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SUMMARY

Many facets of neuromuscular activation patterns and control can be assessed via electromyography
and are important for understanding the control of locomotion. After spinal cord injury, muscle activation
patterns can affect locomotor recovery. We present a novel application of reversible jump Markov chain
Monte Carlo simulation to estimate activation patterns from electromyographic data. We assume the data
to be a zero-mean, heteroscedastic process. The variance is explicity modeled using a step function. The
number and location of points of discontinuity, or change-points, in the step function, the inter-change-
point variances, and the overall mean are jointly modeled along with the mean and variance from baseline
data. The number of change-points is considered a nuisance parameter and is integrated out of the posterior
distribution. Whereas current methods of detecting activation patterns are deterministic or provide only
point estimates, ours provides distributional estimates of muscle activation. These estimates, in turn, are
used to estimate physiologically relevant quantities such as muscle coactivity, total integrated energy, and
average burst duration and to draw valid statistical inferences about these quantities.

Keywords: B-Splines; Change-point analysis; Electromyography; EMG; Non-constant variance; Reversible jump
Markov chain Monte Carlo; Step-function

1. INTRODUCTION

Muscles and nerves generate electrical activity during muscle activation and the myoelectric signal
can be recorded by electromyography (EMG) (Loeb and Gans, 1986). EMG activity recorded from the
lower limb muscles is used to assess neuromuscular activity during locomotion. Muscle activation patterns
can provide insight into the neural control of locomotion. After neurologic injury, such as a spinal cord
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144 T. D. JOHNSON ET AL.

injury (SCI), locomotion recovery is limited and the muscle activation patterns of the lower limbs are
significantly altered. For example, coactivity of the muscles of the lower limbs may be significantly altered
resulting in impaired gait. Interventions to ameliorate the recovery of locomotion may attempt to do so
by improving muscle coactivity. Changes in muscle coactivity during neuro-rehabilitation, as well as the
effects of load, speed, and task mechanics on coactivity are areas of active research that would also benefit
from a quantifiable measure of coactivity (Neptuneet al., 1997). It is our goal in this paper to present a
method of quantifying muscle activation patterns and its associated error which are then used to estimate
physiologically releveant parameters such as muscle coactivity, average burst duration, and total integrated
energy. We adopt a Bayesian approach to this problem.

Many physiological quantities of interest can be defined in terms of the muscle activation patterns
as recorded by EMG. In particular, the relevant information we need is in the alternating pattern of
neuromuscular activity and inactivity. The first step then is to estimate when a muscle is active and when
it is inactive. Several algorithms and computer-based methods have been developed to detect muscle
activation patterns from an EMG signal (see, for example, reviews by Hodges and Bui (1996) and Staude
and Wolf (1999)). However, none of these provide estimates of the error associated with the activation
pattern. These errors are necessary to assess the variation incurred in estimating coactivity as well as other
physiological quantities. In this paper we present a new method for muscle activation detection that allows
statistically valid inferences to be easily drawn. Our method is based on estimating the heteroscedastic
variance in EMG data and computing the signal-to-noise (SNR) ratio with ‘large’ values indicating
neuromuscular activity. We identify changes in the variance of the EMG signal using a Bayesian multiple
change-point model with ana priori unspecified number of change-points. This allows functions of the
posterior distribution to be computed and valid inferences to be drawn. We use reversible jump Markov
chain Monte Carlo (RJMCMC) (Green, 1995) simulation to estimate the posterior distribution of model
parameters. RJMCMC is a generalization of the Metropolis–Hastings MCMC algorithm that allows the
dimension of the parameter space to change, thus allowing moves between models that differ in their
number of parameters.

In the next section, we discuss current approaches to detecting onset of muscle activity and their
associated shortcomings. We present our model in Section 3 along with the details of the RJMCMC
sampler. Applications from EMG data are given in Section 4. We discuss the ramifications of model
assumption violation in Section 5 and conclude the paper with a discussion in Section 6.

2. CURRENT METHODOLOGY

Before presenting current methodology, we briefly overview EMG. Muscles have the special property
that they can convert electrical energy into mechanical work. Neurons and muscle fibers are connected
in a one to many relationship. Each muscle fiber is innervated by only one neuron; however, one neuron
innervates tens to thousands of muscle fibers. A motor unit comprises a single neuron and the muscle
fibers it innervates. For example, it is estimated that there are 610 motor units in the tibialis anterior (TA)
with 445 fibers per motor unit for a total of 271 450 TA muscle fibers (Perry, 1992). When a neuron fires it
sends an action potential down its axon to the muscle fibers that it innervates. This action potential causes
a release of a neurotransmitter across the interface of the terminal end of the axon and the muscle cell
membrane which generates an action potential over the cell membrane surface. Action potentials are an
all or none phenomenon. If the input is greater than a threshold, the action potential fires and is always
of a specific magnitude. The magnitude of the action potential is determined by the physical properties of
the neurons and muscle fibers. Larger neurons and muscles fibers generate larger action potentials than do
their smaller counterparts. EMG records these action potentials. The EMG bipolar electrode that measures
this energy is taped to the surface of the skin over the muscle of interest. The resulting EMG signal is a
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A Bayesian change-point analysis of EMG Data 145

complex interference pattern of thousands of action potentials that vary in magnitude—there are different
muscle fiber types in each muscle; in time—different motor units may be firing asynchronously and at
differing rates; and in space—the distance between the electrode and each muscle fiber is different and
the fibers a single neuron innervates are dispersed heterogeneously throughout the muscle. A detailed
account of muscle physiology can be found in Berne and Levy (1993). Details of EMG and what it is
measuring can be found in Loeb and Gans (1986).

Many physiological quantities of interest in assessing EMG data (see Section 4) can be defined
as functions of the muscle activation patterns as measured through the EMG signal. Two methods are
currently used to determine onset and cessation of muscle activity. An experienced physiologist visually
determines them or one uses a computer based method. The first method is subjective and highly
dependent on the experience and biases of the experimenter. In an attempt to remove these deficiencies,
computer based methods have been proposed (Hodges and Bui, 1996) that detect changes in muscle
activity. The most commonly used methods perform the following steps (Hodges and Bui, 1996): first,
the EMG signal is high-pass filtered to remove low-frequency signals caused by passive movement of
the electrodes and cables due to muscle contraction and floor impact (Perry, 1992). This results in a
symmetric, zero mean process. Second, the data arefull wave rectified by taking the absolute value of the
data. Third, the rectified data are band-pass filtered (this smoothed estimate of the mean of the rectified
data is called the linear envelope). Fourth, a local mean of the resultant data is calculated at each time
point. Onset of muscle activity is established when the SNR—defined here as the ratio of the full-wave
rectified and smoothed signal mean to the full-wave rectified and smoothed baseline mean—first becomes
greater than some multiple of the baseline standard deviation. Once a muscle is active, a drop in the
SNR to less than some multiple of the baseline standard deviation constitutes cessation of muscle activity.
Band-pass filtering removes high-frequency noise components on a global scale. Statistical models that
use global smoothing to estimate the mean hitherto assume that the error terms have constant variance
(Eubank, 1988). However, a glimpse at the residual plot (not shown) reveals that the rectified data do not
have constant variance. Hence, this assumption is violated and significantly complicates assessment of the
error. Finally, the bandwidths used to smooth the data are not optimally chosen—they are selected by what
appears reasonable for the data at hand (Hodges and Bui, 1996) or by using a single global kernel in all
situations instead of using a more objective method such as cross-validation (Eubank, 1988). In principle,
one could attempt to remove these deficiencies by approximating the model error, defining a test statistic,
and endeavoring to determine the asymptotic distribution of the test statistic (note in this connection
EMG patterns from several consecutive steps are analysed as one single time series. EMG patterns from
consecutive steps are correlated and so steps are not analysed as independent observations, which makes
it difficult to assess the standard error by bootstrap methodology). Instead, we adopt a Bayesian approach
that is well suited for this problem and circumvents this arduous task.

3. THE MODEL

In a general setting, consider a non-stationary time seriesY = (Yi )
N
i=1 whose first two moments

depend on time according to the following model:

Yt = µ(t, θ) + f 1/2(t, φ)εt . (1)

Hereµ is the mean function dependent on time and perhaps a parameter setθ , εt are independent, zero
mean, constant variance 1 error terms, andf is a strictly positive function of time and possibly the
parameter setφ. The intersection ofθ andφ need not be null. Variants of this type of heteroscedastic model
have been extensively used in finance theory and econometrics since the early 1980s when Engle (1982)
introduced the autoregressive conditional heteroscedasticity (ARCH) model which was subsequently
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146 T. D. JOHNSON ET AL.

generalized (GARCH) by Bollerslev (1986). These models were developed to model the volatility present
in several different economic phenomena and have appeared numerous times in one form or another in the
finance and econometrics literature (see the reference list in Bollerslevet al. (1992)). Specifically, ARCH
models the conditional variance as a function of past sample variances while leaving the unconditional
variance constant. GARCH allows the conditional variance to further depend on lagged conditional
variances. The linear GARCH(p,q) model thus specifies the functionf in (1) as

f (t) = α0 +
q∑

i=1

αi (yt−i − µ(t − 1))2 +
p∑

j=1

βi f (t − 1)

where the parameter setsθ andφ are implied withφ equal to thep lagged conditional variances and the
q lagged sample variances. Positivity constraints must also be imposed on theα andβ. When p = 0 this
model is the ARCH model and whenp = q = 0 the model reduces to white noise. These models are
useful in predicting the daily volatility of stock market indices.

Prediction of a new value is not our aim and we therefore allowf to be an arbitrary, strictly positive
function. A general, nonparametric estimate off can be obtained by splines (de Boor, 1978; Wahba,
1990). In this paper, we handle the positivity constraint by modeling log( f ) and estimate it with a first-
order spline (i.e. by a step function). We also assume that the data are a zero mean process and reflect this
in our prior forµ(t, θ).

Let the EMG signal be denoted byY = (Yi )
N
i=1 with observed valuey measured at timesti . In our

particular application, the time points are equally spaced,δ ≡ ti+1 − ti = 1 millisecond for all i and
there are no missing data. Further we assume thatt1 = 0 andtN = T . Suppose there arek change-points.
The location of thej th change-point will be denoted byc j ∈ (0, T ). Let c0 ≡ 0 andck+1 = T . Define
c(k) = (ci )

k
i=1. The interval between thej th and( j + 1)th change-points will be denoted byI j . That is,

I j = [c j , c j+1) for j = 0, . . . , k − 1 and Ik = [ck, ck+1]. Within I j let f = σ 2
j . Hence, within interval

I j , Yi ∼ N (µ, σ 2
j ) whereµ is the overall mean of the EMG data. The vector of baseline EMG data will

be denoted byZ = (Zi )
M
i=1 with observed valuez. We further assume that theεi are iid N (0, 1). The

baseline data are modeled iidN (µb, σ
2
b ). Different muscles are modeled separately. We emphasize here

that the baseline signal is collected when the leg is at rest before the beginning of the experiment and is a
distinct and separate time series from the EMG signal. The EMG and baseline data from a single muscle
are jointly modeled.

Mk will denote the model withk change-points. Conditional onc(k), we have a(k + 4)-dimensional
parameter space: the mean and variance of the baseline, the mean of the EMG signal and variances for
each of thek + 1 intervalsI j . Let σ 2(k) = (σ 2

i )k
i=1. We gather these parameters into the two vectors

θ(k) = (µ, σ 2(k), c(k)) andθ(b) = (µb, σ
2
b ). Weconsider the hierarchical structure for the joint distribution

of (k, θ(k), y):

p(k, θ(k), y) = p(k)p(θ(k) | k)p(y | k, θ(k)).

The baseline data are assumed independent of the EMG data so the full joint posterior is

p(k, θ(k), θ (b), y, z) = p(k)p(θ(b))p(θ(k) | k)p(y | k, θ(k))p(z | θ(b)).

3.1 Prior distributions and Likelihood

For model selection, that is the number of change-points, we assume a uniform distribution on the integers
0, . . . , L whereL is a predetermined maximum. Conditional onMk , the change-point locationsc(k) are
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A Bayesian change-point analysis of EMG Data 147

distributed as the even-numbered order statistics from 2k + 1 points iidU (0, T ) (Green, 1995). Hence,
the prior distribution of the change-point locations is

p(c1, . . . , ck) = (2k + 1)! T −2kc1(c2 − c1) · · · (ck − ck−1)(1 − ck/T ).

Further,µ ∼ N (0, 1) andξ j ≡ ln(σ 2
j ) ∼ N (7.5, 100) for j = 0, . . . , k. For the baseline data,µb ∼

N (0, 1) andσ 2
b ∼ Inv-gamma(0.001, 0.001) all independently of one another. TheN (0, 1) prior for the

mean of the EMG signal reflects our belief that the overall mean is zero. The log variances of the EMG
signal range from approximately 3.5 to 11.5. TheN (7.5, 100) prior for the log variance was chosen by
centering it over this range and scaling it to be rather flat over 3.5 to 11.5. The priors for the baseline
mean and variance are standard conjugate priors for normal data. The parameters for these priors reflect
our belief that the baseline has a mean of zero. However, we do not know,a priori, the variance and so
choose a vague prior for it.

We assume that withinI j the data are iidN (µ, σ 2
j ). Let n j denote the number of observed points in

the time series in intervalI j . The log likelihood, given modelk and ignoring the baseline data, is

−1

2

k+1∑
j=1


n j ln(2πσ 2

j ) + 1

σ 2
j

∑
y∈I j

(y − µ)2


 .

The log likelihood of the baseline is

−1

2

[
n ln(2πσ 2

b ) + 1

σ 2
b

n∑
j=1

(z j − µb)
2

]

wheren is the number of points in the baseline data.

3.2 Possible transitions

Wesystematically propose updates to the parameter. However, one could also consider randomly updating
model parameters. At each iteration, we propose an addition of a change-point and then propose a deletion.
Next, we propose location updates followed by proposals for the EMG data mean and then for the inter
change-point variances. Finally, we update the baseline mean and variance by sampling directly from their
joint posterior. If the current model isML , we do not propose a change-point addition; likewise, if the
current model isM0, adeletion and change of location are not possible and these steps are ignored.

The location for a new change-point is proposed at random on the interval(0, T ). This location must
lie within an existing intervalI j with probability 1. To preserve identifiability, this new change-point is
labeledc j+1 with the indices of all subsequent change-points being incremented by 1. Given modelMk ,
adeletion is proposed by selecting a change-point randomly and uniformly on the integers 1, . . . , k.

3.3 Dimension-matching

By adding or deleting change-points, we respectively increase or decrease the dimension of the parameter
space. Thus, when proposing a jump between subspaces, dimension-matching criteria must be defined
between the two subspaces to insure that these moves are well defined and so that detailed balance is
achieved (Green, 1995).

In modelMk to propose a new change-point,c∗, within interval I j = [c j , c j+1) we define dimension-
matching between the current log variance,ξ j , and the proposed new log variancesξ ′

j , ξ
′
j+1 defined on
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148 T. D. JOHNSON ET AL.

[c j , c∗) and [c∗, c j+1), respectively. We assume that the current log variance is well supported in the
posterior and so we drawx | ξ j ∼ N (ξ j , 0.5) and then make the transformation

ξ ′
j+1 = x

(c j+1 − c j )ξ j = (c∗ − c j )ξ
′
j + (c j+1 − c∗)ξ ′

j+1.

The second equation above separates the new log variances as a weighted average of the current log
variance with weights equal to the lengths of the intervals on which they are defined. The 0.5 variance
was chosen empirically to give a reasonable rate of convergence and good mixing properties. A change-
point deletion atc j is proposed by taking the weighted average of the two current log variancesξ j−1 and
ξ j defined on[c j−1, c j ) and[c j , c j+1). Hence the new log varianceξ∗

j−1 is related toξ j−1 andξ j by

(c j+1 − c j−1)ξ
∗
j−1 = (c j+1 − c j )ξ j + (c j − c j−1)ξ j−1.

3.4 Proposal density ratios

Proposing changes to a mean, variance or change-point is straightforward following the Metropolis–
Hastings algorithm (Metropoliset al., 1953; Hastings, 1970). Specifically, we propose a new mean
by drawing fromN (µ, ζ 2). A new log variance,ξ ′

j , for the j th interval is proposed by drawing from

N (ξ j , ν
2). A change to the location,c j , of the j th change-point is proposed by drawing from a truncated

N (c j , min(c j+1 − c j , c j − c j−1)/λ) with support(c j−1, c j+1). ζ 2, ν2, andλ are adjusted during the first
5000 iterations so that the acceptance rates are in the range of 25% to 35%.

For proposals that move across subspaces, the form of the acceptance probability is more complicated
and may be written as (Green, 1995)

min[1, (l.r.) × (proposal ratio)× (prior ratio)× (Jacobian)] (2)

where l.r. stands for likelihood ratio. To insure detailed balance, the density ratio of the random variates
drawn for dimension matching purposes and the Jacobian of the dimension matching transformation must
be included in the density ratio.

In particular, the proposal density ratio for a change-point addition atc∗ in I j is

(l.r.) × T

k + 1
× (2(k + 1) + 1)! (c∗ − c j )(c j+1 − c∗)

(2k + 1)! (c j+1 − c j ) T 2
(3)

× 1√
200π

exp

[
− 1

200

{
(ξ ′

j − 7.5)2 + (ξ ′
j+1 − 7.5)2 − (ξ j − 7.5)2

}]
(4)

× √
π exp

[
(x − ξ j )

2
]

× c j+1 − c j

c j+1 − c∗ . (5)

The last two terms in (3) are the proposal ratio for this particular move type and the prior ratio for the
number and location of change-points, respectively. The term in (4) is the prior ratio for the log variances.
The first term in (5) is the the reciprocal of the conditional density of the random variatex drawn for
dimension matching purposes and the last term is the Jacobian of the dimension matching transformation.
The proposal density ratio for a deletion of an existing change-point is the reciprocal of this expression.

4. APPLICATIONS

Wenow apply our model to the analysis of EMG data. First, we apply our method to EMG data during
locomotion from a non-disabled subject and from a SCI subject. The estimated activation patterns are used
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A Bayesian change-point analysis of EMG Data 149

to define coactivity. We compare coactivity patterns from the SCI subject at two different speeds and show
that coactivity changes with speed in the SCI subject. Second, we estimate the total area under the linear
envelope. Third, we apply our model to muscle activity from an individual with a spinal cord injury during
forced dorsi-flexion (physically flexing the foot toward the knee). Our primary interest is in three major
muscles of the lower leg—the MG, the Soleus, and the TA. The Soleus and MG are plantar flexors and
the TA is a dorsi flexor.

The data are recorded and digitized at 1000 Hz. A high-pass zonal filter (Pratt, 1991), with a cutoff
frequency of 40 Hz, is applied to remove low-frequency signals that are a result of passive movement
of the electrodes and cables due to mechanical movement and floor impact (Perry, 1992). The resulting
signal is zero-mean and non-stationary (Staude and Wolf, 1999). WithinI j we assume that the signal is
iid N (µ, σ 2

j ).
Post simulation processing of the results from the RJMCMC sampler to detect patterns of muscle

activity and inactivity forms the basis of our applications. We use the posterior distribution of the variance
within each intervalI j and the variance of the baseline to detect these patterns. Specifically, we use the
SNR defined as the square-root of the ratio of the signal variance to that of the baseline (Mauger and
Brown, 1995). The baseline noise is obtained by recording 1 s of EMG while the muscles are at rest prior
to applying the experimental condition. Mathematically, the SNR in intervalI j is

SNRj =
√

σ 2
j /σ

2
b .

We define the muscle as active inI j if SNR j � 2.5 and inactive otherwise. Further, any duration of
activity less than 30 ms is considered to be a noise spike and any duration of inactivity less than 39 ms
is considered to be an artifact of the interference pattern which may occur when the net sum of all the
action potentials reaching the bipolar electrode cancel each other out (Bereset al., 2002). Noise spikes
are removed and interference artifacts, typically occuring during rather long period of activity, are ‘turned
on’ and included as part of the activity burst.

Our focus is on detecting the activation patterns in the EMG signal and not on model selection. Hence,
we treat the number of change-points as nuisance parameters and integrate them out of the estimated
posterior distribution. We ran each simulation for 50 000 iterations discarding the first 20,000 iterations as
a burn-in. We reduce the inherent autocorrelation in the chain by saving every tenth iteration. Hence, we
estimate the posterior distribution with 3,000 samples from the Markov chain. The maximum allowable
number of change-points was 500—more than twice as many as needed for all datasets analysed.

Convergence of model parameters in a reversible jump algorithm is difficult to assess because
the definition of model parameters may change across subspaces. Brooks and Giudici (1998) suggest
monitoring convergence on any set of model parameters whose definition does not change across
subspaces. Coactivity, area, and average burst duration (all defined subsequently) are the parameters of
interest and do not change definition across models. Hence, we monitor convergence on these parameters.
Each chain was run three times. The largest estimated potential scale reduction (Gelman and Rubin, 1992),
R̂, was less than 1.05.

4.1 Coactivity during locomotion

In this section we use our methodology to compare coactivity in an individual with a spinal cord injury at
two different speeds. EMG data from six consecutive steps on a treadmill at 1.8 mph from the SCI subject
(8.578 s) and 1.2 mph (10.465 s) and from a representative non-disabled subject at 1.8 mph (8.087 s) were
recorded and analysed. The six steps were analysed as a single, long time series and not as six separate
data sets. CPU times for these data sets are given in Table 1.
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150 T. D. JOHNSON ET AL.

Table 1.CPU times for the RJMCMC method. Code written in C and run on a
PC with a 700 MHz AMD Athalon processor. For comparison, the conventional

method took less than a minute for each subject/muscle combination

CPU Time in Minutes
Muscle SCI, 1.2 mph SCI, 1.8 mph Non-disabled

Sol 97.8 86.8 38.7
MG 83.3 80.7 49.2
TA 72.2 53.9 46.6

Changes in coactivity across speeds is an important factor for locomotor training interventions.
We define coactivity between two muscles as half the sum of the proportion of time two muscles are
simultaneously active to the total time either muscle is active and the proportion of time two muscles
are simultaneously inactive to the total time either muscle is inactive. A value of one indicates perfect
coactivity; a value of zero indicates no coactivity. Partition the intervals for musclei = 1, 2 into those
where there is activity,Ai , and those without activity,A′

i . Further, subscript intervalj for musclei by Ii j

and letm denote Lebesgue measure. Then coactivity between muscles 1 and 2 is

C O A(1, 2) = 0.5

{∑
I1 j ∈A1

∑
I2 j ∈A2

m(I1 j ∩ I2k)

m(∪2
i=1 ∪Ii j ∈Ai Ii j )

+
∑

I1 j ∈A′
1

∑
I2 j ∈A′

2
m(I1 j ∩ I2k)

m(∪2
i=1 ∪Ii j ∈A′

i
Ii j )

}
. (6)

The first summand above gives a measure of how often the two muscles are simultaneously active relative
the total time either muscle is active; the second summand is a measure of the relative simultaneous
inactivity. Note that many of the intersections in the numerators above will be empty. In the unlikely event
that the two muscles are always active, the second summand above is ignored. Similarly if both muscles
are always inactive, we ignore the first summand above.

Figures 1 and 2 show the EMG data and the estimated SNRs from a randomly selected step from
the non-disabled subject and from the SCI subject (1.8 mph), respectively. Muscle activation patterns
are easily detected from the SNR plots. Histograms of the number of change-points are displayed in
Figure 3. The maximum allowable number of change-points was 500—well above the range observed.
Posterior density estimates of coactivity for the non-disabled subject and the SCI subject are displayed in
Figure 4. Coactivity means and standard deviations are tabulated in Table 2 along with their differences.
The coactivities between the TA and either the Soleus or MG are larger in the SCI subject than in this
representative non-disabled subject. We can compute the posterior probability that the coactivity in the SCI
subject stepping at 1.8 mph is greater than that at 1.2 mph by determining the percentage of differences that
lie above zero. These posterior probabilities are given in the last column of Table 2. These probabilities
suggest that speed affects coactivity in this individual.

4.2 Total area under the linear envelope

A quantity that is commonly quoted in EMG analysis is the total area under the linear envelope. The
linear envelope is an estimate of the mean of the rectified EMG signal. Given our model, the expected
value of the absolute value of the EMG signal, the rectified signal, is a constant times the standard
deviation. In particular ify ∼ N (0, σ 2), thenE(|y|) = √

2σ 2/π . The EMG data from the first step from
the non-disabled subject was rectified and smoothed with a smoothing spline (the functionsmooth.spline
in S-PLUS) with the smoothing parameter selected by cross-validation. The areas for the three muscles
are tabulated in Table 3. The estimated areas under the rectified and smoothed curves are given in the first
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Fig. 4. Posterior density estimates of coactivity between the lower leg muscles in a non-disabled subject (upper panel)
and a SCI subject (lower panel).
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Table 2.Coactivity means and standard deviations between the Soleus and the TA, the Soleus
and the MG, and the MG and the TA. The last column is the posterior probability that the

coactivity measured for the SCI subject at 1.8 mph is greater than at 1.2 mph

SCI, 1.2 mph SCI, 1.8 mph Difference
Coactivity Mean S.D Mean S.D. Mean S.D. Pr(COA1.8 > COA1.2)

Sol. and MG 0.710 0.017 0.666 0.017 -0.044 0.024 0.037
Sol. and TA 0.535 0.016 0.607 0.021 0.071 0.027 0.997
MG and TA 0.601 0.020 0.655 0.021 0.055 0.029 0.966

Non-disabled
Sol. and MG 0.722 0.025
Sol. and TA 0.179 0.011
MG and TA 0.241 0.014

Table 3.Area under the linear envelope estimates in µV-sec

Muscle Rectified RJMCMC 0.025 quantile 0.975 quantile
Sol 29.58 28.27 26.79 29.88
MG 40.99 40.50 38.37 42.93
TA 39.69 38.63 36.69 40.75

column. The estimated area from our model is given in the second column. The last two columns give the
lower and upper 0.025 quantiles from our model. The estimated area obtained by rectifying and smoothing
the data are well supported under the estimated posterior distribution of the total area.

4.3 Average burst duration during passive dorsi-flexion

Werecorded 2 s of EMG from the Soleus, MG, and TA during passive dorsi-flexion—the foot is passively
moved toward the knee by a therapist. This is a clinical test to measure the level of spasticity that
commonly occurs after spinal cord injury (Ashby and McCrea, 1987). Figure 5 shows EMG traces for
this dataset along with their estimated mean SNRs (the rapidly changing muscle activity pattern seen here
is calledclonus). The estimated SNRs of the three muscles are shown superimposed on one another in
Figure 6. It is evident from this figure that the activity patterns of the three muscles are synchronized.

The average (activity) burst duration, average inter-burst duration, and frequency of bursts are
important factors for understanding the underlying physiology of clonicity after spinal cord injury.
Although we can compute the posterior distribution of the inter-burst duration and burst frequency, we
only focus on the average burst duration. The average burst duration for musclei is defined as

∑
Ii j ∈Ai

m(Ii j )
/

Ni

whereNi is the number of bursts. That is, sum up the total time of activity and divide by the number of
distinct periods of activity. The posterior densities of the average burst duration for the Soleus, MG, and
TA are displayed in Figure 7 and their means and standard deviations are reported in Table 4.

The Soleus average burst duration is substantially longer than that of the MG which is substantially
longer than that of the TA. In general, the Soleus is activated earlier than the MG and becomes inactive
later than the MG. Likewise, the MG is typically activated early than the TA and becomes inactive later
(see Figure 6).
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Fig. 6. Signal-to-noise ratio during passive dorsi-flexion. Soleus —, MG· · · , TA - - -.
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Fig. 7. Posterior density estimates of average burst duration of the lower leg muscles during passive dorsi-flexion in
aSCI subject.
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Table 4. Average burst duration means
and standard deviations during passive

dorsi-flexion

Muscle Mean (sec.) S.D.
Soleus 0.0628 0.0033
MG 0.0510 0.0012
TA 0.0438 0.0013

5. ROBUSTNESS AGAINST VIOLATION OF MODEL ASSUMPTIONS

For our model, we assume that the data are iidN (µ, σ 2
j ) within I j , and that the baseline data are iid

N (µb, σ
2
b ). A spectral analysis of the passive dorsi-flexion data suggests that this assumption is violated.

Figure 8 shows several power spectra from the SCI subject. The first column of panels show the power
spectra of the baseline Soleus and MG signals. There is a strong frequency component at 160 Hz that
accounts for approximately 35% of the variability in the Soleus baseline signal and about 25% of the
variability in the MG baseline signal. There are several smaller frequency components in each signal—
each account for less than 4% of the variability in the data. We also observed frequency components in
the EMG signal between change-points. In the inactive regions, the same frequency component is present
in both the Soleus and the MG (second column of panels). The power spectra of the Soleus and MG,
during a period of muscle activity, are displayed in the third column of panels. When the Soleus is active
we observed a second, stronger frequency component at approximately 110 Hz. These two components
account for approximately 33% (at 110 Hz) and 27% (at 160 Hz) of the variability observed during
Soleus activity. In the MG, the only dominant frequency component occurs at 110 Hz accounting for
approximately 55% of the total variability. Similar frequency components are also present in the TA.
The spectral contents of EMG signals are comprised of many complex and poorly understood factors
(Loeb and Gans, 1986) and thus we do not speculate on the physiological relevance and meaning of
these frequency components. Nevertheless, the question arises whether our model is robust against this
violation.

To answer this question, we simulated two clonic-like activity patterns to mimic the Soleus and the
MG, along with baseline data. We wish to know whether our estimates of coactivity and average burst
duration are robust against this model assumption violation. We consider the following model:

yt = A cos(2π f1t + φ1) + B cos(2π f2t + φ2) + εt .

Here, εt are iid N (0, σ 2) random variables,f1 and f2 are the signal frequencies,A and B are the
component amplitudes, andφ1 andφ2 are the phases.

One second of data sampled at 1000 Hz, every 0.001 s, withf1 = 0.16, A = 1.0, B = 0, andφ1 = 0
was generated to simulate the baseline frequency component. Noise was added by choosingσ 2 so that
35% of the total variability of the Soleus, and 25% of the total variability of the MG, is due to the 160 Hz
frequency component.

Wesimulated fifty clonic-like activity patterns of the Soleus and MG by alternately simulating periods
of inactivity with periods of activity. For the Soleus, we simulated 11 periods of inactivity withA = 1.0,
B = 0, and f1 = 0.16. We added noise by selectingσ 2 so that 35% of the total variability is due to the
160 Hz frequency component. Since phase shifts and offsets at the interface between periods of activity
and inactivity may affect the location of the change-points, we randomly selected the phase,φ1, for each
of these inactivity periods from the set

{−3π/4, −π/2, −π/3, −π/4, 0, π/4, π/2, 2π/3, 3π/4, π}.
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Simulated Soleus
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Fig. 9. Examples of our simulated Soleus and MG clonic-like activity patterns.

To simulate the 10 periods of activity, we setA = B = 10, f1 = 0.11, f2 = 0.16, and randomly selected
φ1 andφ2 from the set of phases above. The length of each period of activity (in miliseconds) was drawn
from N (65, 5) (so the average burst duration isN (65, 0.5). The lengths of the inactive periods were drawn
from N (135, 5). For the MG, we also simulated 11 periods of inactivity alternating with ten periods of
activity. For the inactivity periods,A = 1.0, B = 0, and f1 = 0.16. We added noise so that 25% of the
total variability is due to the frequency component. We randomly selected the phase,f1, for each inactivity
period from the set above. We simulated the ten activity periods by settingA = 10, B = 0, and f1 = 0.11.
Each phase was selected from the above set of phase angles. Each period of inactivity was drawn from
N (150, 5) except the first and last which were set to 140 ms and 145 ms long, and each period of activity
was drawn fromN (50, 5). Figure 9 shows one simulated pair of data.

Figures 10, 11 and 12 display the results of the simulation. Each histogram is based on pooling the
results from the 50 simulations. The true average burst durations are 65 ms and 50 ms, respectively for
the simulated Soleus and MG. Our pooled estimates (means) of the posterior mean average burst duration
are 64.8 ms and 50.2 ms, respectively. The variance of the average burst durations was 0.5 ms for both
the simulated Soleus and MG. Our pooled estimates (medians) were 0.6 ms for the Soleus and 0.7 ms
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Fig. 10. Estimated posterior distribution of ABD from our simulated Soleus and MG data pooled over all ten
simulations. True Soleus ABD= 65 ms. True MG ABD= 50 ms.
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Fig. 11. Estimated posterior distribution of the variance of the ABD from our simulated Soleus and MG data pooled
over all ten simulations. True Soleus Var of ABD= 0.5. True MG Var of ABD= 0.5.

for the MG. The mean coactivity between the two simulated EMG patterns is 0.839. The estimate of the
posterior (pooled) mean coactivity is 0.842. For comparison, we also ran the current methodology Hodges
and Bui (1996) on the simulated data. The current methodology, for determining onset and cessation of
muscle activity during walking, band-pass filters the rectified data (50–1000Hz) followed by taking local
averages (window width= 25). When the local average is greater than three times the baseline average
for more than 50 consecutive points, the muscle is said to be active, when it drops below three times the

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/4/1/143/246259 by U

.S. D
epartm

ent of Justice user on 16 August 2022



162 T. D. JOHNSON ET AL.

0.80 0.82 0.84 0.86 0.88

0 
   

   
  1

0 
   

   
 2

0 
   

   
 3

0 
   

   
 4

0

Co-activity

Fig. 12. Estimated posterior distribution of coactivity from our simulation based on pooling our ten simulations. True
coactivity= 0.839.

baseline average for more than 150 consecutive points, the muscle is said to be inactive. For our simulated
data, these numbers did not suffice and we had to ‘tune’ the values to get reasonable results. Our window
width for the local averages was 5 for the Soleus and 10 for the MG. A muscle became active if it was
above three times baseline average for more than 25 consecutive points and became inactive if it was
below three times baseline average for more than 75 consecutive points. The average coactivity was 0.835
(s.e. 0.05). The average burst duration for the Soleus was 65.9 ms (s.e. 2.2) and the average burst duration
for the MG was 50.0 ms (s.e. 2.0).

No overt frequency components were observed in the baseline data for the non-disabled volunteer
nor during periods of muscle inactivity. However, there was a strong component during muscle activity.
We did not simulate EMG during locomotion. To design a simulation that mimics the complex bursting
patterns seen during stepping would be extremely difficult. The resulting SNRs from our analyses of the
non-disabled subject (Figure 1) empirically suggest that our model is correctly identifying the activation
patterns and there is no compelling reason why the above results do not apply to EMG during locomotion.

This limited simulation study suggests that our model is robust against departures from our assumption
that between change-points the data are iid Normal and that the baseline data are iid Normal.

6. DISCUSSION

Wehave shown how RJMCMC simulation can be used to model the variance function of a zero-mean,
heteroscedastic process and have applied our method to the analysis of EMG data. The major advantage
of our method over those to date is that we can easily assess the variability of the activation patterns and,
thus, of those quantities that can be computed as functions of these activation patterns. These physiological
quantities, such as coactivity, can be used to diagnose pathological disorders and assess interventions.
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We have used a step function to estimate the variance function,f , in equation 1. One could
alternatively use a higher order spline which would result in a smoother estimate of the variance function.
However, co-location of several knots may be required to model the non-smooth, either undifferentiable
or discontinuous, changes in the variance function that occur at abrupt interfaces between periods of
activity and inactivity. Using a step function adequately captures the salient aspects of the quantities of
interest without introducing further complexities into the RJMCMC sampler. Our model also assumes
normal errors. If this is inappropriate, one may use a Student’st distribution for the error terms. One
must then select an appropriate choice for the number of degrees of freedom. A single choice for all
inter-change-point distributions may not be appropriate and so one should includeK +1 extra parameters
to the model withk change-points—one for each extra degree of freedom required to model theK + 1
inter-change-points T distributions.

We have adopted the philosophy of Loeb and Gans (1986) that in analyzing EMG signals one must
consider the unique characteristics of the EMG signal in choosing a particular technique. The patterns and
timing of muscle activity and inactivity are the characteristics in which we are interested. Although the
data from our applications violates a model assumption, our simulation study suggests that this violation
is inconsequential in light of the fact that we are not interested in estimating the frequency components
within the signal.

However, if one were interested in estimating the frequency components a suggestive model might be

yt =
K∑

i=1

Ak,t cos(2π fk,t t + φk,t ) + εt .

One could then use a reversible jump algorithm allowingK to vary while modeling each amplitude with
a spline function. GivenK , one would use a reversible jump algorithm to select the knots for each of
the K spline functions. One could then define onset of muscle activity in terms of relative amplitudes of
the signal and baseline data. Usually one would assume the error terms are iid. However, here one must
also consider heteroscedasticity. During forceful contractions of the muscle, not only do the amplitudes
and frequencies in the signal change, the associated errors increase. Thus, it is also necessary to model
the heteroscedasticity—perhaps as a function of amplitude. In the Bayesian framework a second, nested,
RJMCMC algorithm would then be required to model the variance function with splines or step functions.
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