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Abstract. In this paper, wepresent anewapproach to diagnosis in studentmodelingbasedon the
use of Bayesian Networks and Computer Adaptive Tests. A new integrated Bayesian student
model is de¢ned and then combined with an Adaptive Testing algorithm. The structural model
de¢ned has the advantage that it measures students abilities at different levels of granularity,
allows substantial simpli¢cations when specifying the parameters (conditional probabilities)
needed to construct the Bayesian Network that describes the student model, and supports
the Adaptive Diagnosis algorithm. The validity of the approach has been tested intensively by
using simulated students.The results obtained show that the Bayesian studentmodel has excellent
performance in terms of accuracy, and that the introduction of adaptive question selection
methods improves its behavior both in terms of accuracy and ef¢ciency.
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1. Introduction

New technologies have provided the Education ¢eld with innovations that allow
signi¢cant improvements in the teaching/learning process. Their introduction
not only reduces the effective cost of the application of pedagogical theories,
but also opens up the possibility of exploring models from very different ¢elds,
facilitating their interaction and integration. One of the main innovations introduced
since the ¢rst Computer Aided Learning programs are the so-called Intelligent
Tutoring Systems (ITS), that, in contrast to traditional programs, have the ability
to adapt to each individual learner. It is precisely this ability to adapt to each student
that allows these programs to improve the teaching/learning process, as it has
already been shown that the best learning method is individualized learning
(Bloom, 1984).
Therefore, if the key characteristic of an ITS is its ability to adapt to each student

(Shute, 1995), the key component of such a system is the student model, where
all the information about the student is stored, including his/her cognitive state
about the subject domain. The cognitive state is generated from student behavior
during interaction with the system, that is, it is inferred by the system from the
information available; previous data answers to questions posed by the system,

User Modeling and User-Adapted Interaction 12: 281^330, 2002. 281
# 2002 Kluwer Academic Publishers. Printed in the Netherlands.



instructional episodes, etc. The process that consists of inferring the cognitive state
of the student from observable data is called diagnosis. Diagnosis is without doubt
the most complicated process in an ITS since, besides the inherent dif¢culty of
any inference process, it involves the treatment of information that in many cases
is uncertain and/or imprecise. In addition, although it has been shown that a student
model can be useful even without being very accurate (Stern, Beck andWoolf, 1996),
it is clear that the more accurate it is, the better the job it can do. However, when it
comes to the diagnosis process, the great knowledge engineering effort involved
in developing an ITS is such that many designers prefer to develop their own
heuristics instead of using Approximate Reasoning techniques available within
the Arti¢cial Intelligence ¢eld. The problem is that, in some cases, the lack of
theoretical foundations of such heuristics can make the system’s behavior
inadequate or unpredictable, yielding results different from the ones originally
expected.
In this way, the main goal of our work is to improve the accuracy and ef¢ciency of

the diagnosis process in an ITS. To this end, we have explored the possibility of using
Approximate Reasoning techniques, with special emphasis on simplifying their
application as much as possible to encourage their use among ITS researchers.
The proposed solution is founded on the de¢nition of a new integrated student model
based on Bayesian Networks (BNs), and on the application of Computer Adaptive
Tests theory to improve the ef¢ciency and accuracy of the diagnosis process. This
new Bayesian student model allows measurement of a student’s knowledge at
different levels of granularity (that is, the subject domain is curriculum-structured),
as well as substantial simpli¢cations when de¢ning the BN (nodes, links, and
parameters). It also accounts for the possibility of lucky guesses (giving the right
answer to a question even when the student has not mastered the related concepts)
and of having an unintentional error or slip (giving the wrong answer to a question
even when the student knows all the related concepts).
Both the Bayesian student model alone and its combination with Adaptive Testing

techniques have been tested intensively by using simulated students. The main
advantage of using simulated students is that the cognitive state obtained as a result
of the diagnostic algorithm can be compared to the student’s true cognitive state.
A total of 180 simulated students with different knowledge levels were generated.
Then, the diagnostic algorithm estimated the set of known concepts, and the ¢tness
of this estimation was analyzed. The use of the Bayesian student model with random
question selection criteria produced up to 90.27% correctly diagnosed concepts.
These results can be improved by using the proposed adaptive criterion, going
up to 94.53% correctly diagnosed concepts. Moreover, the number of questions
needed to obtain these estimations using the adaptive criterion proposed was
smaller, so the gain is not only in accuracy but also in ef¢ciency.
This paper is structured as follows: in the next section we brie£y describe the

theoretical background underlying our integrated student model. Sections 3 and
4 are devoted to the de¢nition of the BN (nodes, links, and parameters) that supports
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the student model and to the description of the Adaptive Testing Algorithm,
respectively. An in-depth evaluation of the proposed integrated student model
and diagnostic algorithm is presented in Section 5. Finally, we present a comparative
review of some related work and outline some conclusions and future lines of
research.

2. Theoretical Background

As already explained, our work is based on the use of Bayesian Networks and
Adaptive Testing Theory. In this section we brie£y present the basics of both
theories.

2.1. BAYESIAN NETWORKS

A Bayesian Network (BN) (Pearl, 1988) is a directed acyclic graph in which nodes
represent variables and arcs represent probabilistic dependence among variables1.
The parameters used to represent the uncertainty are the conditional probabilities
of each node given each combination of states of its parents; that is, if
fXi; i ¼ 1; . . . ; ng are the variables of the network and paðXiÞ represents the set of
the parents of Xi, for each i ¼ 1; . . . ; n, then the parameters of the network are
fP(Xi/paðXiÞÞ, i ¼ 1; . . . ; ng, that is, the set of discrete conditional probability
distributions of each variable given its parents. This set of probabilities de¢nes
the joint probability distribution for the entire network as,

PðX1 ; . . . ;XnÞ ¼
Yn
i¼1

PðXi=paðXiÞÞ

Thus, to de¢ne a BN, we have to specify:

. The set of variables, X1;X2; . . . ;Xn.

. The set of links (arcs) between those variables. These arcs represent a causal
in£uence between the variables. The network formed with these variables
and arcs must be a Directed Acyclic Graph (DAG).

. For each variable Xi, its probability conditioned to its parents, that is,
P(XijpaðXiÞÞ, i ¼ 1; . . . ; n.

If we are using BNs to de¢ne a student model, the variables can represent different
things depending on the domain. The variables can be rules, concepts, problems,
abilities, skills, etc. These variables are linked by relationships between them, such
as part-of, prerequisite-of, etc. Once the links and the variables have been de¢ned,
the conditional probabilities must be speci¢ed. Our integrated student model will
be de¢ned in line with this description in Section 3.
1For an easy introduction to BNs see (Charniak, 1991) and for a comlplete presentation (Castillo
et al., 1997).

A BAYESIAN DIAGNOSTIC ALGORITHM 283



2.2. ADAPTIVE TESTING

A Computer Adaptive Test (CAT) is a test administered by a computer where the
selection of the next question to ask and the decision to stop the test are performed
dynamically based on a student pro¢le, which is created and updated during the
interaction with the system. The main difference between CATs and traditional
Paper and Pencil Tests (PPTs) is the same difference that exists between traditional
Training Systems and ITSs, that is, the capability to adapt to each individual student.
The advantages of CATs have been widely discussed in the literature (Kingsbury and
Weiss, 1983), and more recently reported in (Wainer, 1990). The main advantage is a
signi¢cant decrease in test length, with equal or better estimations of the student’s
knowledge level. This advantage is a direct consequence of using adaptive question
selection algorithms, that is, algorithms that choose the best (most informative)
question to ask next, given the current estimation of the student’s knowledge. Some
other advantages come from using a computer to perform the tests: larger databases
of questions can be stored, selection algorithms can be used ef¢ciently, and a great
number of students can take the tests at the same time, even if they are in different
geographical locations.
In more precise terms, a CAT is an iterative algorithm that starts with an

initial estimation of the examinee’s pro¢ciency level and consists of the following
steps:

(1) All the questions in the database (that have not been administered yet) are
examined to determine whichwill be the best to ask next according to the current
estimation of the examinee’s level.

(2) The question is asked, and the examinee responds.
(3) According to the answer, a new estimation of the pro¢ciency level is computed.
(4) Steps 1 to 3 are repeated until the stopping criterion de¢ned is met.

This procedure is illustrated in Figure 1.

Figure 1. Flow diagram of an adaptive test. Adapted from (Olea and Ponsoda, 1996).
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In (Weiss and Kingsbury, 1984), the basic elements in the development of a CAT are
de¢ned. These basic elements are:

. Item Response model. This model describes how examinees answer the item
depending on their level of ability. When measuring pro¢ciency, the result
obtained should be independent of the tool used, that is, this measurement
should be invariant with respect to the type of test and to the individual that
takes the test.

. Scoring method, that is, a method to compute the student’s ability level
according to his/her answers.

. Item pool. This is one of the most important elements in a CAT. A good item
pool must contain a large number of correctly calibrated items at each ability
level (Flaugher, 1990). Obviously, the better the quality of the item pool,
the better the job that the CAT can do.

. Initial level. Suitably choosing the dif¢culty level of the ¢rst question in a test
can considerably reduce the length of the test. Different criteria can be used,
e.g. taking the average level of knowledge of the examinees that have taken
the test previously or creating an examinee pro¢le and using the average level
of examinees with a similar pro¢le, as proposed in (Thissen and Mislevy, 1990).

. Question selection method. Adaptive tests select the next item to be posed
depending on the estimated pro¢ciency level of the examinee (obtained from
the answers to items previously administered). Selecting the best item to
ask given the estimated pro¢ciency level can improve accuracy and reduce test
length.

. Termination criterion. Different criteria can be used to decide when the test
should ¢nish, depending on the purpose of the test. An adaptive test can ¢nish
when a target measurement precision has been achieved, when a ¢xed number
of items has been presented, when the time has ¢nished, etc.

The psychometric theory underlying most CAT implementations is Item Response
Theory (IRT) (Birnbaum, 1968; Hambleton, 1989). All IRT-based models have
some common features: (1) they assume the existence of latent traits or aptitudes
that allow us to predict or explain the examinee’s behavior; and (2) the relation
between the trait y and the answers that a person gives to a test item Qi can be
described with an increasing monotonous function called the Item Characteristic
Curve (ICC). The most commonly used model to describe the ICC is the
three-parameter model (Birnbaum, 1968), which states that the ICC associated with
a question Qi is given by the following function:

PiðyÞ ¼ Pð Correct answer to QijyÞ ¼ cið1� ciÞ
1

1þ e�1:7aiðy�biÞ

Thus, the probability of correctly answering Qi given a certain knowledge level y is
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given by the three-parameter function PiðyÞ. This function is plotted in Figure 2 with
ai ¼ 1:2, bi ¼ 5, and ci ¼ 0:25.
Let us examine the meaning of these parameters2:

. ai, is called the discrimination index, and de¢nes the slope of the curve at its
in£ection point. Therefore ai denotes how well the question is able to discrimi-
nate between students of slightly different abilities.

. bi is called the dif¢culty degree, and de¢nes the location of the curve’s in£ection
point. The higher the value of bi, the more dif¢cult the question.

. ci is called the guessing factor and represents the left asymptote of the curve.
Therefore the probability of a correct answer to question Qi for students of
very low ability is close to ci.

According to (Olea and Ponsoda, 1996), if the three-parameter logistic model is used
a good item pool should have the following characteristics:

. Discrimination indexes should be big (most of them bigger than 1.2), so precise
estimations can be made with few items.

. There must be approximately the same number of items in each dif¢culty level.

. The guessing factor should be close to 1/n, where n is the number of possible
answers.

An excellent primer to CATs and IRT can be found in (Rudner, 1998), where it is
possible to try an actual CAT online. For more detailed descriptions, (Wainer, 1990)
and (Van der Linden and Hambleton, 1997).
Having described the basics of BNs and CATs, the next two sections describe how

we use them in the student modeling problem.

3. An Integrated Approach to Bayesian Student Modeling

In this section, we describe the structural model used in our approach to Bayesian
student modeling. The student model de¢ned is an overlay student model (as
described in (Van Lehn, 1988)), that is, the student’s knowledge is considered as

Figure 2. ICC Graphic.

2In the interactive tutorial described in (Rudner, 1998) it is possible to play with these parameters
to obtain a better understanding of their meaning.
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a subset of the expert’s knowledge. Part of this model has already been described in
(Milla¤ n et al., 2000). The section is structured as follows: in Section 3.1 we describe
the nodes that are used in the BN. Having de¢ned the nodes, the causal relationships
between the variables are discussed in Section 3.2.

3.1. VARIABLES

In this section we describe the different types of variables that compose our Bayesian
student model: variables to measure a student’s knowledge and variables to collect
evidence.

3.1.1. Variables to Measure the Student’s Knowledge
To measure the student’s knowledge, we use variables at different levels of
granularity. In order to keep terminology simple, we use the names concept, topic,
and subject, while bearing in mind that they could represent declarative knowledge,
skills, abilities, etc.

. A concept is an elementary piece of knowledge, in the sense that it cannot be
decomposed into smaller parts. Elementary concepts are considered the basic
units of knowledge.

To represent an elementary concept C we use a random variable C with a Bernoulli
distribution, that is, C takes two different values: 1 if the student knows the concept,
or 0 otherwise. The probability law of C will then be:

PðC ¼ xÞ ¼ pxð1� pÞ1�x;

where p is the probability that the student knows concept C, and x can take values 0
and 1.

. A topic is a pair (C, w), where:

^ C is a set of elementary concepts C ¼ fC1; . . . ;Cng, which are mutually
independent.

^ w ¼ ðw1; . . . ;wnÞ is a weight vector that measures the relative importance of each
concept in the topic it belongs to. Without loss of generality, we assume thatPa

i¼1 wi ¼ 1.

To measure the student’s knowledge about a topic, we use a random variable T
de¢ned by:

T ¼
Xn
j¼1

wjCj

. A subject is a pair (T ; aÞ, where:

^ T is a set of mutually independent topics, T ¼ fT1; . . . ;Tsg.
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^ a ¼ ða1; . . . ; as) is a weight vector that measures the relative importance of each
topic in the subject it belongs to.We also assume that

Ps
i¼1 ai ¼ 1.

By de¢nition, we know that each topic is composed of a set of mutually independent
concepts with their respective weights, that is, for each i ¼ 1; . . . ; s the topic Ti is
composed of a set of concepts fCij; j þ 1; . . . ; nig and a weight vector
w ¼ ðwi1 ; . . . ;wini ), de¢ned by the expression:

Ti ¼
Xni
j¼1

wijCij

To represent the student’s knowledge about a certain subject A, we use a random
variable A de¢ned by:

A ¼
Xs
i¼1

aiTi

Let us consider the following example in order to illustrate the use of such variables.

EXAMPLE 1. Let us suppose that a teacher is designing a Mathematics course,
whose contents and structure are given in Table 1.
Although it is not always the case, in this example we consider that the time

devoted to each topic and subtopic is a measure of its importance. Therefore,
the course speci¢cation can be easily translated to the representation de¢ned above.
The weight of a topic (subtopic) can be computed as the number of days associated
with it over the number of days associated with the subject (topic) it belongs to.
Thus, for example, the weight for the subtopic Functions of the topic Calculus is
18/90. Table 2 shows the granularity hierarchy associated with this example.
Note, however, that other criteria could be used to set the relative importance of

each topic (concept) in the subject (topic), such as the desired proportion of questions
in a exam or any other subjective estimation of the teacher.

Table 1. Design of a ¢ctitious Mathematics course

Subject
Time
(months) Topic

Time
(months) Subtopic

Time
(days)

Mathematics 6

Calculus

Trigonometry

Geometry

3

2

1

Functions
Di¡erentiation
Integration
Applications
Basic concepts
Trigonometric functions
Applications
Basic concepts
Applications

18
22.5
22.5
27
18
18
24
12
18
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3.1.2. Nodes to Collect Evidence
These nodes are used to collect the information relevant to the student’s knowledge
state. In our model, the source of evidence is the set of test items related to knowledge
nodes. To represent an evidence node, we use a random variable P with a Bernoulli
distribution, that is, it takes the value 1 when the student chooses the right answer,
and 0 otherwise. The probability law of P is then given by:

PðP ¼ xÞ ¼ pxð1� pÞ1�x;

where p represents the probability that the student chooses the right answer, and x
takes values 0 or 1.
Although we will be considering only test items, note that other sources of

evidence (such as exercises, tasks, problems, etc.) can also be considered in the model
and represented by a binary random variable, provided that the ITS has the
capability to diagnose whether the student’s solution is right or wrong3.

3.2. MODELING CAUSAL RELATIONSHIPS: LINKS AND PARAMETERS

Having de¢ned the nodes, we determine the causal relationships among them, as
follows: aggregation relationships between knowledge variables at different levels
of granularity, and relationships between evidential and knowledge nodes.

3.2.1. Modeling Aggregation Relationships
In order to discuss these relationships, we use the general expression Knowledge Item
(KI) to refer either to a subject, a topic, concept, skill, etc. Aggregation or part-of
relationships are established between a KI and the KIs it is composed of. For
example, the relationship is established between a subject and its topics or between
a skill and the more speci¢c subskills it can be divided into.

Table 2. Granularity hierarchy for the subject Mathematics

Subject Topics Weights Concepts Weights

Mathematics

Calculus

Trigonometry

Geometry

a1 ¼ 0:5

a2 ¼ 0:3

a3 ¼ 0:2

Functions
Di¡erentiation
Integration
Applications
Basic concepts
Trigonometric functions
Applications
Basic concepts
Applications

w11¼ 0.2
w12¼ 0.25
w13¼ 0.25
w14¼ 0.3
w21¼ 0.3
w22¼ 0.3
w23¼ 0.4
w31¼ 0.4
w32¼ 0.6

3Ideally, if such sources of evidence are to be included in the model, their solution should be eval-
uated in terms of a discrete or even continuous randomvariable, that is, there should be different
degreesofcorrectness for the answer. However, the use of suchvariables increasesboth the compu-
tational complexity and the knowledge engineering effort (number of parameters required) to
define the BN.
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Let us suppose that I is a KI that can be divided into more speci¢c KIs that will be
denoted by I1; . . . ; In. Each KI will be represented by a binary random variable with
two values: mastered or not mastered. To model the causal relationships between
them we have two alternatives:

. Alternative 1: We consider that knowing the more speci¢c items has a causal
in£uence on knowing the more general item.

. Alternative 2: We consider that knowing the more speci¢c item has a causal
in£uence on dominating each of the more speci¢c items it is composed of.

These two alternatives are graphically depicted in Figure 3.
Next, we analyze the independence structures implied by each alternative, and the

parameters that need to be speci¢ed.

(a) In Alternative 1, the parameters needed are: the prior probabilities of knowing
each Ii, that is, fPðIiÞ; i ¼ 1; . . . ; ng and the conditional probability distribution
of I given its parents, that is, PðI jfI1; . . . ; Ing). This makes a total of
nþ 2n � 14 values. Regarding independence, this structure implies that the Ii’s
(for i ¼ 1; . . . ; n) are mutually independent.

(b) In Alternative 2, the parameters needed are: the prior probability of I, P(I), and
the conditional probabilities fPðIijIÞ; i ¼ 1; . . . ; ng. This makes a total of
2nþ 1 values. Regarding independence, the structure implies the conditional
independence of the Ii’s given I (for each i ¼ 1; . . . ; n).

It is also interesting to analyze the evolution of the probabilities of the network as
new evidence is acquired:

(a) In Alternative 1, evidence about mastering an item Ij changes the probability of
mastering its child I. Evidence about mastering I changes the probability of
its parents Ii, I ¼ 1; . . . ; n, and opens communication among them (further
evidence about Ii will a¡ect the certainty of Ij).

(b) In Alternative 2, evidence about mastering an item Ij changes the probability of its
parent I, which in turn changes the probabilities of the other children Ii (i 6¼ j).
Evidence about mastering I changes the probabilities of its children Ii, for

Figure 3. Alternatives to model causal relationships.

4The numberof parameters is nþ 2n, but one of the parameters does not need to be specified as it
can be computed providing that the probabilities must add up to1.
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i ¼ 1; . . . ; n and blocks communication among them (further evidence about Ii
will not a¡ect the certainty of Ij ).

Thus, the main differences are that in Alternative 2, evidence about mastering an
item Ij affects the probability of mastering the rest of the items of the same level,
Ii (with i 6¼ j) and that the evidence about I opens (Alternative 1) or blocks
(Alternative 2) the communication among the Iis. It is not clear which of the
two alternatives models aggregation relationships better. Perhaps this is the reason
why examples of both of them can be found in the literature. For example, Alterna-
tive 1 was chosen by Van Lehn and his team for the ANDES system (Conati et
al., 1997; Van Lehn, 1996) and also by the ARIES team (Collins et al., 1996) in
their studies about Adaptive Testing, whereas Alternative 2 was chosen by Mislevy
and Gitomer (Mislevy and Gitomer, 1996) in HYDRIVE, and also by Murray
in his Desktop Associates (Murray, 1998). Nevertheless, none of them compare both
alternatives or justify their decision.
In our model we have chosen Alternative 1. The main reasons for this choice

are:

(a) From the point of view of knowledge representation, Alternative 1 considers that
the student’s learning occurs in a gradual and incremental way. That is, when
a student learns a topic, the usual procedure is to study each of the parts that
compose the topic (usually in the order suggested by the teacher). In the same
way, if a student is acquiring an ability (for example, learning how to use certain
instruments), this ability is acquired by learning each of the necessary subskills
(learning how to use each instrument).

(b) From the point of view of evidence propagation, we have discarded Alternative 2
because, in our opinion, evidence that a certain item Ii is mastered should
not increase our belief that other items Ij are mastered (unless there is indepen-
dent con¢rmation that item Ij is mastered), since this would mean that when
we study a concept our probability of knowing another concept belonging to
the same topic increases.

(c) As for parameter speci¢cation, Alternative 1 could seem more complex, because
it requires an exponential number of parameters instead of the polynomial
number required by Alternative 2. However, in Sections 3.2.2 and 3.2.3 we
show how the de¢nition of the knowledge nodes allows us to use an equivalent
network whose parameters can be easily computed from the set of weights
de¢ned.

3.2.2. Relationships Between Concepts and Topics
As just discussed, we consider that knowing each of the concepts in a topic has a
causal in£uence on knowing the topic, and therefore the BN corresponding to these
relationships has the structure depicted in Figure 4.
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The parameters of this network are:

. Prior probabilities of each concept, fpi; i ¼ 1; . . . ; ng

. The conditional probability PðT jfCigi¼1;...;n), given by the expression:

PðT ¼ xjðfCi ¼ 1gi2S; fCj ¼ 0gj =2SgÞÞ ¼
1 if x ¼

X
i2S

wi

0 otherwise.

(

where S ¼ fj 2 f1; . . . ; ng such that Cj ¼ 1g.

Then, when this network is initialized, we obtain the probability law of the random
variable T.
The values taken by the random variable T can be easily interpreted: if T takes a

certain value x 2 [0,1], this means that if the student is asked to apply his/her
knowledge about topic T in n situations, he/she will demonstrate mastering the topic
in xn situations, where the set of possible situations is content balanced, that is, if the
total number of situations is n, win of them are relevant to the elementary conceptCi,
for each i ¼ 1; . . . ; n.
The behavior of the BN depicted in Figure 4 can be emulated with an equivalent

BN, which we de¢ne next and show in Figure 5.
In this network all the variables are binary (i.e., the set of possible values is f0; 1g),

and the parameters are de¢ned by:

^ Prior probabilities for the Ci, PðCi ¼ 1Þ ¼ pi, for each i ¼ 1; . . . ; n.
^ Conditional distribution of T 0 given the values of the Ci, that is:

PðT 0jfC1; . . . ;CngÞ ¼
X
i2S

wi:

This binary random variable T 0 does not have clear semantics. The motivation for
introducing it is that, as the next proposition shows, it allows us to determine

Figure 4. BN to model the relationship between a topic and its concepts.

Figure 5. Equivalent BN.
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the value that the continuous random variable T takes. In this way, we can use the
BN represented in Figure 5 instead of the BN represented in Figure 4, with the
advantage that all of its nodes are binary (therefore making its speci¢cation and
handling easier).

PROPOSITION 1. Let us assume that the random variables C1; . . . ;Cn take a certain
set of values, that is, for a certain S subset of f1; . . . ; ng we have that Ci ¼ 1 for each
i 2 S and Ci ¼ 0 for each i =2S. Then, the random variable T takes a certain value
x if and only if the a posteriori probability that the random variable T 0 takes the
value 1 is x, that is,

P�ðT ¼ xÞ ¼ 1, P�ðT 0 ¼ 1Þ ¼ x

Proof. First we show the necessary condition. Let S be the subset of f1; . . . ; ng such
that Ci ¼ 1 for each i =2S and Ci ¼ 0 for each i =2S. Then, if x represents the value
that the random variable T takes, that is, if x ¼

P
i2S wi, the a posteriori probability

that the random variable T0 takes the value 1 is:

P�ðT 0 ¼ 1Þ ¼
X
i2S

wi ¼ x

To show that the condition is also suf¢cient, let x be the a posteriori probability that
T 0 takes the value 1. Then, necessarily, x ¼

P
i2S wi, and therefore P

�ðT ¼ xÞ ¼ 1:&

We recall that the importance of this proposition is that it allows us to use the BN
shown in Figure 5 to obtain an estimation of the student’s knowledge level in topic
T, with the advantage that we are dealing with a binary variable T’ instead of with
a discrete variable T.

3.2.3. Relationship Between Topics and Subject
As discussed in Section 3.2.1, we also consider that knowing each of the topics in a
subject has a causal in£uence on knowing such a subject, and therefore, adding these
relationships to the BN that represents the concepts and topics we obtain the BN
shown in Figure 6.
The parameters of this network are:

. The prior probabilities of knowing each concept, fpij; i ¼ 1; . . . ; r; j ¼ 1; . . . ; nig.

. For each i ¼ 1; . . . ; r, the conditional distribution PðTijfCijgj¼1;...;ni Þ, given by
the expression:

PðTi ¼ xjðfCij ¼ 1gj2Si ; fCik ¼ 0gk 62Si ÞÞ ¼
1 if x ¼

X
j2Si

wj

0 otherwise

(

where Si ¼ fj 2 f1; . . . ; nig such that Cij ¼ 1g for each i ¼ 1; . . . ; r.
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. The conditional distribution PðAjfTi; i ¼ 1; . . . ; rgÞ, given by

P A ¼ xj Ti ¼
X
j2Si

wj

( )
i¼1;...;r

0
@

1
A ¼

1 if x ¼
Xr
i¼1

ai
X
j2Si

wj

0 otherwise

8<
:

If we initialize this network, we obtain the probability law of the random variable
A.

The interpretation of the values that the random variable A takes is similar to the
interpretation of the values of the topics: the random variable A takes a certain
value k 2 [0,1] when the student shows mastery of the subject in kn out of n situations
relevant to subject A, where the set of n situations is content balanced, that is, it takes
into account the relative importance of each concept in a topic and of each topic in
the subject. In this way, if the total number of situations is n, ajwin of them are
relevant to the elementary concept Cij, for each i ¼ 1; . . . ; r and j ¼ 1; . . . ; ni.
Next, we show that, as before, the behavior of the BN shown in Figure 6 can be

emulated with the equivalent BN depicted in Figure 7.
In this BN all the variables are binary, and its parameters are:

. Prior probabilities for the Cij, P(Cij ¼ 1Þ ¼ pij for i ¼ 1; . . . ; r and j ¼ 1; . . . ; ni:

. Conditional distribution of T 0
i given the Cij, de¢ned as:

PðT 0
i jCij; . . . ;Cini Þ ¼

X
j2Si

wij :

Figure 6. BN for aggregation relationships.

Figure 7. Equivalent BN for aggregation relationships.
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. Conditional distribution of A0 given the T 0
i , de¢ned as:

PðA0jT 0
1; . . . ;T

0
sÞ ¼

X
i2V

ai;

where V ¼ fif1; . . . ; rg such that Ti ¼ 1g.

The following proposition shows that the BNs depicted in Figures 6 and 7 have an
equivalent behavior.

PROPOSITION 2. Let us assume that the random variables C1; . . . ;Cn take a certain
set of values, that is, for a certain S subset of f1; . . . ; ng we have that Ci ¼ 1 for each
i 2 S and C � i ¼ 0 for each i =2S:

. For each i ¼ 1; . . . ; s, the random variable Ti takes a certain value x if and only
if the a posteriori probability that the random variable T 0

i takes the value 1 is x.
. The random variable A takes a certain value x if and only if the a posteriori
probability that the random variable A0 takes the value 1 is x.

Proof. The ¢rst part has already been shown in Proposition 1. For the second part,
we only need to apply the same proposition to the part of the network that contains
the binary random variables T 0

i and the random variable A. &

In order to illustrate these results let us consider a simple example.

EXAMPLE 2. Let us assume that a student is learning how to identify a certain
vegetable species, in such a way that knowing the subject consists of being able
to correctly identify vegetables belonging to three different species, that we call
species 1, 2, and 3.
The relative importance of the topics is measured in terms of a set of weights that

are speci¢ed by the teacher. Let us assume that these weights are w1 ¼ 0:2,
w2 ¼ 0:5, and w3 ¼ 0:3, meaning that a balanced exam for this subject should contain
20% of questions relevant to species 1, 50% relevant to species 2, and 30% relevant to
species 3.
Let us also assume that there is a student whose probabilities of correctly

identifying species 1, 2, and 3 are 0.8, 0.6, and 0.7, respectively. What is the
knowledge level reached by this particular student in the subject?
The traditional way of measuring this knowledge level is to calculate the

percentage of correct answers in the exam. This value can be computed using
the total probability law. Let A be the event ‘the student gives the correct answer
to a question about the subject’, and, for each i ¼ 1, 2, 3 let Bi be the event ‘the
question is relevant to species i0.
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Then, by the total probability law we have that:

PðAÞ ¼ PðAjB1ÞPðB1Þ þ PðAjB2ÞPðB2Þ þ PðAjB3ÞPðB3Þ

¼ 0:8 0:2þ 0:6 0:5þ 0:7 0:3 ¼ 0:73:

Meaning that, if this student is presented with a balanced set of n questions, he/she
will give the correct answer to 0.73 n of them.
Let us now show how the BN de¢ned can emulate this behavior. The nodes in the

network are: I = knowledge about the subject, and Ei ¼ knowledge about species
i, for i ¼ 1; 2; 3. Then, the random variable I is de¢ned as I ¼ 0:2 E1 þ 0:5
E2 þ 0:3 E3, and the equivalent BN (with I0 de¢ned as in Section 3.2.2.) is depicted
in Figure 8.
The parameters of this network are the prior probabilities of each Ei (i ¼ 1; 2; 3)

(which for this particular student are PðE1 ¼ 1Þ ¼ 0:8; PðE2 ¼ 1Þ ¼ 0:6, and
PðE3 ¼ 1Þ ¼ 0; 7Þ and the conditional distribution PðI 0jE1E2E3Þ (which is computed
by adding up the weights associated with the Ei’s that take the value 1). This
conditional distribution is given in Table 3:
Then, when we initialize the network we obtain that PðI 0 ¼ 1Þ ¼ 0:73, meaning

that the knowledge variable I takes the value 0.73, i.e. the expected percentage
of correct answers that a student will give in a balanced exam is 73%.

3.2.4. Modeling Relationships Between Knowledge and Evidential Nodes
In this section we discuss how to model the relationships between knowledge and
evidential nodes. Two different models will be presented: a static model, with a
traditional BN, and a dynamic model, in which a dynamic BN is used.

3.2.4.1. Static Model. Once again, we have two alternatives: to consider that the
knowledge nodes K1; . . . ;Kn can have an in£uence on the evidential nodes, or,
conversely, that evidential nodes have a causal in£uence on knowledge nodes. Both

Figure 8. BN for the identi¢cation of vegetable species.

Table 3. Conditional probabilities of I 0

E1 1 0
E2 1 0 1 0
E3 1 0 1 0 1 0 1 0
PðI 0 ¼ 1jE1E2E3Þ 1 0.7 0.5 0.2 0.8 0.5 0.3 0
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alternatives are graphically represented in Figure 9.
The ¢rst alternative is directly based on the notion of causality: knowledge has a

causal in£uence on being able to solve situations related to these concepts. The
second alternative corresponds to representing knowledge in terms of rules: if a
situation is solved correctly, then this provides evidence about knowing the items
involved. Then, we have:

(a) In Alternative 1, the parameters to specify are the prior probabilities of mastering
each Ki fPðKiÞ; i ¼ 1; . . . ; ng, and the conditional distribution of the evidential
nodes, PðEjjfKi such that Ki 2 paðEjÞgÞ; j ¼ 1; . . . ; s. The independence struc-
tures implied by this alternative are:

^ Ki, i ¼ 1; . . . ; n, are mutually independent a priori;
^ Ki is independent of Ej for each Ej which is not a child of Ki, i ¼ 1; . . . ; n;
^ Ej is independent of every Ei (with i 6¼ j) given pa(Ej ), j ¼ 1; . . . ; s;
^ Ej is independent of Ki for each i such that Ki 2 paðEjÞ, j ¼ 1; . . . ; s.

(b) In Alternative 2, the parameters needed are: prior probabilities for the Ej,
fPðEjÞ; j ¼ 1; . . . ; sg, and the conditional distribution of Ki given its parents, that
is, fPðKijpaðKiÞ; i ¼ 1; . . . ; ng. This structure implies the following indepen-
dences:

^ Ej, j ¼ 1; . . . ; s, are mutually independent a priori.
^ Ej is independent of Ki for each Ki which is not a child of Ej, j ¼ 1; . . . ; s;
^ Ki is independent of each Kj (with i 6¼ j) given pa(Ki), i ¼ 1; . . . ; n;
^ Ki is independent of Ej for each j such that Ej 62 pa (Ki ), i ¼ 1; . . . ; n.

Therefore, the second alternative would imply the independence of Ki given the
evidence, which simply is not true as already discussed in (VanLehn et al., 1998).
Let us see a simple counterexample: suppose that being able to correctly answer
a certain question P requires mastering two KIs K1 and K2, and that question P
has been answered incorrectly. Then, knowing that the student knows K1 should
decrease the probability that the student knows K2. However, since K1 and K2
are conditionally independent given P, evidence about K1 will not affect the
probability of K2 in the way it should.
Thus, in this case, the alternative chosen is Alternative 1, that is, the one that better

describes the behavior we want the network to have.

Figure 9. Alternatives to model relationships between knowledge and evidential nodes.
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3.2.4.2. Dynamic Model. In contrast to other domains in which traditional BNs
are used, the student modeling problem has the particularity that the state of
the knowledge nodes can change over time. This is especially clear in the case of
the evidential nodes. The fact that we pose a student a question with several related
concepts and the student gives the correct answer does not mean that if we ask
another question of the same type (involving the same concepts) the student will
also solve it correctly. However, if we use a traditional BN, once a question has
been posed the evidential node is blocked with the answer obtained, and therefore
it cannot be used again. This behavior does not adequately describe the real
situation, in which a teacher can ask the same type of question twice or more to
be sure that the student is able/unable to solve it. For this reason, we think that
the use of a dynamic model is especially suitable for these relationships.
Let us brie£y describe the proposal presented in (Reye, 1998) regarding the

application of dynamic BNs to the student modeling problem. In this proposal,
for each j ¼ 1; . . . ; k; . . . ; the following nodes are de¢ned:

Lj ¼ student’s state of knowledge after the jth interaction with the system.
Oj ¼ result of the jth interaction.

The relationships between these nodes are depicted in Figure 10.
In our case, we de¢ne the following variables:

Kji ¼ student’s state of knowledge about item Ki after j interactions with the system,
for i ¼ 1; . . . ; n and j ¼ 0; . . . ; k; . . .

Eji ¼ result of the jth interaction with the system (where, in this case, the interaction
consists of evidence gathering), for i ¼ 1; . . . ; n and j ¼ 1; . . . ; k; . . .

In this way, nodes Ki play the role of nodes L, and nodes Ei play the role of nodes O.
The only difference is that, in this case, the interaction with the system is reduced to
evidence gathering, so it is not necessary to introduce the links between nodes
Ej�1i and Kji . As the discussion about the appropriate direction of the links between
knowledge and evidential nodes presented in Section 3.2.4.1 is also applicable to
this case, the dynamic BN is constructed from the BN depicted in Figure 10.
The relationship between two successive interactions (j � 1)th and jth of the dynamic
BN is shown in Figure 11.
The parameters for this BN are:

. The prior probabilities of nodes K0i , that is, fPðK
0
i Þ, for i ¼ 1; . . . ; ng.

Figure 10. BN for student modeling.
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. The conditional distribution of Eji given its parents, that is,

fPðEji jfK
j�1
i such that Kj�1i 2 paðEji Þg; for i ¼ 1; . . . ; n

and j ¼ 0; . . . ; k; . . . ; g:

. The conditional distribution of Kji given K
j�1
i , that is,

fPðKji jK
j�1
i Þ; for i ¼ 1; . . . ; n and j ¼ 0; . . . ; k; . . . ; g:

The relationship between these parameters with the parameters of the BN depicted
in Figure 9 is:

. PðK0i Þ ¼ PðKiÞ; for i ¼ 1; . . . ; n.

. PðEji jpaðE
j
i ÞÞ ¼ PðEijpaðEiÞÞ; for i ¼ 1; . . . ; n and j ¼ 1; . . . ; k; . . .

The only new parameters are fPðKji jK
j�1
i Þ for i ¼ 1; . . . ; n and j ¼ 0; . . . ; k; . . .g. As

we assume that an interaction consisting in evidence gathering does not change the
student’s knowledge state, such probabilities are easy to specify and are given
by the following expression:

PðKji ¼ xjKj�1i ¼ yÞ ¼ 1 if x ¼ y
0 otherwise

n

In this way, for each j ¼ 1; . . . ; k; . . . and for each i ¼ 1; . . . ; n the probability
distributions of Kj�1i and Kji are the same.

3.2.4.3. Relationships Between Concepts and Test Items. As discussed above, the
relationships between concepts and test items are modeled with networks like
the one depicted in Figure 12.

Figure 11. Dynamic BN to model relationships between knowledge and evidential nodes.
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Therefore, the parameters that we need to specify in this part of the network are
the prior probabilities of the concepts and the conditional probabilities of the test
items given the concepts. In order to simplify as much as possible the speci¢cation
of the conditional probabilities, we have modi¢ed the approach described in (Van
Lehn et al., 1998) that basically consists of considering that:

. The probability that a test item is correctly answered, given that the student
knows every related concept, is 1� s, where s is a slip factor.

. The probability that a test item is correctly answered, given that one or some of
the concepts related to the item are not known, is k/n, where n is the number of
possible answers and k is a factor that represents the probability that a student
will try to guess the correct answer.

The main drawback of this approach is that it assumes that it is as equally likely that
a student gives a correct answer when only one of the related concepts is not known
as when he/she does not know any of them. We consider that this
probability should depend on the number of concepts that are mastered and on
the importance of these concepts, that is, the more knowledge the student has,
the more likely it is that he/she will guess the correct answer. This is especially true
in the case of test items, where the student can choose the answer by discarding
the incorrect ones.
Our approach is as follows: let F(x) be the 3-parameter logistic function in IRT

theory, that is:

F ðxÞ ¼ cþ
1� c

1þ expð�1:7aðx� bÞÞ
x 2 IR

where c ¼ 1/n, a is the discrimination index and b is the dif¢culty level (see
Section 2.2). A new function G is de¢ned by5:

GðxÞ ¼ 1�
ð1� cÞð1þ expð�1:7abÞÞ
1þ expð1:7aðx� bÞÞ

xX 0

We show in Figure 13 how the function F has been transformed:
We can see that G(0)¼ c. This function G will be used to compute the probabilities

of giving the correct answer to the test item depending on the number of concepts

Figure 12. BN for concepts and test items.

5Function G has been defined as a linear transform of function F, i.e. GðxÞ ¼ aþ bF ðxÞ, where a
and b have been computed to satisfyGð0Þ ¼ c and limx!1 GðxÞ ¼ 1.
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known by the student in the following way: if the student does not know any of the
related concepts, the probability of choosing the right answer is set to be
c ¼ 1=n. If all the concepts are mastered, it will be 1� s. The rest of the values
are interpolated between c and 1� s, using function G, as illustrated in Figure 14.
The way in which function G is used is described as follows. Let x* be such that

Gðx�Þ ¼ 1� s, and let us assume that the test item has p related concepts. Then,
the values that will be used to compute the 2p probabilities needed are:

Gð0Þ;G
x�

p� 1

� �
;G

2x�

p� 1

� �
; . . . ;G

ðp� 2Þx�

p� 1

� �
;Gðx�Þ

� �

In order to assign such values, we also take into account the importance of the con-
cepts. In this way, G(0) (which is 1/n) will be assigned to the probability of giving
the correct answer when none of the related concepts are known, Gðx�=ðp� 1)) will
be assigned to the probability of choosing the correct answer when only the least
important concept is known, and so on6. In this way, the teacher will only need
to provide a discrimination index and a dif¢culty parameter, and the conditional
probabilities needed can be automatically computed using the method described.
This procedure is illustrated in Example 3.

Figure 13. Transformed ICC.

Figure 14. Using GðxÞ to compute the probabilities.

6Ties are broken using the binary order.
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In this way, our approach takes into account that the probability of choosing the
correct answer increases as knowledge is more complete, and therefore it is obvious
that it will produce a more accurate diagnosis than the approach described in (Van
Lehn et al., 1998).

EXAMPLE 3. To illustrate the procedure described above, we present an easy
example in which four concepts C1, C2, C3, and C4 are needed to answer a question
P. Let us suppose that the concepts are ordered according to their importance,
C1 being the most important one and C4 the least important one. In this example,
the values for the parameters are set to be c ¼ 0:25, s ¼ 0:01, b ¼ 5, and a ¼ 0:3:
First, we need to compute x* such that G(x*) = 0.99. We obtain that x*=13.716.

The probabilities assigned to each one of the sixteen different combinations of
known concepts are given in the last column of Table 4, where the values kx*/15,
for k ¼ 0; . . . ; 15, are given in the column labeled x.
As we can see, the more complete the student’s knowledge is, the bigger the

probability of correctly answering the question that the procedure assigns. There
are, however, some cases not covered by this rule, such as the case in which we have
a student who knows concepts C1 and C4 and a student who knows concepts C2
and C3. The approach we have taken to solve this situation is to assign probabilities
according to the binary order, so the bigger probability is assigned to the student
that knows concepts C1 and C4.

4. Bayesian Adaptive Tests

In this section, we present a new algorithm for Adaptive Testing based on BNs, that
allows diagnosing several abilities at the same time. This algorithm is a crucial part
of the evaluation process, since it will perform the diagnostic process.

Table 4. Probabilities of correctly answering the question

C1 C2 C3 C4 x GðxÞ ¼ PðP ¼1Þ

0 0 0 0 0 0.2
0 0 0 1 0.914 0.233
0 0 1 0 1.829 0.280
0 1 0 0 2.743 0.345
1 0 0 0 3.658 0.427
0 0 1 1 4.572 0.522
0 1 0 1 5.487 0.622
0 1 1 0 6.401 0.717
1 0 0 1 7.316 0.797
1 0 1 0 8.230 0.861
1 1 0 0 9.145 0.907
0 1 1 1 10.059 0.939
1 0 1 1 10.973 0.961
1 1 0 1 11.888 0.975
1 1 1 0 12.802 0.984
1 1 1 1 13.717 0.99
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4.1. STRUCTURE OF THE NETWORK

Adaptive Bayesian tests take place on the network structure presented in Section 3,
that is, the knowledge nodes are concepts, topics, and subjects, and the evidential
nodes can be test items or general questions (provided that the ITS has the ability
to diagnose the correctness of the solution). In this work we have considered three
levels of granularity. The extension to allow an arbitrary number of levels of
granularity k is immediate.
Thus, the structure of the BN that is used in the adaptive tests is depicted in

Figure 15.
The evaluation process consists of two phases:

. Diagnostic phase, which is performed in the part of the network that contains
the concepts and the relationships between them. The goal of this phase is
to determine the set of concepts that the student knows/does not know from
the answers given to related test items.

. Evaluation phase, where, from the results of the previous phase, the prob-
abilities will be propagated to determine the knowledge level reached by
the student at the different levels of granularity, that is, the knowledge level
reached in each of the topics and in the subject.

Thus, the adaptive test is responsible for the diagnostic process, in which only the
lower part of the network is used (concepts and questions). Once the test has ¢nished,
the evaluation process takes care of estimating the degree of knowledge reached by
the student in each of the topics and in the subject. The BN is therefore divided
in two parts, as illustrated in Figure 16.
Having presented the whole process of evaluating a student, we describe the

diagnostic process in detail in the following section.

4.2. BASIC ELEMENTS OF THE BAYESIAN ADAPTIVE TESTING ALGORITHM

As described in Section 2, the basic elements of a CAT are:

Figure 15. Structure of the network for Bayesian adaptive tests.
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. Item Response model

. Scoring method

. Item pool

. Initial level

. Question selection method

. Termination criterion.

We now use this description to present the elements of the algorithm that we
propose as a basis to carry out Bayesian adaptive tests. In the following section,
we describe each of these basic elements.

4.2.1. Item Response Model
Once the network is de¢ned, the item response model is given by the conditional
probability of the item given its parents. To this end, in Section 3.2.4.3 we have
proposed the use of a modi¢cation of the 3-parameter logistic function to measure
the relationship between knowing a set of concepts and correctly answering a
question related to them, that is, to compute the conditional distribution
needed.

4.2.2. Scoring Method
The scoring method is given by the use of the Bayesian model, since the algorithm of
probability propagation provides a sound method to evaluate the answers, i.e. to
estimate the knowledge level of the concepts involved according to the answers given
by the students to the test items.
To carry out this probability propagation, a goal-oriented algorithm as described

in (Castillo et al., 1997) is used to determine the set of relevant nodes with the
objective of reducing computational complexity. Thus, each time the student
answers a question the goal-oriented algorithm is used to compute the reduced

Figure 16. Use of the BN in the evaluation process.
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subgraph where the propagation will take place. In this way, the ef¢ciency of the
propagation process is increased.

4.2.3. Item Pool
Regarding the item pool, the use of the 3-parameter logistic function provides a
simple way of specifying the required parameters ^ and therefore of calibrating
the questions ^ which takes into account not only unintentional slips and lucky
guesses, but also the fact that the probability of giving the right answer increases
as the set of related concepts known by the student is bigger. Moreover, it makes
possible the use of the traditional IRT parameters: guessing factor, dif¢culty level,
and discrimination index.

4.2.4. Initial Level
To set the initial level, ideally we should use the available information about the
particular student that is going to take the test. However, in many practical cases
this information might not be available. A simpler option is to divide the student
population into stereotypes with different initial levels (certain types of students
are more likely to know certain types of concepts). In the absence of any other
information, it seems reasonable to use a uniform distribution, that is, to consider
that it is equally likely that the student knows/does not know each of the elementary
concepts.

4.2.5. Item Selection Criteria
Regarding the item selection method, several criteria are presented and are described
next. These criteria are used to select the best question to ask given the current
estimation of the student’s knowledge level. The ¢nal goal of using such criteria
is to achieve more precise estimations of the student’s knowledge level with shorter
tests. In Sections 4.2.5.1 and 4.2.5.2 we describe the criteria proposed.

4.2.5.1. Random Criterion. The easiest criterion is the random criterion, which we
denote by CR. With this criterion, questions are selected randomly, with each
question in the database having the same probability of being selected. The
diagnostic and evaluation methods are based on the BN model described. It is
obvious that this criterion is not adaptive, but we have used it so we can test
the performance of the Bayesian diagnostic algorithm and compare it with the
performance obtained by using adaptive criteria.

4.2.5.2. Adaptive Criteria. Adaptive criteria choose the best question to ask next
according to the performance shown by the student in the previous items, or, more
precisely, to the estimation of the knowledge level reached by the student that
has been obtained from the answers given to previous items. We have de¢ned
two different types of adaptive criteria: criteria based on the information gain that
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a question provides, and conditioned criteria, which are based on the idea of favoring
the behavior shown by the student so far.

4.2.5.2.1. Criteria Based on the Information Gain. We ¢rst de¢ne the concept of
the utility of a question P for a knowledge node C.

DEFINITION 1. Given an evidential node P and a knowledge node C, we de¢ne the
utility1 of node P for node C as:

U1ðP;CÞ ¼ jPðC ¼ 1jP ¼ 1Þ � PðC ¼ 1ÞjPðP ¼ 1Þ

þ jPðC ¼ 0jP ¼ 0Þ � PðC ¼ 0ÞjPðP ¼ 0Þ

The interpretation of this utility measure is simple: the utility of an evidential node is
de¢ned as the expected gain of information. Note that what we do is to calculate the
change in the probability of C according to the result of the evidential node P,
and then weighting this change with the probability of each possible result.
Therefore, the most informative evidential node for a given item will be the one
with the maximum utility.
Due to the type of relationships de¢ned in our network, we know that when an

evidential node is answered correctly the probability of the knowledge node
increases, and when it is answered incorrectly, the probability of the knowledge node
decreases. This means that we can disregard the absolute values in the de¢nition of
the utility1 measure, and use the following expression:

U1ðP;CÞ ¼ ðPðC ¼ 1jP ¼ 1Þ � PðC ¼ 1ÞÞPðP ¼ 1Þ

þ ðPðC ¼ 0jP ¼ 0Þ � PðC ¼ 0ÞÞPðP ¼ 0Þ

Thus, in the context of adaptive tests, the most informative question will be the one
with the greatest utility. We can see that the utility of a question is affected by
the student’s knowledge level, since the probabilities of correctly/incorrectly answer-
ing the question are used as weights, and of course these probabilities depend on the
current estimation of the student’s knowledge level.
In (Collins et al., 1996), the concept of utility is de¢ned as

UCðP;CÞ ¼ jPðC ¼ 1jP ¼ 1Þ � PðC ¼ 0jP ¼ 0Þj

Although the authors have obtained satisfactory results in the simulations, in our
opinion this measure is not appropriate, because ideally both PðC ¼ 1jP ¼ 1Þ
and PðC ¼ 0jP ¼ 0Þ should be maximized and therefore it does not make much sense
to maximize their difference7.
The utility measure that we propose has a drawback. In an adaptive test,

calculating the utility of the questions in the item pool means instantiating the
7The probability of knowing C should increase (decrease) as much as possible when the student
displays knowledge (no knowledge) when answering question P.
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network twice for each question (considering right and wrong answers). Given that
the number of questions in a good item pool should be large, this process can
be computationally intensive, which cannot be afforded since students’ waiting times
should be short.
Fortunately, this problem can be easily solved. We just need to apply Bayes

Theorem in the expression that de¢nes the utility to obtain:

U1ðP;CÞ ¼ ðPðP ¼ 1jC ¼ 1Þ � PðP ¼ 1ÞÞPðC ¼ 1Þ

þ ðPðP ¼ 0jC ¼ 0Þ � PðP ¼ 0ÞÞPðC ¼ 0Þ

The advantage of this new expression is that to compute the utilities we need to
instantiate the concepts instead of the questions. This results in a large com-
putational saving, since the number of concepts is typically much smaller than
the number of questions. Thus, for example, in a very simple network with only
one concept C and k related questions P1, P2; . . . ; Pk, the computation of the utilities
of each question Pi (i ¼ 1; . . . ; k) for the concept C requires instantiating the network
2k times if we use the ¢rst expression and only twice if we use the second one. At the
same time, the instantiations required in the calculation of the utility of a question
take place in the subgraph of relevant nodes generated by the use of the goal-oriented
algorithm. In this way, we have achieved affordable waiting times (less than a
second) in the simulations carried out8.
We now give an alternative de¢nition to the concept of utility.

DEFINITION 2. Given an evidential node P and a knowledge node C, the utility2 of
node P for node C is de¢ned as

U2ðP;CÞ ¼ PðP ¼ 1 j C ¼ 1ÞPðC ¼ 1Þ þ PðP ¼ 0 j C ¼ 0Þ ¼ PðC ¼ 0Þ

This utility measure also has a simple interpretation: we give priority to those ques-
tions with a greater degree of sensitivity and speci¢city9, or, equivalently, with a
smaller rate of false positives (students who answer correctly without knowing
the concept) and false negatives (students who answer incorrectly even though they
know the concept)10.
8The trial network has fourteen concepts and one hundred questions.
9In medicine, the sensitivity of a test T for an illness I is defined as PðT ¼ 1jI ¼ 1Þ (proportion of
positive results in the test among people that have the illness), and the specificity of a test T for an
illness I is defined as PðT ¼ 0jI ¼ 0Þ (proportion of negative results in the test among people that
do not have the illness). Obviously, tests with higher sensitivity and specificity are preferred.These
concepts canbe easily extended to the field of studentmodeling, with questions playing the role of
tests and knowledge items playing the role of illnesses.
10False positives are the complement of sensitivity and false negatives are the complement of spe-
cificity.Therefore,minimizing false positives (false negatives) is equivalent tomaximizing sensitiv-
ity (specificity).
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Another interpretation for this utility measure comes from simplifying its expres-
sion:

U2ðP;CÞ ¼ PðP ¼ 1 ^ C ¼ 1Þ þ PðP ¼ 0 ^ C ¼ 0Þ ¼ PðP ¼ CÞ

That is, this utility gives the probability that the variables P and C take the same
value.
We therefore have two different de¢nitions for the concept of utility: U1, based on

the expected gain of information, and U2, based on the concepts of sensitivity and
speci¢city of a question.
Having de¢ned the utility of a question for each of the concepts involved, we have

to de¢ne the global utility of a question. We propose two different criteria, each of
which is based on a different de¢nition of global utility:

. Criterion of the sum, in which the global utility of a question is de¢ned as the
sum of the utilities of the question for each of the related concepts, i.e.:

UðPÞ ¼
X

C2paðPÞ

ðP;CÞ

However, this criterion could penalize those questions related to a small number of
concepts, since their de¢nition of global utility would have fewer adding terms.
To avoid this, we introduce a second way of de¢ning global utility:

. Criterion of the maximum, in which the global utility of a question is de¢ned as
the maximum of the utilities of the question for each of the related concepts, i.e.:

UðPÞ ¼ max
C2paðPÞ

UðP;CÞ

Combining the two de¢nitions of utility of a question for a concept and the two
de¢nitions of the global utility of a question, we have four adaptive criteria based
on the concept of utility:

^ Criterion of the sum of the utilities, where the utility is de¢ned as the expected gain
of information, that we denote as CSG.

^ Criterion of the maximum of the utilities, where the utility is de¢ned as the
expected gain of information, that we denote as CMG.

^ Criterion of the sum of the utilities, where the utility of a question for a concept is
de¢ned in terms of the concepts of speci¢city and sensitivity, that we denote as
CSS.

^ Criterion of the maximum of the utilities, where the utility of a question for a
concept is de¢ned according to the concepts of speci¢city and sensitivity, that
we denote as CMS.

4.2.5.2.2. Conditional Criteria. The conditional criteria are based on the idea of
taking into account the tendencies shown by the student in previous questions.
The utility of the question is then de¢ned as the sensitivity or the speci¢city
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themselves, depending on the knowledge that the student is showing so far. We
propose two different criteria:

. Criterion conditioned by the probability of the concept. The utility of a question
is calculated by the expression:

UðPÞ ¼ max
C2paðPÞ

U 0ðP;CÞ

where U0(P,C) is de¢ned as:

U 0ðP;CÞ ¼
PðP ¼ 1=C ¼ 1Þ if PðC ¼ 1Þ > PðC ¼ 0Þ
PðP ¼ 0=C ¼ 0Þ otherwise.

�

The idea of this criterion consists of choosing the most speci¢c or the more
sensitive question according to whether the student shows/does not show
knowledge about the concept. We denote this criterion by CCC.

. Criterion conditioned by the probability of the question. The utility of a question
is computed by the expression:

U 0ðPÞ ¼
max
C2paðPÞ

PðP ¼ 1=C ¼ 1Þ if PðC ¼ 1Þ > PðC ¼ 0Þ

max
C2paðPÞ

PðP ¼ 0=C ¼ 0Þ otherwise.

8<
:

This criterion is similar to the previous one, but instead of choosing the
sensitivity or the speci¢city depending on the probability of the concept, we
take one or the other depending on the probability of the question being
answered correctly or not. We denote this criterion by CCQ.

To summarize, the seven criteria that are analyzed and compared are11:

. Random Criterion, CR.

. Criterion of the Sum of the utilities where the utility is de¢ned as the expected
Gain of information, CSG.

. Criterion of the Maximum of the utilities where the utility is de¢ned as the
expected Gain of information, CMG.

. Criterion of the Sum of the utilities where the utility of a question for a concept
is de¢ned in terms of the concepts of Speci¢city and Sensitivity, CSS.

. Criterion of the Maximum of the utilities where the utility of a question for a
concept is de¢ned according to the concepts of Speci¢city and Sensitivity, CMS.

. Criterion Conditioned by the probability of the Concept, CCC.

. Criterion Conditioned by the probability of the Question, CCQ.

We will discuss the results of this study in Section 5.
11Some other criteria were also considered and evaluated, such as averaging the sum with the
numberof concepts involved in the definition of the global utility and a criterion based on the tra-
ditional definition of information gain in InformationTheory. However, the results obtained by
using such criteria were very poor compared to the results obtained with the seven criteria ana-
lyzed in this paper.
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4.2.6. Termination Criteria
As termination criterion we have used a combination of two criteria: the test ¢nishes
when a previously ¢xed maximum number of questions is reached, or when all the
concepts have been evaluated12. To determine whether a concept has been evaluated,
we establish a certain level l 2 [0, 0.5). If the probability of knowing a concept is
greater than or equal to 1� l then the concept is diagnosed as known, whereas
if it is smaller than l, the concept is diagnosed as unknown. All those concepts whose
probability is between l and 1� l will be considered as non-diagnosed. Therefore, a
test can ¢nish even though some concepts have not been diagnosed if the ¢xed
maximum number of questions is reached. This mechanism avoids tests which
are too long. Note that depending on the regularity of the student’s answers there
could be concepts that are never diagnosed.

5. Evaluation of the Algorithm Using Simulated Students

We used simulated students for the evaluation of the algorithm. Simulated students
have also been used for this purpose in (Collins et al., 1996; Van Lehn et al., 1998;
Van Lehn et al., 1995). This allowed us to evaluate the algorithm without de¢ning
a test for a particular subject or having a test group of real students. The main
reasons for using simulated students are:

. Pre-evaluation of the validity of the method. It does not seem appropriate to test
an evaluation method with real people without proving its validity beforehand.
Of course, a method that has not been tested previously should never be used to
grade students. We could have asked the students to volunteer in the evaluation
of the algorithm, but in this case the students’ motivation to answer the test
cannot be compared with their motivation to answer a test that will be used
to actually evaluate them.

. Subjectivity of teachers’ estimations. Even in the case of having a set of
suf¢ciently motivated students, the estimations of the knowledge level that
we obtain with our testing algorithm would have to be compared with human
estimations, which would be obtained either from direct knowledge about
the student’s performance or by the use of traditional evaluation methods, such
as exercises, exams, etc. In any case, these estimations are always subject to
some degree of error, and therefore can never be considered as completely
accurate. The impossibility of comparing the estimations obtained with our
method to the student’s real state of knowledge makes the evaluation of
our method more complicated, since we could never be sure whether they
are worse or better than the estimations performed by the human tutor.

12The termination criterion usedwhen testing the random question selection criterionwas differ-
ent. In this case we considered a fixed value for the length of the test.
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On the other hand, the drawbacks of this technique are well known (Van Lehn et al.,
1995). At least two issues must be mentioned:

. Limitations in AI technology. In fact, we cannot adequately simulate the way
real students interact by means of natural language, non-verbal com-
munication, etc.

. Limitations of the model. Many features of real students are not represented in
the model (for example, motivation, self-con¢dence, etc.) Nevertheless,
simulated students are instantiations of the model, so these features are not
considered in the experiment. Therefore, an empirical validation of the
proposed model should be carried out in order to assert the applicability of
the experimental results to real students.

Next, we describe how a simulated student is generated. Let fC1; . . . ;Cng be the
concepts in the diagnostic network. Given a value k 2 [0, 1], the simulated student
of type k is de¢ned as a student that knows 100k% of the concepts fC1; . . . ;Cng.
The set of known concepts is generated randomly, so that we can generate simulated
students with the same level of knowledge but with different sets of known
concepts13. Once a simulated student has been generated, the network is used in
order to calculate the probabilities of correctly answering each question. Such
probabilities are used to simulate the behavior of the student as follows: let us sup-
pose that the probability of correctly answering question P is p. If the test poses
question P, then a random number n in the interval [0,1] is generated. If pX n then
it is considered that the student has correctly answered the question, and if
p > n that he/she has answered incorrectly. After obtaining the answer, the
diagnostic algorithm uses it to update the probabilities of the concepts and chooses
the next question to ask the student, using any of the criteria de¢ned. It is easy
to see that this simple mechanism allows us to compare the results obtained with
the real state of knowledge of the simulated student.
In the simulations, we have used a trial network consisting of a subject A, four

topics T1, T2, T3, and T4, fourteen concepts C1; . . . ;C14, and one hundred questions
P1; . . . ;P100. The prior probability of knowing each concept is 0.5. Each question
is related to one, two or three concepts. Note that, in order to be able to answer
a question, we consider it necessary to make use of all the concepts related to it.
Note also that each concept in the network is related to several questions. For
illustration purposes, in Figure 17 we show the relationships between the fourteen
concepts and the ¢rst twenty questions.
Each question has six possible answers, and therefore a common guessing factor of

1/6. There are ten dif¢culty levels, ranging from 1 to 10, and ten questions in each
dif¢culty level. There are four different groups of 25 questions each. The slip factor
s and the discrimination index a of each group are shown in Table 5.

13The idea of randomly generating the set of known concepts is motivated by the need to ensure
that the performance of the algorithm was good in any kind of situation.This hypothesis will be
relaxed in Section 5.1.2.4 to introduce student stereotypes.
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As we can see, groups are numbered according to their psychometric quality (the
smaller the number the higher the psychometric quality). For example, items in
group 1 have the highest psychometric quality (smaller slip factor and higher
discrimination index).
In the simulation, 30 students of each of the following six different types were

generated: 0.0 students (do not know any concept), 0.2 students (know 20% of con-
cepts), 0.4 students (know 40% of concepts), 0.6 students (know 60% of concepts),
0.8 students (know 80% of concepts), and 1.0 students (know all concepts).
Therefore, we have used a total of 180 simulated students14.

5.1. RESULTS

We begin by analyzing the results obtained at the end of the test for each of the
criteria, and then evaluate in more detail the results for those criteria that have
shown a better performance.

5.1.1. Final Results
In order to evaluate the performance of the criteria presented in Section 4.2.5, we
proceed by calculating the number of concepts that have been correctly diagnosed,
incorrectly diagnosed, and non-diagnosed. A concept has been correctly diagnosed
if the simulated student knew the concept and it has been diagnosed as known,
or if the simulated student did not know the concept and it has been diagnosed
as unknown. A concept has not been diagnosed if its probability is between the

Figure 17. Relationships between concepts and questions 1 to 20.

Table 5. Slip factor and discrimination index

Slip factor s Discrimination index a

Group 1 0.001 2
Group 2 0.01 1.2
Group 3 0.01 0.3
Group 4 0.2 1.2

14When determining the number of concepts known we considered the nearest smaller integer.
For example, a 0.6 student must know 8.4 concepts out of the 14 concepts in the trial network, so
it is considered that the number of concepts known is 8.
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minimum and maximum levels previously ¢xed by the teacher (in this simulation 0.3
and 0.7). The results are given in Table 6.
We give in Table 7 the same results of Table 6 expressed as the percentages of

non-diagnosed concepts, correctly evaluated concepts, and incorrectly evaluated
concepts.
The ¢rst thing that attracts our attention in this table is the good behavior shown

by the random criterion, which correctly diagnoses 90.27% of concepts, 3.06%
incorrectly, and has just 6.67% non-diagnosed concepts. Taking into account that
the test consists of sixty questions, and that there are fourteen concepts to evaluate,
the results obtained are very good. Without any doubt it is due to the theoretical
consistency of the model used, since, as we have pointed out in previous sections,
BNs constitute a sound theoretical model that shows excellent performance in
classi¢cation and diagnosis problems.
It was quite surprising to see that only one of the proposed adaptive criteria shows

clearly better behavior than the random criterion. We believe that this is due to the
fact that the model allows for anomalous15 situations, that is, lucky guesses and
unintentional slips. Let us analyze the performance of each criterion:

. If we look at the criteria based on the utility de¢ned as the gain of information,
when an anomalous situation (lucky guess or unintentional slip) occurs the gain

Table 6. Results at the end of the test for each criteria

Based on information gain Conditioned

Diagnosis CR CSG CMG CSS CMS CCC CCQ

Correct 2275 2304 2262 2225 2096 1965 2382
Incorrect 77 209 256 124 65 141 58
Non-diagnosed 168 7 2 171 359 414 80
Average number
of questions

60 16.88 15.06 55.44 51.99 58.9 55.14

Table 7. Results at the end of the test (in percentages)

Based on information gain Conditioned

Diagnosis CR CSG CMG CSS CMS CCC CCQ

Correct 90.27% 91.4% 89.76% 88.29% 83% 77.98% 94.53%
Incorrect 3.06% 8.29% 10.15% 4.92% 3% 5.60% 2.30%
Non-diagnosed 6.67% 0.28% 0.01% 6.79% 14% 16.42% 3.17%
Average number
of questions

60 16.88 15.06 55.44 51.99 58.9 55.14

15Althoughwe use the term anomalous to refer to the situations in which students guess the right
answer or fail a question whose answer they know, in practice these situations are very frequent,
especially in test exams, the former being more probable than the latter.
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of information is in the direction opposite to that desired. In this way, since we
are selecting those questions that produce a maximum gain, this non-desired
gain is also maximum and therefore the diagnostic process is being distorted,
resulting in a greater number of incorrectly evaluated concepts. However,
the average number of questions required is really small (only around 15/16
questions to evaluate 14 concepts).

. Regarding the criteria based on the concept of utility de¢ned in terms of the
concepts of sensitivity and speci¢city, it is worth pointing out that for students
whose behavior is more predictable, that is, for 0.0 and 1.0 students, both
criteria give better results than the random criterion. However, the results
are worse for students whose behavior is less predictable (0.2, 0.4, 0.6, and
0.8 students), which makes the global results worse.

. The criterion conditioned by the probability of the concept is the one that has
presented the worst performance. This might be due to the fact that the utility
of a question for a concept U0(P, C) can be de¢ned as its sensitivity for those
concepts whose probability P(C) is greater than 0.5, and as its speci¢city
for those whose P(C) is smaller than 0.5. It does not make much sense then
to take the utility of the question U(P) as the maximum of these utilities
U0, as it is sometimes given by a sensitivity and sometimes by a speci¢city.

. Finally, the best behavior has been presented by the criterion in which the
de¢nition of the utility is conditioned by the probability of the question,
for which we have obtained the most precise diagnosis. The distribution of
the number of questions required is shown in the graph in Figure 18, where
we represent the number of students (vertical axis) that required each number
of questions (horizontal axis). Except for the case of requiring all the sixty
questions, the number of questions has been grouped in intervals of ¢ve
questions.

The average number of questions required for the evaluation of all the concepts with
the adaptive test is 51.98, with a standard deviation of 10.53. It is true that the
reduction in the number of questions required is not signi¢cant, which might be
due to the good performance of the Bayesian model as a diagnostic algorithm,
but together with the greater precision achieved and with the simplicity of the

Figure18. Distribution of the number of questions required with the criterion conditioned by the probability
of the question.
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criterion proposed, we consider that its application is worthwhile. In the next section,
we make an indepth comparative analysis of the performance of the two criteria that
have shown better performance, i.e. the random criterion and the criterion
conditioned by the probability of the question (that we will call the adaptive criterion
from now on).
The criteria based on the information gain have been discarded because of the high

percentage of incorrectly diagnosed concepts (around 10%). However, the great
reduction achieved in the test time can make the application of these criteria worth-
while in some cases. As an example, we show in Table 8 the performance (in
percentages) of the criteria based on information gain and the random and adaptive
ones when the number of questions is ¢xed at 15.
As is shown in Table 8, after 15 questions the two criteria based on the information

gain signi¢cantly outperform the other two policies. Therefore, they should be
considered if the goal of keeping the number of questions low is preferred to the
goal of achieving maximum accuracy.

5.1.2. Comparison Between the Random and Adaptive Criteria
In order to carry out this indepth analysis, we study the evolution of the test by
analyzing the results after 15, 30, 40, and 50 questions, and when the test ¢nishes.
We also analyze the results for each student type and the errors in the evaluation
part, in which ^ once the diagnostic process has ¢nished ^ the knowledge level
reached by the student in each topic and in the subject is estimated. Finally, we
will consider the case in which the initial level is not set to be uniformly distributed
and student stereotypes are used in the simulation. Let us ¢rst study the evolution
of the test.

5.1.2.1. Test Evolution. In order to compare the evolution of the random and
adaptive16 tests, in Table 9 we display the number of concepts that are not diagnosed,
that are correctly diagnosed, and that are incorrectly diagnosed after a ¢xed number
of questions have been presented (15, 30, 40, 50) and also when the test ¢nishes. The
same data are depicted in Figures 19 to 21.
Note that the scale in these three graphics is different, and, in particular, that the

range in Figure 20 is much smaller. The three graphics show that the performance
of the test with the adaptive criterion is always better than the performance of

Table 8. Results after 15 questions

Diagnosis CR CSG CMG CCQ

Correct 34.01% 83.06% 83.49% 36.59%
Incorrect 6.07% 8.33% 8.45% 3.53%
Non-diagnosed 59.92% 8.61% 8.06% 59.88%

16An adaptive test is a test in which questions are selected according to the adaptive criterion
whichwe have defined to be the criterion conditioned by the probability of the question.
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Table 9. Test results evolution

Correct Incorrect Non-diagnosed

Random Adaptive Random Adaptive Random Adaptive

15 857 922 153 89 1510 1509
30 1514 1648 134 73 872 799
40 1878 1971 117 69 525 480
50 2100 2247 97 60 323 213
End 2275 2382 77 58 168 80

Figure 19. Number of questions/Correctly diagnosed concepts.

Figure 20. Number of questions/Incorrectly diagnosed concepts.

Figure 21. Number of questions/Non-diagnosed concepts.

316 EVA MILLAŁ N AND JOSEŁ LUIS PEŁ REZ-DE-LA-CRUZ



the test with the random criterion, and therefore it will always generate shorter and
more precise tests.
In order to study the statistical signi¢cance of these results, we performed a sig-

ni¢cance test. Let Nc be the number of concepts correctly diagnosed by the system
using criterion c, where c ¼ r for the random criterion and c ¼ a for the adaptive
one. For the sample of 180 simulated students, the average of Nc is Nr ¼ 12.639
in the case of the random criterion and Na ¼ 13.233 in the case of the adaptive one.
Performing the Wilcoxon matched-pairs signed-rank test, we ¢nd 145 students with
a non-zero difference and a smaller sum of ranks R ¼ 2776. This implies that
the distributions of Nr and Na are signi¢cantly different (at the con¢dence level
99.999%).
Next, we analyze the diagnostic algorithm’s tendencies, that is, we analyze

whether it tends to overestimate or underestimate the student’s knowledge. To this
end, we again show the ¢nal results obtained with both criteria, that are presented
in Table 6 and represented (in percentages) in Figure 22.
Let us now split the concepts that have been incorrectly evaluated into two

categories: concepts that have been overestimated and concepts that have been
underestimated. The results are shown in Table 10, and represented in percentages
in Figure 23.
Note that both methods tend to overestimate. However, we believe that this is not

due to the Bayesian diagnostic method, but to the item pool used. A student that does
not know the concepts required for a question has a probability of 0.16667 of
guessing it, whilst a student that knows all the concepts required for a question
has an average probability of 0.05715 of slipping17. Thus, the test’s tendencies
are determined by the item pool (in our case, the tendency is to overestimate
students, since it is much more likely to guess than to slip).

Figure 22. Final results.

Table 10. Concepts that have been under/overestimated

Diagnosis Random Adaptive

Overestimated 53 39
Underestimated 24 19
Total 77 58

17As mentioned in footnote15, this is a common situation in test exams.
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It is also interesting to analyze how many times each question has been used. Such
data is depicted in Figure 24.
We see that the random criterion tends to uniformly distribute the items chosen,

where each item has been used a minimum of 91 times and a maximum of 134 times.
By contrast, the adaptive criterion uses items in a different way, since there are items
that are hardly used and other items that are used 179 times (such as P1, P2, and P70).
The average number of times that items in each group were used is shown in Table 11,
where we can see that items with higher psychometric quality have been used more
frequently.

5.1.2.2. Results by Student Type. Next we analyze the results by student type. As
already explained, we considered six different types. First, we show in Table 12
the mean number of questions needed to evaluate each student type in the adaptive
test.
The results by student type are shown in Table 13.
We see that, for every student type (except for Student 1.0) the results obtained

with the adaptive criterion are signi¢cantly better than those obtained with the

Figure 23. Percentages of over- and underestimated concepts among the incorrectly evaluated ones.

Figure 24. Distribution of the number of times each item has been used.

Table 11. Average usage of items by group

Random Adaptive

Group 1 (s ¼ 0:001, a ¼ 2) 107.12 129.32
Group 2 (s ¼ 0:01, a ¼ 2) 110.4 113.76
Group 3 (s ¼ 0:01, a ¼ 0:3) 107.08 104.32
Group 4 (s ¼ 0:02, a ¼ 1:2) 109.04 49.68
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random criterion, since more concepts are correctly diagnosed and fewer concepts
are incorrectly diagnosed/non-diagnosed. The most signi¢cant improvement is
achieved for type 0.4, with the shortest tests (an average of 41.73 questions) and
11%more correctly diagnosed concepts. The only case in which the random criterion
seems to have a better performance is in the case of type 1.0, but the improvement is
not signi¢cant, given that almost every concept is diagnosed correctly in both cases.
Next, we analyze the results of the evaluation process, in which the knowledge

level reached by the student in each topic and in the subject is determined.

5.1.2.3. Results of the Evaluation Process. The procedure to analyze the
evaluation process is as follows: at the end of the test, those concepts whose
probability belongs to the interval [0, 0.5) are considered as not known and therefore
instantiated to 0, and those concepts whose probability belongs to the interval [0.5, 1)

Table 12. Mean number of questions by student type

Mean number of questions

Student 0.0 54.23
Student 0.2 52.67
Student 0.4 41.73
Student 0.6 51.8
Student 0.8 54.76
Student 1.0 56.73

Table 13. Results by student type

Diagnosis Random Adaptive

Student 0.0 Correct 371 395
Incorrect 17 4
Not diagnosed 32 21

Student 0.2 Correct 366 385
Incorrect 17 14
Not diagnosed 37 21

Student 0.4 Correct 357 387
Incorrect 24 20
Not diagnosed 59 13

Student 0.6 Correct 376 400
Incorrect 9 10
Not diagnosed 35 10

Student 0.8 Correct 390 402
Incorrect 10 8
Not diagnosed 20 10

Student 1.0 Correct 415 413
Incorrect 0 2
Not diagnosed 5 5
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are considered as known and therefore instantiated to 118. This evidence is propa-
gated through the BN and the probabilities that the subject and each of the related
topics take the value 1 are obtained. As already shown in Section 3, these
probabilities can be interpreted as the knowledge level reached by the student,
and can be compared with the real knowledge level obtained from real data in
an analogous way.
Next, we analyze the distribution of the errors in the evaluation for each type of

test (random and adaptive). The error is de¢ned as the difference of the real evalu-
ation and the evaluations obtained with the adaptive and random criterion,
respectively. The distribution of the errors in the evaluation of each topic and of
the subject (number of students for which the error in the evaluation of the topic
belongs to the interval shown in the abscise) is represented in Figures 25 to 29.
We see that the estimations of the knowledge level obtained with the adaptive

criterion are closer to the real values than those obtained with the random method,
due to the greater precision of the diagnostic process. The number of students whose
estimation of the knowledge level obtained with the adaptive criterion is coincident
with the real knowledge level is 166 for Topic 1, 164 for Topic 2, 134 for Topic
3, and 119 for Topic 4 (out of a total of 180 students). The different results for
the four topics are explained by the different numbers of concepts involved. In Figure
29 we can see that at a higher level of granularity (subject) the errors in the lower level
(over the four topics) are accumulated, so only 80 of 180 students have obtained their
real grade exactly.
Next, we analyze the errors. To this end, Table 14 shows the average and standard

deviation of the absolute values of the errors.
In Table 14 we can see that the average absolute error with the adaptive criterion is

between a minimum of 0.0142 and a maximum of 0.0399 (with very small standard
deviations), which seems an acceptable error given that the model allows students

Figure 25. Distribution of errors in the evaluation of Topic 1.

18Proposition 2 needs all concepts tobe instantiated, therefore at this level we do not consider any
concept as non-diagnosed.
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Figure 26. Distribution of errors in the evaluation of Topic 2.

Figure 27. Distribution of errors in the evaluation of Topic 3.

Figure 28. Distribution of errors in the evaluation of Topic 4.
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that do not master any of the related concepts to guess and students that master all
the related concepts to fail.

5.1.2.4. Using Concept Categories and Student Stereotypes. Two of the assump-
tions on which the previous study relies are as follows:

. The prior probability of knowing each concept is 0.5.

. The set of known concepts for each simulated student is randomly generated.

Under these two assumptions the testing algorithm considers that concepts are
undistinguishable. However, these hypotheses can be considered unrealistic since
concepts are usually ordered according to some criteria, such as their dif¢culty level,
the teacher’s preferences, the student’s interests, etc. In order to take into account
these kinds of assumptions, we have divided concepts into different groups or
categories, G1; . . . ;Gn and both prior probabilities and student stereotypes are
de¢ned in terms of these groups. The criterion used in our example is the dif¢culty
level, but notice again that other criteria like the ones mentioned above can also
be considered under the same schema.
In this new experiment, the trial network presented in Section 5 was modi¢ed in

the following way: concepts G1; . . . ;C14 (which are assumed to be ordered according
to their dif¢culty level, i.e., from easier to more dif¢cult) were divided into three
groups:

^ Group 1 (easy concepts). Concepts G1; . . . ;C5. Their prior probability is 0.75.
^ Group 2 (medium di⁄culty concepts). Concepts G6; . . . ;C11. Their prior
probability is 0.5.

^ Group 3 (advanced concepts). Concepts G11; . . . ;C14. Their prior probability is
0.25.

Figure 29. Distribution of errors in the evaluation of the Subject.
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Table 14. Mean and standard deviation of absolute error

Topic 1 Topic 2 Topic 3 Topic 4 Subject

Random Adaptive Random Adaptive Random Adaptive Random Adaptive Random Adaptive

Average 0.0409 0.0270 0.0264 0.0142 0.0530 0.0399 0.0475 0.0378 0.0334 0.0258
Deviation 0.0857 0.0757 0.0635 0.0395 0.0691 0.0675 0.0810 0.0841 0.0439 0.0422
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Four different types of simulated students were generated: novice, intermediate,
good, and expert students. Novice students know some easy concepts. Intermediate
and good students know all easy concepts and some of medium dif¢culty (good
students know more concepts of medium dif¢culty than intermediate students).
Expert students know all easy and medium dif¢culty concepts and some advanced
ones. The procedure for generating these random students is the following: a random
number n between i and j is generated, and then it is assumed that the simulated
student knows concepts C1; . . . ;Cn, where the values of i and j for each type of
student are given in Table 15.
In total, 180 students were generated (45 of each type). The number of concepts

correctly/incorrectly/non-diagnosed for each student type are shown in Table 16,
where the last two columns show the results in percentages and the last row shows
the global results (independently of the type of student).
As we can see, the introduction of student stereotypes slightly improves the results,

both for the random and the adaptive criteria. This improvement in performance
might be explained by the testing algorithm having more complete information.
The performance of the adaptive criterion is still better than the random one,
attaining more accurate results with fewer questions.

Table 15. Values of i and j for the di¡erent student types

i j

Novice 1 5
Intermediate 6 9
Good 10 11
Expert 12 14

Table 16. Results using student stereotypes

Mean number
of questions Diagnosis Random Adaptive Random Adaptive

Correct 508 589 80.63% 93.49%
Novice 55.78 Incorrect 38 15 6.03% 2.38%

Not diagnosed 84 26 13.33% 4.13%
Correct 589 606 93.49% 96.19%

Intermediate 55.29 Incorrect 19 7 3.02% 1.11%
Not diagnosed 22 17 3.49% 2.70%
Correct 589 610 93.49% 96.83%

Good 52.11 Incorrect 13 4 2.06% 0.63%
Not diagnosed 28 16 4.44% 2.54%
Correct 610 605 96.83% 96.03%

Expert 52.04 Incorrect 10 8 1.59% 1.27%
Not diagnosed 10 17 1.59% 2.70%
Correct 2296 2410 91.11% 95.63%

Global results 53.81 Incorrect 80 34 3.17% 1.35%
Not diagnosed 144 76 5.71% 3.02%
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6. Related Work

BNs have been successfully applied to build student models in several systems. In
contrast to BNs, CATs have not often been used in student modeling, despite
the great improvement in accuracy and ef¢ciency that can be achieved by using
adaptive question selection algorithms. In this section, we brie£y review those works
more directly related to our research (many of them have already been discussed). An
excellent discussion about the use of approximate reasoning techniques in user and
student modeling can be found in (Jameson, 1996).

. HYDRIVE (Mislevy and Gitomer, 1996) models a student’s competence at
troubleshooting an aircraft hydraulics system. The student’s knowledge is
characterized in terms of general constructs (dimensional variables), and a
BN is used to update these student model dimensional variables, using the
student’s actions as evidence. As already pointed out in Section 3.2.1, our work
differs from Mislevy and Gitomer’s in the de¢nition of the aggregation
relationships.

. ANDES (Conati et al., 1997) is an ITS that teaches Newtonian Physics via
coached problem solving. This system evolved from OLAE (Martin and
Van Lehn, 1995b) and POLA (Conati and Van Lehn, 1996a), and uses BNs
to carry out long-term knowledge assessment, plan recognition, and prediction
of the student’s action during problem solving. In (Van Lehn et al., 1998),
diagnostic testing was used to ¢nd the prior probabilities needed for the
ANDES system. This work has already been compared to our approach in
Section 3.2.4.3.

. Our use of a dynamic BN was inspired by Reye’s work (Reye, 1996), described
in Section 3.2.4.2.

. In (Collins et al., 1996), BNs are applied together with granularity hierarchies.
Test items (questions) are used as evidence to determine if the student masters
the learning objectives de¢ned. Three different structures for the BN are
compared in terms of the knowledge engineering effort required, test length,
and test coverage. However, we have already shown the inadequacy of the
adaptive question selection method presented. It is also interesting to note that
the performance of the diagnostic algorithm was only evaluated in terms of
test length and coverage, but not in terms of the accuracy of the student
model obtained. Moreover, the evaluation was performed only with good
(0.8 and 1) or bad (0 and 0.2) arti¢cial students, and not with intermediate
students (in our studies 0.4 and 0.6 simulated students have also been used)
that are obviously the most dif¢cult to evaluate due to their unpredictable
behavior.

. SQL-Tutor (Mitrovic, 1998) is an ITS for the SQL database language.
SQL-Tutor is based on Constraint-Based Modeling, a student modeling
approach proposed in (Ohlsson, 1994). A probabilistic student model is used
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to select problems of appropriate dif¢culty (Mayo and Mitrovic, 2000). The
student model consists of a set of binary random variables representing the
constraints. When the student solves a problem, the probabilities are updated
using heuristics. The reasons that the authors give for using such heuristics
are: (a) the size of the network (more than 500 constraints) and the com-
putational complexity of Bayesian propagation algorithms make the online
selection of problems impracticable; and (b) the nature of the domain
(non-independent variables, the dif¢culty of de¢ning a granularity hierarchy)
makes the use of other approaches like those proposed in (Reye, 1998) and
(Collins et al., 1996) infeasible. In (Mitrovic et al., 2002), the performance
of this probabilistic student model is evaluated, showing promising results.
However, we think that this performance could be improved by avoiding as
much as possible the use of such ad hoc heuristics, which do not have the ¢rm
theoretical foundation of BNs. Instead, other approaches to reduce com-
putational complexity, such as the ones proposed in (Jameson, 1996) or the
use of goal-oriented algorithms (Castillo et al., 1997) should be considered.

7. Conclusions and Future Work

In this work we have presented a new integrated approach to Bayesian student
modeling. In our new integrated student model, nodes have a well-de¢ned semantics
and links accurately describe the relationships between them. The students’ state of
knowledge is represented in terms of more than one variable and is described at
the level of granularity required. Moreover, the student model allows substantial
simpli¢cations when de¢ning the conditional probabilities needed for the BN, that
can be automatically computed from a set of weights (that measure the relative
importance of each subitem in the aggregated item) or from certain data associated
with each question (concepts which are necessary to know along with their
importance, and parameters such as slip and guessing factors, dif¢culty level,
and discrimination index).
The validity of the structural model proposed has been tested by using simulated

students. The results obtained are very promising, as they show that the Bayesian
integrated model so de¢ned produces highly accurate estimations of the student’s
cognitive state at all levels of granularity. However, the simulated students are just
instantiations of the model presented here, whereas real student behavior is in£u-
enced by many other factors that are not explicitly represented. Therefore, in order
to assert the validity of the proposed model in the real world, a formal evaluation
with real students should be performed. In particular, one of the greatest limitations
of the model is that it assumes that the student’s knowledge does not change, which is
a valid assumption for this experiment but might be considered unrealistic in real
settings.
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Even when the results obtained are very satisfactory (90.27% correctly diagnosed
concepts), it has been possible to improve them by combining the structural model
with adaptive testing technologies, that is, by applying adaptive question selection
methods (going up to 94.53% correctly diagnosed concepts with a model that allows
lucky guesses and random slips). To this end, several adaptive criteria have been
de¢ned, and their performance tested using simulated students. Once the best
adaptive criterion has been chosen (the criterion conditioned by the probability
of the question), we have shown that its behavior is better at all possible levels:
the adaptive criterion requires a smaller number of questions and yields more
accurate results independently of the number of questions that have been asked
so far and independently of the student type. However, we must insist that, in spite
of the excellent results, this empirical evaluation should be only considered as a ¢rst
step towards a formal evaluation with real students.
Regarding future work, there are several directions to be explored, which we

group into two categories: improvements in the integrated structural model,
and applications of the model developed. Regarding improvements in the
integrated student model, we plan to investigate: (a) the introduction of prerequisite
relationships in the model, as this could contribute to improving the precision and
ef¢ciency of the diagnosis process. However, the way of introducing such relations
in the model has to be studied carefully, because these would change the indepen-
dence relationships implicit in the model; and (b) the use of new sources of evidence
about the student’s cognitive state, such as the instruction sessions he/she has gone
through, teachers’ opinions, etc. Again, a detailed analysis of the exact meaning of
such nodes and of the relationships with existing nodes needs to be performed.
Once the whole model has been de¢ned, evaluations with simulated students
and then with real students should be carried out to test its performance. Regarding
applications of such a model, our ¢nal goal is the development and implementation
of a Bayesian evaluation system (SIBET, Sistema Inteligente Bayesiano de
Evaluacio¤ n mediante Tests). SIBET will be accessible through the Web, and will
allow people without knowledge of programming and BNs to implement their
own adaptive tests based on BNs. To this end, SIBET will have two different
modules: (a) a test editor, that is, a module to de¢ne the curriculum structure
and to edit the tests, that will be used by the designer; and (b) a virtual classroom
for the evaluation process where the students will be able to take the tests pre-
viously de¢ned online, and their answers will be used to diagnose the set of concepts
that the student masters and to compute measures of the knowledge achieved at the
different levels of granularity de¢ned. In this way, SIBET could be used as a
stand-alone system for student assessment or as a diagnostic module in a more
complex architecture (ITS) that would enable curriculum adjustment and
remediation. This system is inspired by the SIETTE system (R|¤ os et al., 1999),
(http://alcor.lcc.uma.es/siette), which basically has the same characteristics but
only enables diagnosing one ability at a time, since it is based on the unidimensional
IRT.
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