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Abstract

Background: Warfarin is the most widely prescribed anticoagulant for the prevention and treatment of thromboembolic

events. Although highly effective, the use of warfarin is limited by a narrow therapeutic range combined with a more

than ten-fold difference in the dose required for adequate anticoagulation in adults. An optimal dose that leads to a

favourable balance between the wanted antithrombotic effect and the risk of bleeding as measured by the prothrombin

time International Normalised Ratio (INR) must be found for each patient. A model describing the time-course of the INR

response can be used to aid dose selection before starting therapy (a priori dose prediction) and after therapy has been

initiated (a posteriori dose revision).

Results: In this paper we describe a warfarin decision support tool. It was transferred from a population PKPD-model for

warfarin developed in NONMEM to a platform independent tool written in Java. The tool proved capable of solving a

system of differential equations that represent the pharmacokinetics and pharmacodynamics of warfarin with a

performance comparable to NONMEM. To estimate an a priori dose the user enters information on body weight, age,

baseline and target INR, and optionally CYP2C9 and VKORC1 genotype. By adding information about previous doses

and INR observations, the tool will suggest a new dose a posteriori through Bayesian forecasting. Results are displayed

as the predicted dose per day and per week, and graphically as the predicted INR curve. The tool can also be used to

predict INR following any given dose regimen, e.g. a fixed or an individualized loading-dose regimen.

Conclusions: We believe that this type of mechanism-based decision support tool could be useful for initiating and

maintaining warfarin therapy in the clinic. It will ensure more consistent dose adjustment practices between prescribers,

and provide efficient and truly individualized warfarin dosing in both children and adults.
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Background
Warfarin is one of the most commonly prescribed anti-

coagulants in both adults and children [1], with over 33

million prescriptions in 2011 [2]. In spite of the recent

introduction of the new oral anticoagulants (NOACs),

i.e. dabigatran, rivaroxaban and apixaban, warfarin still

remains the most prescribed anticoagulant with 90% of

Swedish patients receiving warfarin and only 10% receiv-

ing a NOAC during 2013 [3]. Although it has been in

clinical use for over 50 years, warfarin therapy is still

challenging due to a narrow therapeutic range and

considerable variability in response to a given dose.

Known contributing factors to the between- and within-

subject variability among adult patients include, age,

concurrent medications and/or health conditions, vita-

min K intake and genetic polymorphisms in two genes,

CYP2C9 and VKORC1 [4-6]. In a systematic review and

meta-analysis, patients with atrial fibrillation (AF) re-

ceiving warfarin spent 61% of the time within, 13%

above, and 26% below the target INR of 2-3 [7]. In a US

study that was published in 2011, the frequency of

warfarin-induced bleeding was reported to be 15% to

20% per year, with life-threatening or fatal bleeding rates

as high as 1% to 3% per year [8]. Annual total health

care costs were estimated to be 65% and 49% higher

for AF patients with a warfarin-induced intracranial
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hemorrhage or a major gastrointestinal bleeding, re-

spectively, than the costs for patients with no bleeding

events [9].

Dose individualization to minimize the risk for over-

or under-dosing can be made i) before starting therapy

(a priori) and/or ii) after therapy has been initiated (a

posteriori) and may range in complexity from body size

based dosing to utilization of advanced mechanism

based mathematical and statistical models. There are

several published pharmacogenetic prediction models

for a priori dose individualization of warfarin for both

adults [4,5,10] and children [11-13]. These dosing algo-

rithms aim to predict the expected maintenance dose. A

more refined way to achieve individualized dosing is to

combine methods for a priori individualization with

methods for a posteriori dose revisions, using a Bayesian

approach [14,15]. The latter utilizes knowledge of the

population distribution of the model parameters for the

drug. The most likely parameters for an individual can

be obtained using measurements of drug concentrations

[16,17] or drug responses [18,19]. These parameters can

be used to calculate the dose that most probably results

in the target response in that particular individual. By

using a predictive model combined with Bayesian fore-

casting, warfarin dosing can be truly personalized, result-

ing in rapid achievement of therapeutic anticoagulation

without increasing the risk of over-anticoagulation.

In this paper we present a warfarin dose decision tool

(available as Additional file 1) developed from a pub-

lished population model for warfarin. The model is

founded on pharmacokinetic (PK) and pharmacody-

namic (PD) principles [20-22] and is schematically pre-

sented in Figure 1. The tool can be used a priori to

predict the most probable dose to reach a given target

INR, or to predict the most probable INR response to a

given dose. It can also be used a posteriori to guide dose

revisions using a Bayesian forecasting method. The

model was developed on longitudinal data from more

than 1,500 warfarin treated adults [20-21], and then

bridged theoretically to children 0.18 years old [22].

There is a time delay between warfarin dosing and INR

response, and this is captured in the model by inclusion

of a transduction model, consisting of two parallel com-

partment chains, where n is the number of compart-

ments in each chain and MTT is the mean transit time

through each chain. Two parallel chains were necessary

to describe the exposure–response relationship over

time, and is possibly a reflection of differences in half-

lives of the coagulation factors affected by warfarin and

that influences the INR response [20]. The general form

of the model is given by the following set of equations:

dA

dt
¼ −ke � A ð1Þ

DR ¼ ke � A ð2Þ

EFF ¼
EMAX

γ � DRγ

EDK 50
γ þ DRγ

ð3Þ

dC

dt
¼

1−EFFð Þ � n

MTT
−

C � n

MTT
ð4Þ

A represents the amount of drug in the body at any

time after one or more administrated doses. The first-

order elimination rate constant, ke (derived from the

ratio of the PK parameters clearance and volume of dis-

tribution, ke = CL/V), governs the level of drug amount

A at any given time and also the distribution of the drug

to the site of action (Equation 1). The dose rate DR

Figure 1 Schematic picture of PKPD-based warfarin model. This is a schematic picture of the basic structure of the published PKPD-model

for warfarin. The predictors necessary for individual dose predictions (e.g. CYP2C9 and VKORC1 genotype, age and bodyweight, baseline and target

INR) are not included in the picture.
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(Equation 2) together with one of the PD sub models

(Equation 3), defined by the parameters Emax (the max-

imum degree of inhibition which is set to 1) and EDK50

(the dose rate resulting in 50% of maximum inhibition),

determines the extent of inhibition of the vitamin K

cycle and the inhibition of coagulation factor activity.

dC/dt (Equation 4) describes the fraction of activated co-

agulation factors remaining at any given time. The initial

conditions of dA/dt and dC/dt are set to 0 and 1, re-

spectively, i.e. no drug in the body and 100% activity of

coagulation factors before start of therapy. The INR at

any given time is predicted by the following equation:

INRPRED ¼ INRBASE þ INRMAX

� 1− C13 þ C23ð Þ=2ð Þ ð5Þ

INRBASE represents the INR at baseline (before war-

farin treatment), INRMAX is a theoretical maximal in-

crease from baseline INR (fixed to 20 as in [21]), and

C13 and C23 represents the coagulation factor activity in

the terminal compartment in each transit chain. Each

transit chain is defined by a set of differential equations

as exemplified below for the first chain C1:

dC11

dt
¼ 1−EFFð Þ �

3

MTT 1
−C11 �

3

MTT 1
ð6Þ

dC12

dt
¼ C11 �

3

MTT 1
−C12 �

3

MTT1
ð7Þ

dC13

dt
¼ C12 �

3

MTT 1
−C13 �

3

MTT1
ð8Þ

A complete description of the underlying warfarin

model can be found in the papers describing the model

development in NONMEM [20-22]. NONMEM is the

most commonly used software for non-linear mixed ef-

fects modeling of PK and PD data [23].

Implementation
Tool development

One of the published warfarin models [22] was trans-

ferred from NONMEM to a new graphical user interface

built with Java Swing components using NetBeans [24].

NetBeans refers both to a platform framework for Java

applications, and to an open source integrated develop-

ment environment, supporting development of all types

of Java applications. The differential equations in the

Java application are solved using Heun’s method, a

second-order Runge-Kutta method, which is a numerical

procedure for solving ordinary differential equations that

is both fast and easy to implement using vectors. Heun’s

method is also stable for this type of differential equa-

tions and has a high numerical precision. The end result

is a Java application that, for a subject with a given set of

covariates, can estimate the maintenance dose for a pre-

specified target INR or predict the INR response for a

pre-specified dose regimen. There are two main win-

dows in the application, one for a priori predictions and

one for a posteriori predictions. The rate constant ke is

referred to as k10 in the tool.

A priori predictions

The tool needs input data regarding the patient in order

to operate. Data on age, weight, CYP2C9 and VKORC1

genotype, baseline INR and target INR range are re-

quired both for dose estimation and for INR prediction.

If genotype information is missing, the tool will use the

most common genotype combination, conditioned on

ethnicity [25,26]. This means that for CYP2C9 all sub-

jects with missing genotype information will be coded as

*1/*1 i.e. the genotype with the highest dose require-

ment. For VKORC1 the tool will use A/G for Caucasians

(intermediate dose requirement), A/A for Asians (low

dose requirement) and G/G for Africans (high dose re-

quirement). If baseline INR is missing the tool will use a

default value of 1. The dosing interval has a default value

of 24 hours, i.e. one dose per day, but this can be chan-

ged manually if another dosing interval is preferred.

Common to all a priori predictions is that the model will

use the typical (mean) parameter estimates conditioned

on the patient’s age, bodyweight and CYP2C9 and

VKORC1 genotype.

Estimation of dose

To calculate the dose most likely to achieve the target

INR, the option “Estimate dose” is chosen; see example

in Figure 2. The tool uses the mean of the specified tar-

get INR interval as the target INR for which a dose

should be estimated. The tool starts with a daily dose of

10 mg and calculates the expected INR after 100 daily

administrations of the same dose, to ascertain that

steady state conditions are reached. Depending on if the

calculated INR is lower or higher than the target INR,

the dose will be adjusted automatically in an iterative

process until the calculated mean INR at steady state

equals the target INR (Target INR ± 1%). The criteria for

steady-state is met when the change in INR between two

doses does not exceed 1%. To illustrate the expected

time course to a therapeutic and stable INR, the output

is presented as a plot of the predicted typical INR curve

from the 1st dose until steady state is reached. In

addition, a text field shows the predicted maintenance

dose in mg/day, mg/week and the number of 2.5 mg tab-

lets per week that is closest to the estimated weekly

dose. The latter is an adaptation to Swedish conditions

where only a 2.5 mg tablet strength is marketed. The

target INR range is marked in the plot to support the in-

terpretation of the predicted INR curve.
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Prediction of INR

When the tool is used to predict an INR (See example in

Figure 3), the user has to specify the dose and the num-

ber of days this dose should be repeated. The output is

presented both as a plot of the predicted INR curve for

the number of days specified, and as a text field showing

the predicted INR at the end of this period. If steady

state conditions have been reached the tool will display

the mean INR over a dosing interval. If steady state con-

ditions are not yet reached, the presented value is the

predicted INR at 16 hours after last dose. The time point

was chosen to reflect the clinical situation in Sweden,

where INR is commonly monitored in the morning ap-

proximately 16 hours after last dose. There is also an op-

tion to predict INR after administration of a loading

dose regimen. To do this “Starting doses” must be

ticked, and the “Set doses” window opened. The user

can specify a number of individual doses by entering the

dose per day. If individual doses are chosen for the first

three doses (e.g. Dose 1: 7.5 mg, Dose 2: 5 mg, Dose 3:

Figure 2 Example of the a priori dose estimation function. This shows an example of an a priori dose estimation for a 5 year old child, with

bodyweight 20 kg, genotypes CYP2C9 *2/*2 and VKORC1 A/A, with a target INR of 2.0-3.0 and a baseline INR of 1.2. The estimated maintenance

dose is 0.7 mg/24h, or 4.9 mg/week. The graph indicate that with this dose regimen, time to reach a target INR is ~6 days, and time to steady

state is ~12 days.

Figure 3 Example of the a priori INR prediction function. This shows an example of an a priori INR prediction for a 20 year old, with bodyweight

75 kg, genotypes CYP2C9 *3/*3 and VKORC1 A/G, with a target INR of 2.0-3.0 and a baseline INR of 1. The predicted INR after a total of 15 doses,

including a 3-day loading dose regimen of 7.5 mg, 5 mg and 5 mg (not seen here but defined in the Set doses option) and followed by daily doses

of 1.5 mg, is an INR of 2.57. The graph indicate that a target INR is reached after ~3 days with this dose regimen.
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5 mg) and the total number of doses for the INR predic-

tion is set to 15, the tool will automatically use the dose

specified in the main window for the remaining 12

doses. Figure 3 shows the output from the example

above with a 3-day loading dose regimen followed by

1.5 mg per day on Day 4-15.

A posteriori predictions

Once treatment has been initiated and one or more INR

observations are available, the tool can be used to sug-

gest a tailored maintenance dose based on individualized

parameter estimates. This is done in several steps using

a Bayesian approach. The first step is to estimate indi-

vidual model parameters, and this is done using Powell’s

method. The tool then uses the individual model param-

eters in the next step, which can be either dose estima-

tion or INR prediction. As more observations become

available, the individual model parameters become more

refined and specific to the individual patient. This is ex-

pected to increase the accuracy and precision of the dose

and INR predictions.

Estimation of individual model parameters

For estimation of individual model parameters the tool

requires patient specific information on demographics,

initial warfarin doses and INR observations, including

time of dosing and blood sampling for INR. The infor-

mation can be entered either manually, or be imported

from an Excel-file (see Additional files 2 and 3 for details

on naming of files and required data format). When the

data have been entered, click on “Estimate” to get the in-

dividual model parameter values for k10 and EC50. The

output is presented in a new screen (see Figure 4) as a

text field showing the typical (mean) parameter

estimates for k10 and EC50 and the individual parameter

estimates, and as a plot of the population predicted INR

curve (in black) and the individually predicted INR curve

(in red). The patient’s INR observations are also shown

in the plot, which gives the user a chance to evaluate the

individual fit. Optionally the individually predicted INR

curve can be presented with a 90% confidence interval,

to include uncertainty in the individual parameter esti-

mates and the residual variability due to e.g. random er-

rors in delivered dose, blood sampling time and/or INR

measurements. When the individual model parameters

have been estimated, select “Estimate Dose/INR” to get a

new screen with the options “Estimate dose” and “Pre-

dict INR”.

Estimation of dose

Figure 5 shows a screen shot of the dose estimation op-

tion. The tool now uses the individual model parameters

to suggest a tailored maintenance dose. The output is

presented as a plot, with the individually predicted INR

curve after administration of the tailored maintenance

dose, starting from its current position (Day 0 in the

plot). It is also presented as a text field showing the pre-

dicted dose in mg/day, mg/week and the corresponding

number of 2.5 mg tablets per week. The target INR

range will be displayed in the plot together with the indi-

vidually predicted INR curve.

Prediction of INR

When predicting INRs, the user has to specify a dose

and the number of days this dose should be repeated.

The output is a plot of the predicted INR curve for the

number of days specified, and a text field showing the

predicted INR at the end of the treatment period. If

Figure 4 Example of the estimation of individual parameters. This provides an example of the output from the estimation of individual

model parameters, showing both typical and individual parameter estimates, and the population predicted (black) and the individually predicted

(red) INR curves for a given dose history. The individually predicted INR is presented with an optional 90% confidence interval.
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steady state conditions have been reached the tool will

display the mean INR over the dosing interval. If steady

state conditions are not yet reached, the predicted INR

at 16 hours after last dose is presented. This function

may be useful e.g. in situations where it is not feasible to

administer the same dose every day with available for-

mulations. Thus, when different daily doses are required,

the tool can visualize the variability in INR response that

this regimen is expected to introduce. The tool can also

be used to predict when warfarin should be discontinued

to reach below a certain INR value at a given point in

time, which can be of use e.g. before a planned surgical

procedure.

Results and discussion
The computational performance of the Java-based tool

was evaluated by comparing the output with the POST-

HOC function in NONMEM version 7 as the reference.

This was done using treatment data (one to three INR

observations) from a total of 49 children [22]. A priori

predicted maintenance doses and empirical Bayes esti-

mates of individual parameters and a posteriori predic-

tions of maintenance doses from the tool and from

NONMEM were compared. Results from a priori com-

parisons are presented in Figure 6, and from a posteriori

comparisons in Figure 7. There were no differences in a

priori maintenance dose predictions with the Java based

tool compared to NONMEM, but a mean difference in a

posteriori maintenance dose predictions of 5.0% (SD

6.7%). There was a systematic difference in a posteriori

maintenance dose predictions, with a bias (mean predic-

tion error, MPE) of -0.104 mg and an imprecision

(relative mean prediction error, RMPE) of 0.192 mg. Per-

formance was benchmarked on a MacBook Pro with a

3.06 GHz Intel Core 2 Duo processor. Run times for a

typical a priori prediction was a few seconds. For a pos-

teriori predictions, run times were correlated with the

length of the treatment history used for computation of

empirical Bayes estimates. However, total run times,

including estimation of a tailored maintenance dose, sel-

dom exceeded 1 minute. A typical run time for a poster-

iori prediction of dose from 7 days of treatment history,

including 3 INR observations, was less than 10 seconds.

The dose prediction tool is based on a published

population warfarin model for adults [21] that has been

theoretically bridged to children through the use of

physiological principles [22]. The model incorporates

age, bodyweight, baseline and target INR, and CYP2C9

and VKORC1 genotype (defined or assumed) for a priori

dose predictions, and uses doses and INRs from ongoing

treatment for a posteriori dose revisions. The warfarin

model was developed in NONMEM [23], which is the

most commonly used software for non-linear mixed ef-

fects modeling of clinical PK and PD data. Dose

optimization could in theory be performed using this

software, but there are several reasons for moving to an-

other environment. NONMEM, like other specialized

software for non-linear mixed effects modeling, has i) a

high knowledge threshold for use, ii) specific demands

for data input, and iii) requires licensing of a program.

All these aspects would impede the use of the model as

a dose decision tool. An advantage of the tool compared

with other warfarin dose algorithms, is that it can be

used to adjust warfarin dosing a posteriori due to other

Figure 5 Example of the a posteriori dose estimation function. This shows an example of an a posteriori dose estimation for a 1.53 year old

child, with bodyweight 20 kg, genotypes CYP2C9 *1/*1 and VKORC1 A/A, and target INR 2.0-3.0 and a baseline INR of 1 using the individual

model parameters estimated in Figure 4. The estimated a posteriori dose is 1.08 mg/24 h, or 7.56 mg/week. The graph shows the predicted INR

curve after administration of the estimated daily dose (1.08 mg).
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known or unknown factors than those specifically in-

cluded in the prediction model. When the a posteriori

function is used, the tool will start by estimating individ-

ual model parameters based on the patient’s input data.

The individual model parameters can be seen as the pa-

tient’s warfarin phenotype, and determines how the pa-

tient most likely will respond to therapy. When the

individual model parameters are estimated all factors

that affect the PK or PD of warfarin, e.g. regular exercise,

vitamin K intake, interacting drugs or other medical

conditions, will be taken into account and influence dose

predictions. Another advantage of the tool is its ability

to handle INR observations under non-steady-state con-

ditions. INR observations that are measured during

Figure 6 Comparison of a priori dose predictions. This figure provides results from a comparison of a priori dose predictions from NONMEM

and the Java-based tool. The validation was performed using treatment data from 49 external children, and the results indicated no differences in

computational performance between the two methods.

Figure 7 Comparison of individual parameter estimates and a posteriori dose predictions. This figure provides results from comparisons

of individual parameter estimates (K10 and EC50) and a posteriori dose predictions from NONMEM and the Java-based tool. The validation was

performed using treatment data from 49 external children, and the results indicated minor differences in computational performance between

the two methods.
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initiation of warfarin therapy or after dose changes give

valuable information about an individual patient’s re-

sponse to warfarin, both concerning rate and extent.

The tool can use INR values from start of therapy and

provide estimates of the expected INR at steady state. In

theory, this means that patients can reach a stable main-

tenance dose in less time and with fewer dose adjust-

ments and INR measurements than an empirical dosing

regimen.

When comparing maintenance dose predictions from

NONMEM and the Java based tool, there was a system-

atic difference with a bias (MPE) of -0.104 mg and an

imprecision (RMPE) of 0.192 mg for the tool. These dif-

ferences are relatively small and are not expected to in-

fluence dose recommendations when considering the

limitations in available tablet strengths. That there is a

difference between the tool and NONMEM may be ex-

plained by differences in i) the optimization algorithm

used when estimating individual doses, and ii) the defin-

ition of target INR at steady state. The Java based tool

defines the target INR as the mean INR during a dosing

interval whereas NONMEM defines the target INR as

the INR at 16 hours post dose.

Conclusions
The predictive performance of the underlying published

warfarin model has been extensively evaluated and

shown to perform well in predicting the anticoagulant

response in both children and adults [19,21,22,27]. The

dosing tool needs to be evaluated prospectively before it

can be recommended for use routinely in a clinical set-

ting. However, even before a formal validation, it is pos-

sible to build confidence in the tool by using it for

prediction of INR. Irrespective of whether the dose ad-

ministered to a patient is derived from the tool or if it is

an empirical dose, its accuracy can be evaluated by com-

paring predicted and observed INR values. A major limi-

tation with the tool from a clinical perspective is that it

has no save or printing function. However, there is at

least one commercial dose-individualization software

tool that have our warfarin models implemented, which

has both a save and a printing function (www.doseme.

com.au). It is important to emphasize that this type of

decision support tool is not intended to substitute for

the care by a licensed health care professional, such as a

clinician, pharmacist or specialized nurse. It should ra-

ther be seen as a tool to help ensure efficient and con-

sistent dose adjustment practices between prescribers

and between different health care providers, irrespective

of target INR or target population.

Availability and requirements
Project name: Warfarin Dose Calculator 1.0.1

Project home page: www.warfarindoserevision.com

Operating system(s): Platform independent

Programming language: Java

Other requirements: Java Runtime Environment (JRE)

1.7.0 or newer

License: Apache Open source

Any restrictions to use by non-academics: No

Additional files

Additional file 1: Warfarin Dose Calculator 1.0.1. Provides important

information on how to name data files for importation of treatment data

into the Warfarin Dose Calculator.

Additional file 2: Naming of data files. Provides a template for the

data required for importing a patient’s treatment history into the Warfarin

Dose Calculator.

Additional file 3: Format of treatment history. Provides the

Java-based decision support tool described in this paper.
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A: drug amount in the body; CL: clearance; DR: dose rate; Emax: maximum

degree of inhibition; EDK50: dose rate resulting in 50% of maximum

inhibition; INR: International Normalized Ratio; ke or k10: first-order drug

elimination rate constant; MPE: mean prediction error; MTT: mean transit

time; PD: pharmacodynamics; PK: pharmacokinetics; RMPE: relative mean

prediction error; V: volume of distribution.
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