over-

all mapping efficiency. Moreover, the assignment model shows robust performance with

low coverage depth, making it particularly attractive considering the prohibitive cost of bisul-

fite sequencing. Additionally, results show that longer reads help improve the performance

of the assignment model. The assignment model is also robust to varying degrees of meth-

ylation and varying sequencing error rates. Finally, incorporating prior knowledge on muta-

tion rate and context specific methylation level into the assignment model increases

inference accuracy. The assignment model is implemented in the BAM-ABS package and

freely available at https://github.com/zhanglabvt/BAM_ABS.

Introduction

DNAmethylation is the addition of a methyl group (CH3) at the 5th carbon position of the

cytosine ring. Cytosine methylation frequently occurs in the sequence context of 5’CG3’ (also

called a CpG dinucleotide) in mammalian DNA. Non-CpG methylation at CpH dinucleotides

(where H = C, T or A) has been reported in some specific cell types, such as adult brain tissues
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[1] and stem cells [2]. DNAmethylation leads to condensed chromatin and transcriptionally

silences genes on the inactive X chromosome, imprinted loci, and parasitic DNAs [3]. It is also a

major contributor to the generation of disease-causing germ-line mutations and somatic muta-

tions that cause cancer [4]. The determination of DNAmethylation is crucial for the understand-

ing of phenotype differences among cells or tissues during development and disease.

With the advance of next generation sequencing technology, characterization of genome-

wide DNAmethylation at single-nucleotide resolution is made possible by whole-genome

bisulfite sequencing. After bisulfite treatment of DNA, unmethylated Cs are converted to Ura-

cils by sodium bisulfite, then in the downstream PCR/sequencing step, Uracils are read as Ts,

whereas methylated Cs remain unchanged. Subsequent mapping of the short reads to a refer-

ence genome allows inference of methylated vs. unmethylated Cs. Several factors make bisulfite

short reads (BS-reads) more complicated to map than regular short reads. First, due to how

BS-reads are generated, after PCR amplification, up to four strands might be produced from

one genomic region. The search space is therefore significantly increased. Second, sequence

complexity is reduced, as most of the unmethylated Cs are changed into Ts. Third, C to T map-

ping is asymmetric. The T in the bisulfite reads could be mapped to either C or T in the refer-

ence genome but not vice versa [5]. Despite the introduction of several bisulfite short read

alignment tools (e.g., Bismark [6], BSMAP [5], BS-Seeker [7], and Batmeth [8]), the mapping

efficiency of BS-reads remains very low, that is, a high percentage of BS-reads, nearly 50% are

either mapped to multiple genomic locations (called “multireads” or “ambiguous” reads) or

unmapped [9].

Most BS-read mapping programs, for instance, Bismark [6], BS-Seeker [7], and Batmeth

[8], convert both the genome and the reads to a three-letter alphabet accounting for the C-to-T

or G-to-A mismatches caused by bisulfite conversion before applying a regular short read map-

per such as Bowtie [10] or BWA [11]. However, due to reduced complexity in C-to-T and G-

to-A conversion, this simple strategy causes a greatly increased proportion of reads to be

aligned to multiple genomic locations with similar scores, i.e., multireads. The routine practice

is to exclude all the multireads and unmapped reads from downstream analyses. This practice

leads to not only bias in estimating methylation levels but also financial waste.

In this paper, we present a Bayesian statistical method to solve the multiread mapping prob-

lem so that a great number of ambiguously mapped reads can be allocated to the most probable

genomic locations, thus improving the overall mapping efficiency. To this end, we use the mis-

match and methylation profiles between multireads and genomic locations, taking advantage

of the information gleaned from unique read alignments, prior knowledge of single nucleotide

polymorphisms (SNPs), and context-specific methylation levels at the regions, to assign each

multiread to the best location according to the highest posterior probability. Our assignment

framework involves two stages. First, we use Bismark—a popular BS-reads mapper [12] to map

the BS-reads, and from the mapping results, compile all the multireads with their competing

locations as well as all the unique reads overlapping with the multireads. The second stage is

refinement, during which we deploy the proposed Bayesian model to assign each multiread to

the most likely genomic location (Fig 1). We use both simulated data and real data generated

with hairpin bisulfite sequencing strategy to evaluate performance of our Bayesian assignment

method.

Materials and Methods

Posterior probability calculation

Suppose, for a given multiread X with length K, that there are T competing genomic locations,

indexed by t = 1,� � �,T, and that the multiread is mapped with similar fidelity (e.g., equal or
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similar number of mismatches). For genomic location t, we useMk to denote the observed base

of the multiread X at position k (k = 1,� � �,K) of the genomic location and Rk to denote the refer-

ence base (i.e., the base that the reference genome has) at that position. The overlapping unique

reads are defined as reads that are uniquely mapped with high mapping qualities (usually with

MAQ scores greater than 30) and also overlapped with a multiread’s mapped location. Assum-

ing that there are r such unique reads, we use Dk = {d1k, d2k, . . .drk} to denote the observed

bases of overlapping unique reads at position k. Given the multiread and genomic location t,

the observed data consist of two mismatch profiles, one between the reference genome and the

multiread, the other between the reference genome and all the overlapping unique reads. We

want to compute the posterior probability of observingMk given Dk, P(Mk|Dk), based on which

decision is made on assigning the multiread.

Applying Bayes’ Theorem,

PðMkjDkÞ ¼
pðMkÞPðDkjMkÞ

pðMkÞPðDkjMkÞ þ pðM kÞPðDkjM kÞ
;

Fig 1. Pipeline for assigningmultireads to the best locations.

doi:10.1371/journal.pone.0151826.g001
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where π(Mk) is the prior probability of observing baseMk and P(Dk|Mk) is the likelihood of

observing the overlapping unique reads at position k given the observedMk. In practice, we

would also like to incorporate the reference information Rk into the prior to help improve the

inference accuracy. Replacing π(Mk), pðM kÞ with π(Mk|Rk), pðM kjRkÞ, respectively, and assum-

ing that conditioning onMk, Dk is independent of Rk, we may write the posterior probability as

PðMkjDk;RkÞ ¼
pðMkjRkÞPðDkjMkÞ

pðMkjRkÞPðDkjMkÞ þ pðM kjRkÞPðDkjM kÞ
:

How the prior probability π(Mk|Rk) is computed is given in the next section.

Since the likelihood P(Dk|Mk), as the product of all P(djk|Mk) for j = 1. . .r, is directly related

to the number of overlapping unique reads: the more reads, the smaller likelihood, we calculate

P(Dk|Mk) in an average sense instead of using the usual joint probability definition to avoid

this bias. Thus we write the likelihood in terms of the base quality of the multiread and unique

reads as

PðDkjMkÞ ¼

Pr

j¼1
PðdjkjMkÞ

r

where

PðdjkjMkÞ ¼

(

1� εjk � εk þ εjk � εk; if djk ¼ Mk

εjk þ εk � εjk � εk; if djk 6¼ Mk

;

and εjk is the probability of observing a base miscall in the jth unique read at position k, εk is

the probability of observing a base miscall in the multiread at position k. It is easy to see that

the above calculation follows the general addition rule of probability, that is P(A[B) = P(A) + P

(B) − P(A\B). Here, A represents the event of having a sequencing error in the jth unique read

at position k, and B represents the event of having a sequencing error at the multiread baseMk.

Given sequencing errors occur independently in unique reads and in multireads, i.e., P(A\B) =

P(A)P(B), replacing P(A) with εjk, and P(B) with εk then results in the expression of P(djk|Mk).

Finally we calculate the posterior probability of observing the multiread X at genomic loca-

tion t by

PðXjD;RÞ ¼
YK

k¼1
PðMkjDk;RkÞ;

where D = {D1, D2,. . .,DK} denotes the set of all observed bases from the overlapping unique

reads at positions 1,2,� � �,K. The genomic location with the highest posterior probability is cho-

sen, and an assignment score S for the read is calculated by taking the log odds of the posterior

probabilities at the best location and at the next best location:

S ¼ log
PðXjDÞ at best location

PðXjDÞ at next best location
: ð1Þ

To assign a multiread, we need to determine a cutoff score S0. Users can choose a cutoff

score suitable to their needs. If a multiread has an assignment score S� S0, the read is consid-

ered as “assignable” and will be assigned to the best location, otherwise, the read will be labeled

as “unassignable”. We conducted experiments to determine a cutoff score S0. Experiments

show that the Bayesian assignment model achieves good performance when S is set between

0.005 to 6. We set S0 to be 0.05 in simulated data and 0.2 in real data. In real data, the sequence

coverage is not uniform across the entire genome and some genomic loci may not be covered

by any uniquely mapped read. We will assign a multiread to a location that has more unique
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reads. To increase inference accuracy, we raise the cut-off in real data to 0.2 and achieved a rea-

sonable efficiency in the multiread assignment.

Prior probability calculation

Given the reference genome, the mutation rate of the organism, the observed multiread

sequence, and knowledge on context-specific methylation levels, we can infer the underlying

process and compute π(Mk|Rk), the prior probability of observing multiread baseMk given the

reference genome base Rk at position k. For example, according to NCBI dbSNP [13], transi-

tions are twice as frequent as transversions in many species, such as humans and mice. Also,

studies have shown that the methylation rate is about 0.80 at CpG whereas 0.05 at CH (H2{A,

T,C}) in mammals [14]. Such information can be incorporated to compute π(Mk|Rk). To illus-

trate, suppose that the reference genome has a base C at one position of the genomic location

that the multiread is aligned to, then there are four possible cases:

1) observing A in the multiread

In this case, we conclude that there is only a C to A mutation occurring and the prior proba-

bility of observing A in the multiread given C in the reference genome is

pðMkjRkÞ ¼ PðC to A mutationÞ:

2) observing C in the multiread

In this case, we conclude that no mutation occurs and the C is methylated. The prior proba-

bility of observing C in the multiread given C in the reference genome is

pðMkjRkÞ ¼ ½1� PðmutationÞ� � PðmethylationÞ:

3) observing G in the multiread

In this case, we conclude that there is only a C to G mutation occurring and the prior proba-

bility of observing G in the multiread given C in the reference genome is

pðMkjRkÞ ¼ PðC to G mutationÞ:

4) observing T in the multiread

In this case, we conclude that either there is a C to T mutation occurring or there is no

mutation and the C in the reference genome is unmethylated and converted to T after bisulfite

treatment. Therefore the prior probability of observing T in the multiread given C in the refer-

ence genome is the sum of the probabilities of the two disjoint events and can be expressed as

pðMkjRkÞ ¼ PðC to T mutationÞ þ ½1� PðmutationÞ� � ½1� PðmethylationÞ�:

The probability of C methylation P(methylation) depends on the sequence context, that is,

if the next base in the multiread is G, the probability of C methylation is higher than that if the

next base is H (H2{A,T,C}). The probability of mutation can be computed similarly as in previ-

ous methods [15], [16]. For example, if we assume that the SNP rate in the human genome is

0.001 and that the reference allele is C at position k, the prior probabilities of C to A mutation

and C to G mutation are 0.00025 and 0.00025, respectively, whereas the prior probability of C
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to T mutation is 0.0005 and the prior probability of C to C (i.e., no mutation) is 0.999. All other

cases are illustrated in tables in S1 Table and S2 Table. In a later section of simulation study

and real data analysis, we will also consider the “without” prior option, that is, using a uniform

prior (equal probabilities for observing different bases onMk) and make a comparison to illus-

trate the advantage of using a prior in the assignment model.

Bisulfite short read simulation

We aim to generate BS-reads that closely mimic the bisulfite conversion experiment. The simu-

lated data consist of BS-reads generated from the human genome (hg19) and the mouse

genome (mm10). First, we randomly assigned a mutation rate of 0.001 to every base in the ref-

erence genome, i.e., we randomly changed 0.1% of all current bases in the reference genomes to

other bases. As transitions are twice as frequent as transversions, we assigned a higher probabil-

ity for C$T and G$Amutations than other mutations, e.g., P(C$ T) = 0.0005 while P(C$

A) = P(C$ G) = 0.00025. Second, we randomly assigned a methylation rate to every cytosine

in both strands of each chromosome after introducing mutations. We varied the methylation

probability at CpG (i.e., 70%, 75%, 80%, 85%, 90%) while maintaining methylation probability

at CH (H2{A,T,C}) 0.5%. To illustrate, we randomly converted C to T at 99.5% of all CH sites

and converted C to T at 30%, 25%, 20%, 15% or 10% of all CpG sites to generate different data

sets. After introducing both mutation and methylation, we randomly generated short reads

with different read lengths for each data (51 bp, 76 bp, and 101 bp) for each data from the con-

verted reference genome. Finally, we extracted quality score strings from three real datasets

SRR980327 (read length = 51 bp), SRR342553 (read length = 76 bp), and SRR921765 (read

length = 101 bp) generated by the Illumnia-HiSeq 2000 platform (data downloaded from

NCBI’s short read archive [17]) and simulated sequence errors according to the per-base error

probabilities of all reads from these datasets. All reads were generated in a directional manner,

i.e., only from the top strands of the genome. We simulated 3,000, 40,000, and 100,000 short

reads for each methylation probability parameter with varying read lengths.

We used Bismark [6] to align simulated BS-reads and collected all ambiguous reads or mul-

tireads. Most of the multireads have two or three mapped genomic locations in both simulated

and real data (S1 Fig). In this paper, we only examined directional data. However, undirectional

data will be addressed similarly, since only methylation and SNP information of uniquely

mapped reads from the same DNA strand as a multiread is incorporated in the scoring model.

An important and practical question is how much coverage is required for accurate assign-

ment of multireads using our model. To address this problem, for each location that multireads

are aligned to, we generated different numbers (i.e., 3x, 5x, 10x, 25x, and 30x) of overlapping

unique reads to mimic different depths of coverage. We then introduced sequencing errors for

the generated reads using base quality scores from the real data. These reads are treated as over-

lapping unique reads in our Bayesian assignment model. A detailed pipeline for generating BS-

reads and overlapping unique reads is illustrated in S2 Fig.

Real data from hairpin bisulfite sequencing

To validate our model on real data, we used the genome-scale hairpin bisulfite sequencing data

for mouse embryonic stem cell (ESC) (NCBI’s SRA accession number: GSM1173118) pro-

duced in our previous study [18]. The hairpin data are from one sample but generated in five

different sequencing lanes (labeled as Lane1, Lane2, Lane3, Lane4, Lane5). In brief, genomic

DNA was extracted and then sonicated into fragments of around 200 bp. Then, the DNA frag-

ments were ligated to the biotinylated hairpin and Illumina sequencing adaptors simulta-

neously. Following the streptavidin-capture and bisulfite PCR, the fragments linked to both the
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hairpin adaptor and Illumina sequencing adaptor were amplified for high-throughput paired-

end sequencing using Illumina HiSeq 2000 platform. After purification, size selection of 400–

600-bp fragments was conducted with LabChip XT DNA Assay (Caliper) to yield longer

sequences that are more amenable for unambiguous mapping to the reference sequence. The

reads are of 101 bp in length. Unlike traditional bisulfite sequencing methods, which are non-

invertible, the hairpin technology allows for recovery of the original sequences; therefore, hair-

pin data can be used to evaluate the mapping efficiency of BS-reads. The hairpin sequencing

approach generates methylation data for two DNA strands simultaneously by putting a linking

adaptor between Watson and Crick strands and then using PCR and paired-end technology to

sequence short reads [19] (S3 Fig). The resulting sequences give paired strands so that the orig-

inal untreated sequences can be recovered. Taking advantage of this ability, we used Bismark

[20] with default parameters and Bowtie2 [10] option (command:./bismark—path_to_bowtie

<path to Bowtie2 folder>—bowtie2—ambiguous<path to Reference genome folder>

<input_short_reads.fastq>) to map approximately 308 million reads generated with genome-

scale hairpin bisulfite sequencing. Bismark [6] mapped ~ 50% reads uniquely and 25% ambigu-

ously (Fig 2). We collected all the ambiguous reads, recovered their original sequences, and

used Bowtie2 [10] with default parameters (command:./bowtie2 -x<reference.fa> -U

<input_short_reads.fastq> -S<output.sam>) to map the original sequences. Here the map-

ping results of recovered sequences are used as the gold standard to validate our Bayesian

assignment model. To ensure the quality of the gold standard, we used only those reads with

mapping quality score�30. As a measure of the goodness of alignment, mapping quality score

is a non-negative integer Q = -10 log10p, where p is an estimate of the probability that the

alignment does not correspond to the read's true point of origin. Mapping quality is sometimes

abbreviated MAPQ. Approximately 48% of the recovered reads were mapped uniquely and

also satisfied our mapping quality requirement, and thus were used to validate our model (Fig

2). We randomly sampled 1% and 10% of the reads, respectively, from Lane1, Lane2, Lane3,

Lane4 and Lane5. We created ten replicates from 1% random sampling and ten other replicates

from 10% random sampling for each of the five lanes. Therefore, we had 100 samples alto-

gether, to generate some of the statistics.

Real data from regular bisulfite sequencing

Although the hairpin bisulfite sequencing data seem ideal as the gold standard from real data,

there is still concern that it might differ in some way from data produced by the regular bisul-

fite sequencing procedure. Therefore, we also applied our assignment model to another real

data produced by the regular whole-genome bisulfite sequencing for the human brain (NCBI’s

SRA accession number: GSM1163695). The human brain data include ten datasets. The DNA

bisulfite short read sequences are directional. Each dataset contains around 100 million single-

end bisulfite reads for the human frontal cortex. The reads have conventional base call qualities

that are Illumina HiSeq 2000 encoded Phred values (Phred64) and have been trimmed to 101

bps. We used Bismark with default parameters to map all the short reads from the ten datasets.

Bismark mapped ~75% reads uniquely and ~8% ambiguously. We then used these uniquely

mapped reads as “gold standard” to assess the performance of the model. The idea is to shorten

these reads so that the original uniquely mapped reads become ambiguously mapped reads,

then we apply our model to assign these reads and use the original mapped location as the cor-

rect answer to evaluate the assignment accuracy of our model. Specifically, we randomly sam-

pled 1% of the uniquely mapped reads from the ten datasets and trimmed the reads to shorter

ones (i.e., 10 bp shorter than original short reads). After applying Bismark to the trimmed

reads, ~50% were uniquely mapped and ~5% multireads. We used our Bayesian model to
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assign the location of these trimmed multireads and compared the assigned locations with

their originally mapped locations.

Results

Mapping efficiency improvement for simulated data and real data

We simulated 3,000, 40,000, and 100,000 BS-reads for both the human genome and the mouse

genome with the setting of read length = 76 bp, CG = 20% (20% of all CG -cytosines are con-

verted into thymines), CH = 99.5% (H can be A, T, or G, 99.5% of all CH -cytosines are con-

verted into thymines), and mutation rate of 0.1% at 30x coverage. We then applied the Bayesian

assignment model to score the ambiguously mapped BS-reads and assigned them to their best

locations based on the log likelihood ratio S (Eq 1). For human BS-reads, the model was able to

assign ~ 72% of the multireads to their best locations with an assignment accuracy rate of ~90%

for all three datasets (Fig 3). The accuracy rate was defined as the percentage of correctly assigned

multireads, i.e., the ratio of the number of accurately assigned multireads to the number assigned

multireads. For mouse BS-reads, the model was able to assign approximately 53% of all the multi-

reads with an accuracy rate of 80%. Both percentages of assignable multireads and accuracy rates

for the mouse data were lower than those for the human. This is likely due to the fact that there

are more CTs or TCs in the mouse genome than in the human genome (26.37% vs. 23.87%), con-

sequently, with bisulfite treatment, the mouse genomic DNAs are expected to have a higher fre-

quency of TT posing more challenges to multiread assignment.

Fig 2. Mapping efficiency using Bismark on the mouse embryonic stem cell data for different categories, uniquely mapped reads (blue),
multireads (yellow), and unmapped reads (grey). The orange bar is the percentage of multireads that become uniquely mapped with Bowtie2 after
recovery to their original sequences using the hairpin bisulfite sequencing technique.

doi:10.1371/journal.pone.0151826.g002
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A major challenge in testing the performance of multiread assignment methods on real data

is a lack of ground truth for where multireads should be assigned to in the real data. To exam-

ine the performance of our Bayesian assignment model on real data, we took advantage of the

genome-scale hairpin bisulfite sequencing technique developed recently [21] that allows us to

recover the bisulfite converted reads to their original sequences. We assume that once multi-

reads are recovered to their original sequences and these original sequences are mapped to

unique locations, the unique locations are indeed true locations. To ensure this assumption to

be largely held, we consider only those multireads that are mapped with high mapping quality.

The genome-scale hairpin bisulfite sequencing data for mouse ESC were generated in five

sequencing lanes with the Illumina sequencing platforms. For data generated from each of the

five lanes, we randomly sampled 1% of the reads and created ten samples per dataset. With

assignment score cut-off of 0.2, in the range of reasonable cut-off point by experiment, 74% of

the multireads were assigned to their best locations with ~88% accuracy rates (Fig 4). Standard

deviations across ten replicates were small, from 0.23–0.42% and from 0.46–0.66% in accuracy

rates and assignable percentages, respectively. Thus, 1% random samples were representative

of the five datasets.

For human brain whole-genome bisulfite sequencing data, we randomly sampled 1% of the

uniquely mapped reads from ten datasets, shortened them so that they “degraded” from previ-

ously uniquely mapped reads to multireads. Our model assigned ~75–81% of the multireads to

Fig 3. Percentages of assignable multireads and accuracy rates of the assignedmultireads on six simulated bisulfite datasets generated from the
human reference and the mouse reference with read length = 76 bp and CG = 20% (20% of all CG -cytosines are converted into thymines) and
CH = 99.5% (99.5% of all CH -cytosines are converted into thymines) andmutation rate of 0.1% at 30x coverage. hg19_N3, hg19_N40, and
hg19_N100 denote the datasets with 3k, 40k, and 100k simulated reads respectively for humans; mm10_N3, mm10_N40, and mm10_N100 denote the
datasets with 3k, 40k, and 100k simulated reads respectively for mice. All remaining figures use the same notations.

doi:10.1371/journal.pone.0151826.g003
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their best locations with ~76–85% accuracy rates (Fig 5), therefore, showing similar perfor-

mance results to that for hairpin sequencing data.

Effect of coverage depth and with/without prior

Table 1 shows the effect of sequence coverage on the performance of the model, with and with-

out priors for simulated data. For the simulated human data, the percentage of assignable mul-

tireads tends to increase with the coverage depth, and expectedly, the assignment error rate

decreases. Compared to simple assignment without a prior, that is, only using observed unique

reads to assign multireads, considering prior probability π(Mk|Rk) leads to better performance

in the model, with much lower error rates (9%-11% compared to 22%-33% for without a

prior), although the percentage of assignable multireads decreases at the same time. When the

comparison is converted to error rates per read, it is clear that incorporating priors in the

method increases the mapping accuracy, with the error rate per read decreasing from 0.01% to

0.005% for the 3x coverage data, and 0.007% to 0.003% for the 30x coverage. The simulated

mouse data show a similar pattern, except, in general, has lower percentages of assignable mul-

tireads and higher error rates.

For hairpin bisulfite sequencing data, when including prior probabilities, even though the

percentages of assignable multireads reduce, the error rates per read decrease (Table 2). For

example, error rates reduce from 0.00043% to 0.00035% and from 0.00025% to 0.00020% in

Lane5_1 and Lane2_10 respectively. Therefore, incorporating priors in the method increases

inference accuracy. These results are consistent with simulation results. Compared with simu-

lation results, the accuracy rate improvement in real data is smaller.

Fig 4. Accuracy rates of assignedmultireads and percentages of assignable multireads on ten
replicates from 1% random samples from five genome-wide hairpin bisulfite sequencing datasets
frommouse ESC. The black bar shows the standard deviation.

doi:10.1371/journal.pone.0151826.g004
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We also determined the effect of read coverage on the performance of the assignment

model using hairpin sequencing data. Specifically, coverage depth refers to the number of

unique reads that overlap with multireads and thus can be used for inference. Table 3 shows

Fig 5. Accuracy rates of assignedmultireads and percentages of assignable multireads on ten replicates from 1% random samples from ten
genome-wide bisulfite sequencing datasets from human frontal cortex (SRA accession number GSM1163695). The black bar shows the standard
deviation.

doi:10.1371/journal.pone.0151826.g005

Table 1. The percentage of assignable multireads and the error rate (ratio of the # of reads assigned to wrong locations to the # of reads that were
assigned) as a function of coverage depth and with or without priors for simulated data.

Coverage depth Without prior With prior

Assignable rate (%) Error rate (%) Assignable rate (%) Error rate (%)

hg19_N40

3x 96.23 32.55 67.20 10.5

5x 98.10 32.48 69.34 9.96

10x 99.43 27.32 70.55 9.23

25x 99.58 21.95 71.63 9.01

30x 99.37 21.54 72.23 9.00

mm10_N40

3x 92.56 44.55 49.18 20.68

5x 96.74 44.34 52.44 20.89

10x 98.98 40.67 54.96 19.98

25x 99.43 36.68 54.96 19.81

30x 99.41 36.48 54.37 19.53

doi:10.1371/journal.pone.0151826.t001
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that as coverage depth increases from 6x to 40x, assignment accuracy increases slightly from

85.92% to 86% in Lane1 and the percentage of assignable reads decreases slightly from 70.9%

to 70.82% in Lane1, both at a lower rate than in the simulation study.

Noteworthy is that the model performs well even with low coverage, for both simulated data

and real data. Taken together, the robust performance of the assignment model towards low

coverage data makes the model particularly applicable to the current whole genome bisulfite

sequencing data (many at 10x coverage).

Effect of read length

To examine the effect of read length on the performance of the Bayesian assignment model, we

simulated BS-reads with three read lengths, 51bp, 76bp, and 101bp. All simulated data (3K, 40K,

and 100K reads for humans and mice) show similar patterns and only data with 100K BS-reads

were used to demonstrate for brevity. Fig 6 (left panel) shows that for both human and mouse

data, as read length increases, the accuracy rate of assigned multireads to their true locations

increases as well as the percentage of assignable multireads. The percentage of increase in accu-

racy rate is much higher for read lengths increasing from 51bp to 76bp than from 76bp to 101bp.

Table 2. Assignable rates and error rates for assigningmultireads with and without priors on 1% and 10% random samples from five genome-
wide hairpin bisulfite sequencing datasets frommouse ESC (without priors refers to only using observed unique reads to assign multireads).

Sample ID Without prior With prior

Assignable rate(%) Error rate (%) Error per read (%) Assignable rate (%) Error rate (%) Error per read (%)

Lane1_1 72.17 17.50 0.00043 70.97 14.01 0.00035

Lane1_10 72.27 18.30 0.00004 71.27 13.90 0.00003

Lane2_1 74.60 14.74 0.00239 73.61 11.35 0.00187

Lane2_10 74.67 15.53 0.00025 73.27 12.13 0.00020

Lane3_1 74.44 15.12 0.00275 73.54 12.78 0.00235

Lane3_10 74.54 14.58 0.00026 73.61 12.17 0.00022

Lane4_1 73.24 15.07 0.00282 72.27 12.39 0.00235

Lane4_10 74.35 14.79 0.00027 73.32 12.21 0.00023

Lane5_1 74.76 14.27 0.00251 73.77 12.12 0.00216

Lane5_10 74.23 14.44 0.00025 73.38 12.02 0.00021

doi:10.1371/journal.pone.0151826.t002

Table 3. Coverage effect on model performance for 1% random samples from the five hairpin datasets.

Coverage Lane 1 Lane 2 Lane3

Assignable rate (%) Accuracy rate (%) Assignable rate (%) Accuracy rate (%) Assignable rate (%) Accuracy rate (%)

6x 70.90 85.92 73.62 88.65 73.41 87.14

10x 70.92 85.92 73.63 88.68 73.37 87.17

20x 70.90 85.95 73.58 88.69 73.45 87.22

130x 70.90 85.99 73.47 88.71 73.42 87.25

40x 70.82 86.00 73.47 88.71 73.53 87.33

Coverage Lane 4 Lane 5

Assignable rate (%) Accuracy rate (%) Assignable rate (%) Accuracy rate (%)

6x 72.23 87.322 73.73 87.79

10x 72.27 87.329 73.77 87.83

20x 72.28 87.464 73.70 87.84

30x 72.16 87.481 73.73 87.84

40x 72.19 87.505 73.74 87.86

doi:10.1371/journal.pone.0151826.t003
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In our real data analysis, the hairpin bisulfite sequencing data contain reads with different

lengths (S4 Fig). This enabled us to determine the effect of read length on our model perfor-

mance. Reads were classified into 3 groups: short, with read length� 50 bp, moderate, with

read length between 50–76 bp, and long, with read length> 76 bp. Fig 7 shows that as read

Fig 6. Effect of read length (left panel) andmethylation rates at CpG s (right panel, CG10 refers to a methylation rate of 90% at CpGs) on the
percentage of assignable multireads and assignment accuracy rates for simulated data generated from hg19 andmm10 at 30x coverage.

doi:10.1371/journal.pone.0151826.g006

Fig 7. Effect of read length on accuracy rates and percentages of assignable multireads on 1%
random samples from five genome-wide hairpin bisulfite sequencing datasets from ESC.

doi:10.1371/journal.pone.0151826.g007
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length increases, assignable percentages of multireads increase as well as accuracy rates on 1%

random samples from the five whole-genome mouse hairpin ESC data. Reads in the long

group have highest accuracy rates, around 90% and highest assignable rates, around 75%.

Notably, more than a 10% increase in accuracy was observed from the short and moderate

groups (i.e., accuracy rate in Lane1 dataset jumps from 75.55% to 85.36%, approximately 10%

increase in accuracy).

Effect of methylation rate at CpGs

As methylation may vary as a function of genomic regions, developmental stages, tissues, spe-

cies, and so on [14] [22], it is important to examine how the multiread assignment model is

affected by varying methylation rates. We therefore simulated data with different methylation

rates (70%, 75%, 80%, 85%, 90%) at CpGs and applied the Bayesian model to assign the multi-

reads in the data. Fig 6 (right panel) shows that both the percentage of assignable multireads

and assignment accuracy rate change only slightly with respect to different methylation rates,

indicating that the method is robust to changes in methylation rates.

Effect of sequencing errors

To examine the effect of sequencing error on the assignment model, we simulated data with

different sequencing error rates ranging from 0.002% to 3%. Table 4 shows that as sequencing

error increases, for both humans and mice, accuracy rate of multiread assignment decreases.

However the percentage of assignable ambiguous reads remains similar. Comparatively,

sequencing error has a bigger impact on the mouse data than on the human data.

Discussion

The whole genome bisulfite sequencing technique allows for determination of C methylation

at the whole genome scale and with single nucleotide resolution. Though considered to be the

gold standard for characterizing DNAmethylation, its high cost has limited its application to

large research laboratories. To make the situation worse, the mapping efficiency of existing

tools has been low, mostly 50–70% as compared to over 95% in regular short reads mapping

[12]. A large proportion of reads, known as multireads, are routinely discarded from down-

stream analysis, leading to both biased methylation inference and financial loss. To address the

problem, we propose a Bayesian assignment model to help determine the most likely locations

the multireads should be mapped to. Results show that the model is effective and can be used

Table 4. Effect of sequencing errors on the percentage of assignable reads for simulated data generated from hg19 andmm10 at 30x coverage.

Sequencing error Accuracy rate (%) Assignable rate (%)

hg19_N40 mm10_N40 hg19_N40 mm10_N40

0.002% 99.31 99.36 71.10 55.05

0.005% 99.12 98.68 71.15 55.19

0.015% 98.97 98.10 71.50 56.60

0.045% 98.62 97.37 71.31 50.87

0.150% 96.97 93.60 71.54 52.23

0.500% 96.31 89.82 72.21 56.06

1.500% 95.30 85.40 72.04 52.28

3.000% 93.23 82.16 72.81 55.56

doi:10.1371/journal.pone.0151826.t004
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to increase the number of uniquely mapped read, and thus allows users to make the best use of

the data possible.

Our analysis demonstrates that read length shows a much bigger positive impact on the

model performance for real data than for simulated data: both the percentage of assignable

reads and the assignment accuracy rate increase much more with read length increase in real

data (Fig 7) than in simulated data (Fig 6). This is likely because reads from real data carry

more information than simulated reads giving the assignment model more power to differenti-

ate among the competing locations of multireads, and thus lead to better performance in real

data. We note that real whole genome bisulfite sequencing experiments usually generate reads

with 100bp or longer. Even after ends trimming, these reads are mostly longer than 76bp. The

results here suggest that, with real data, the assignment model is capable of recovering 14–20%

of the multireads to their true locations (Fig 2), and these reads can be included in downstream

analysis to provide more comprehensive information on methylation at the genome level. It

might be interesting to conduct a comprehensive survey to examine how these reads that are

routinely thrown away affect the downstream inference were they included in the downstream

analysis.

Due to the high cost of whole genome bisulfite sequencing, the depth of sequencing cover-

age is often low, approximately 10X for many experiments. This poses an additional challenge

to downstream analyses such as methylation calling and variant calling. For example, Bis-SNP,

a program that does methylation calling and SNP calling for bisulfite sequencing data, requires

an average of 30X coverage for correctly calling 96% of the SNPs [23]. Our results demonstrate

that even with low coverage of ~5X-10X, the Bayesian scoring model performs well and is sta-

ble (Tables 1 and 3).

Our Bayesian scoring model enables a high proportion of multireads to be mapped to

unique locations, which in turn increases the overall amount of sequence data suitable for the

downstream methylation inference. An interesting issue to examine is whether methylation

ratios are affected as a result of changes in the compositions of reads. Thus, we took a set of

50,000 multireads and ~500,000 uniquely mapped reads overlapping with these multireads and

another set of ~550,000 uniquely mapped reads in these regions from the human whole-

genome bisulfite sequencing data (SRA accession number SRX306253, GSM1163695, see

methods for details) and used Bismark for methylation calling. The methylation ratios at CpG

sites were very similar between the two datasets. We also took a set of 100,000 multireads and

~300,000 uniquely mapped reads and another set of ~400,000 uniquely mapped reads around

these regions and did the same analysis. The methylation ratios were still similar but as

expected there were more CpG sites covered in the former dataset. Taken together, the results

suggest it depends on data coverage and percentages of multireads. Specifically, CpG methyla-

tion ratios are expected to stay similar if the coverage is low, however, more CpG methylation

sites will be covered. On the other hand, if the coverage is high, CpG methylation ratios are

expected to be more accurate and more CpG sites will be covered. Again, the advantage of mul-

tiread mapping is to gain valuable information from “unusable” data by traditional mappers,

which benefits the subsequent calling procedure and downstream analysis.

Results for both simulated data and real data (Tables 1 and 2) show that incorporating prior

knowledge such as mutation rates and context specific methylation levels into the assignment

model helps improve the accuracy of the assignment. Moreover, for organisms without such

prior information, the assignment model can still provide robust assignment, especially

reflected by the real data. Comparatively, it is clear that information gleaned from uniquely

mapped reads plays a more important role in correctly assigning multireads.

A common problem in the development of tools for bisulfite short read mapping is the lack

of a gold standard. We addressed this by taking advantage of the hairpin bisulfite sequencing
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data that allows the recovery of the original reads (see S3 Fig for the mechanism of read recov-

ery), and assuming that the unique locations that recovered reads are mapped to are true loca-

tions. Although we required a high mapping quality (�30), it is still possible that some of the

true locations are false positives. However, the consistency shown between simulated data and

real data suggests that even if there are false positives in the gold standard, the number should

be very low. Another concern for using hairpin bisulfite sequencing data is that its characteris-

tics might be different from those of the regular bisulfite sequencing data. However, our model

performance on regular bisulfite sequencing data is very similar to that on hairpin sequencing

data, suggesting that the hairpin sequencing data is representative and can serve as gold stan-

dard for real data.

Conclusion

Amajor problem in mapping bisulfite short reads is the high percentage of multireads caused

by bisulfite conversion. To our knowledge, no program is devoted to address this problem.

Here we present a Bayesian model to assign multireads to the best possible locations. Simula-

tion and real data results show that our assignment method is effective in mapping multireads

with high accuracy. We investigated several factors that might affect the model performance,

including methylation level, coverage, sequencing error, and read length. More specifically,

methylation level has little effect, whereas sequencing errors have a negative impact on model

performance. Increasing depth of coverage and read length will increase the accuracy of assign-

ing multireads. The model performs quite well even with low read coverage. Therefore, our

scoring method can be used to effectively improve the mapping results of bisulfite sequencing

data.
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