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Abstract. Novel molecularly targeted agents (MTAs) have emerged as valuable alternatives
or complements to traditional cytotoxic agents in the treatment of cancer. Clinicians are com-
bining cytotoxic agents with MTAs in a single trial to achieve treatment synergism and better
patient outcomes. An important feature of such combinational trials is that, unlike the efficacy
of the cytotoxic agent, that of the MTA may initially increase at low dose levels and then ap-
proximately plateau at higher dose levels as MTA saturation levels are reached. Therefore, the
goal of the trial is to find the optimal dose combination that yields the highest efficacy with the
lowest toxicity and meanwhile satisfies a certain safety requirement. We propose a Bayesian
phase I/II design to find the optimal dose combination. We model toxicity using a logistic re-
gression and propose a novel proportional hazard model for efficacy, which accounts for the
plateau in the MTA dose-efficacy curve. We evaluate the operating characteristics of the pro-
posed design through simulation studies under various practical scenarios. The results show
that the proposed design performs well and selects the optimal dose combination with high
probability.
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1. Introduction

Traditional cytotoxic agents have played important roles in combating cancer. However,

after decades of research, it has become difficult to find new cytotoxic agents that are sub-

stantially more effective than the existing therapeutic strategies. Recently, novel molecularly

targeted agents (MTAs), such as small molecules or monoclonal antibodies, have emerged

as alternatives or complements to cytotoxic agents for treating cancer (Le Tourneau et al.,

2010, 2011, 2012; Postel-Vinay et al., 2009). Unlike cytotoxic agents, MTAs modulate spe-

cific aberrant pathways in cancer cells, while sparing normal tissue. To take advantage of

both types of treatment agents, clinicians are exploring the possibility of combining tradi-

tional cytotoxic agents with novel MTAs to achieve treatment synergism and better patient

response.

This new trend of combining cytotoxic agents with MTAs for treating cancer brings new

challenges for early-phase dose-finding trial design. These challenges arise from the differ-

ence in the dose-efficacy curves between the two types of treatment agents. For cytotoxic

agents, more is better (i.e., a higher dose yields a greater response) until a dose-limiting

toxicity level is reached. However, the dose-efficacy relationship of the MTA may not follow

a monotonic pattern: the efficacy of the MTA often increases at low dose levels and then

plateaus (or approximately plateaus) at higher dose levels once a saturation level in the

body is reached (Le Tourneau et al., 2010; Hoering et al., 2011). Although it is possible

that efficacy decreases at higher dose levels, here we focus on the case in which efficacy

first increases and then plateaus because such a dose-efficacy relationship is much more

commonly encountered in practice.

Consequently, the conventional dose-finding paradigm of searching for the maximum

tolerated dose (MTD) is not suitable for combinational trials of a cytotoxic agent with an
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MTA, and it is imperative to consider efficacy and toxicity simultaneously, with the goal

of finding the molecularly targeted optimal dose combination (ODC). This is because once

the MTA dose-efficacy curve reaches a plateau, further increases in the dose of the targeted

agent will not yield any therapeutic benefit, but will potentially result in greater toxicity

(Postel-Vinay et al., 2009). In this article, the ODC is defined as the most efficacious dose

combination that yields the lowest toxicity. As the lowest toxicity can still be excessive, we

also require the ODC to satisfy a certain safety requirement, e.g., the toxicity probability

must be lower than a certain upper bound.

Numerous designs have been proposed to find the MTD for trials combining multiple

cytotoxic agents, without considering the efficacy endpoint. For example, Thall et al. (2003)

developed a Bayesian approach to identify an entire toxicity “contour” of drug combina-

tions. Conaway et al. (2004) proposed a dose-finding method based on the simple and

partial orders of drug combinations. Yuan and Yin (2008) proposed a sequential dose-

finding design that allows single-agent dose-finding methods to be used in multiple-agent

combination trials. Braun and Wang (2010) proposed a hierarchical-model-based approach

for dose finding. Yin and Yuan (2009) developed a Bayesian dose-finding method based on

a copula-type regression model. Wages et al. (2011) extended the continual reassessment

method to two-dimensional dose finding. Recently, several phase I/II drug-combination

trial designs have been proposed to account for both toxicity and efficacy. Focusing on a

combination of cytotoxic agents, Huang et al. (2007) proposed a phase I/II design based on

the “3+3” type dose escalation scheme, and Yuan and Yin (2011) developed a model-based

approach to accommodate toxicity and efficacy for combination trials. Mandrekar et al.

(2007) proposed a dose-finding design for trials combining two MTAs based on a continua-

tion ratio model for trinary outcomes. Cai and Ji (2014) proposed a Bayesian dose-finding
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design for trials combining two MTAs, which used a change point model to reflect that

the dose-toxicity surface of combinations may plateau. Despite this rich body of literature,

no design is available for clinical trials combining a cytotoxic agent with an MTA, which

requires simultaneously accounting for the different behaviors of the cytotoxic agent and

the MTA. In addition, the existing phase I/II drug-combination designs assume that the

efficacy outcome is immediately ascertainable; however, this assumption may not hold in

many practical situations because, unlike the toxicity endpoint, the efficacy endpoint often

requires a relatively long time to assess.

We propose a Bayesian phase I/II design to find the ODC for trials combining a cytotoxic

agent with an MTA. We model efficacy as a time-to-event outcome rather than a binary

outcome, thereby eliminating the requirement that the efficacy outcomes of treated patients

must be fully evaluated before a new cohort can be enrolled into the trial. To account for

the feature of the MTA whereby the dose-efficacy curve may initially increase and then

plateau, we incorporate a plateau parameter into the proportional hazard model for time

to efficacy. We model the binary toxicity outcome using a logistic regression model. During

the trial, we continuously updated the model estimates and use them to assign patients to

the ODC.

The remainder of the article is organized as follows. In Section 2, we present a case

study that has motivated the proposed methodology. In Section 3, we propose toxicity and

efficacy models, and describe a dose-finding algorithm to identify the ODC. In Section 4, we

present simulation studies to evaluate the operating characteristics of the proposed design

and investigate its sensitivity to model specifications. We conclude with a brief discussion

in Section 5.
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2. A solid tumor clinical trial

Pishvaian et al. (2012) reported a phase I dose-finding clinical trial for the combination

of imatinib and paclitaxel in patients with advanced solid tumors refractory to standard

therapy. Imatinib is a tyrosine-kinase inhibitor used in the treatment of multiple cancers,

most notably chronic myelogenous leukemia (CML). Imatinib works by inhibiting the ac-

tivity of the BCR-Abl tyrosine kinase enzyme that is necessary for cancer development,

thus preventing the growth of cancer cells and leading to their death by apoptosis. Because

the BCR-Abl tyrosine kinase enzyme exists only in cancer cells and not in healthy cells,

imatinib works effectively as an MTA killing only cancer cells through its action. The goal

of the trial was to evaluate the safety of combining imatinib with the traditional cytotoxic

chemotherapeutic agent paclitaxel, and to determine whether that combination improved

the efficacy of imatinib. In the trial, four doses (300, 400, 600, 800 mg) of imatinib and three

doses (60, 80, 100 mg/m2) of paclitaxel were investigated. Most of the grade 3 or 4 toxic-

ities related to therapy involved neutropenia, flu-like symptoms, and pain. The treatment

response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST).

This phase I trial adopted the conventional “3+3” design, which unfortunately suffers

from several limitations. First, as the “3+3” design requires that the doses under investi-

gation must be monotonically increasing, only a subset of all 12 possible combinations of

imatinib and paclitaxel were investigated in the trial. As a result, the trial might not have

even examined the most desirable dose in the 4 × 3 dose combination space. Specifically,

the trial selectively investigated 6 dose combinations: (paclitaxel, imatinib) = (60, 300),

(60, 400), (80, 400), (80, 600), (100, 600) and (100, 800). The original protocol involved an

intensive dose schedule, with continuous daily oral administration of imatinib and weekly

paclitaxel infusions. However, after treating patients at the first two doses, the regimen
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resulted in an excessive number of adverse events, and thus the protocol was amended to a

less intensive schedule, with intermittent dosing of imatinib. The second limitation of this

use of the “3+3” design is that it ignores the important fact that the efficacy of imatinib

does not monotonically increase with the dose, and that the MTD may not be the optimal

dose for treating patients. Druker (2002) pointed out that, for treating CML, a dose of 400

to 600 mg of imatinib reached the plateau of the dose-response curve. As a result, 400 mg

or 600 mg is the dose of imatinib that is commonly used in clinical practice. This result was

confirmed in a meta-analysis (Gafter-Gvili et al., 2011) of phase III randomized trials, in

which no treatment difference was found between 400 mg and higher doses of imatinib. This

trial example demonstrates the need for a new dose-finding design to handle the clinical

trials that combine an MTA with a traditional cytotoxic agent. We apply our design to the

trial in Section 4.

3. Methods

3.1. Toxicity model

Consider a trial combining J doses of cytotoxic agent A withK doses of molecularly targeted

agent (MTA) B, and denote (j, k) as the combination of the jth dose level of agent A with

the kth dose level of agent B. We assume that toxicity (i.e., the dose-limiting toxicity

defined by the trial investigator) is quickly ascertainable and monotonically increases with

the doses of both agents A and B; this assumption generally holds for cytotoxic agents and

is plausible for most MTAs.

Let yi denote the binary toxicity outcome of patient i with yi = 1 indicating a toxicity

response, and pjk denote the toxicity probability of combination (j, k) for j = 1, . . . , J and

k = 1, . . . ,K. We model toxicity using a logistic model as follows,

logit(pjk) = β0 + β1uj + β2vk (1)
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where β0, β1, and β2 are unknown parameters, and uj and vk are “effective” doses ascribed

to the jth dose level of agent A and the kth dose level of agent B based on the prior

estimates of the single-agent toxicity probabilities for these two dose levels. The procedure

of determining the values of uj and vk will be described in Section 3.4. We require β1 > 0

and β2 > 0 so that toxicity monotonically increases with the dose levels of both agents A

and B.

Assuming that during the trial conduct, among the njk patients administered the com-

bination (j, k), mjk patients experienced toxicity, then the likelihood of the toxicity data

Dtox = {njk,mjk} is

L(Dtox|β0, β1, β2) ∝
J∏

j=1

K∏
k=1

p
mjk

jk (1− pjk)
njk−mjk .

Letting π(β0, β1, β2) denote the prior distribution of β0, β1 and β2, the posterior is then

given by

f(β0, β1, β2|Dtox) ∝ π(β0, β1, β2)L(Dtox|β0, β1, β2). (2)

In model (1), we do not include an interactive effect of the two agents (e.g., an interaction

term β3ujvk) because the reliable estimation of such an interaction term requires a large

sample size (e.g., a few hundred), which is typically not available in early-phase trials. Our

numerical study suggests that including the interaction term does not improve but often

impairs the performance of the design (results are not shown). Note that for the purpose

of dose finding, our goal is not to accurately model the entire dose-toxicity surface, but to

obtain an adequate local fit to facilitate dose escalation and de-escalation. A model may

provide a poor global fit for the entire dose-toxicity surface; however as long as the model

provides a good local fit around the current combination, it will lead to correct decisions of

dose escalation and dose selection (O’Quigley and Paoletti, 2003).



8

3.2. Efficacy model

Unlike toxicity, which often can be observed quickly, the efficacy response may require a

relatively long follow-up time to be scored. In this circumstance, the conventional approach

of treating efficacy as a binary outcome causes a serious logistic issue: when a new patient

is enrolled and is waiting for dose assignment, some of patients already treated in the trial

might not have finished their evaluation yet, and thus their response outcomes are not

available to make the decision of dose assignment for the new patient. To overcome this

difficulty, we herein model the response as a time-to-event outcome, in which the data of

the incomplete efficacy evaluations are naturally incorporated into the decision making of

dose assignment as censored observations.

Let t denote the time to response. In early phase clinical trials, the typical way to

evaluate efficacy is to follow each patient for a fixed period of time T , e.g., 3 months, after

the initiation of the treatment. Within the assessment window (0, T], if the patient responds

favorably to the treatment (i.e., t ≤ T ), it is scored as a response, otherwise nonresponse.

The efficacy of the drug is defined as the response rate at T . Patient’s outcomes after T

will not be used to define the efficacy of the drug and make the decision of dose escalation

and selection. In other words, the time to response t is always administratively censored

at T . Although we cannot observe any t beyond the time point T , it does not cause any

issue here because for the purpose of evaluating the efficacy of the drug and finding the

optimal dose, by definition, we only concern the response rate at T , i.e., 1 − S(T ), where

S(·) denotes the survival function of t. For the same reason, conceptually, we can regard

t = ∞ for the patients who do not benefit from the treatment without affecting the dose

finding. A special feature of the trial combining an MTA with a cytotoxic agent is that the

dose-efficacy curve behaves differently with respect to the two agents: efficacy is expected
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to monotonically increase with the dose of the cytotoxic agent, but not with the dose of the

MTA. Efficacy often initially increases and then plateaus with the dose of the MTA after the

MTA reaches a level of saturation. Let λjk(t) denote the hazard function associated with

combination (j, k), and 1(C) denote the indicator function, which takes a value of 1 if C is

true. We model the time to efficacy for the combination of an MTA and a cytotoxic agent

using a proportional hazard model, augmented with a plateau parameter τ , as follows,

λjk(t) = λ0(t)exp{γ1wj + γ2(zk1(k < τ) + zτ1(k ≥ τ))},

where λ0(t) is the baseline hazard, and wj and zk are “effective” doses ascribed to the jth

dose level of agent A and the kth dose level of agent B based on the prior estimates of the

single-agent efficacy probabilities for these two doses, which will be described in the next

section. We assume that γ1 > 0 and γ2 > 0, and therefore efficacy monotonically increases

with the dose of the cytotoxic agent A (i.e., wj). The plateau parameter τ is an integer

between 1 andK and indicates at which dose level of agent B (i.e., the MTA) efficacy reaches

a plateau. When the dose level is lower than τ , the efficacy monotonically increases with the

dose of the MTA (i.e., zk) through the covariate effect γ2(zk1(k < τ)+ zτ1(k ≥ τ)) = γ2zk;

and when the dose level is equal to or higher than τ , the efficacy plateaus (with respective

to the dose level of agent B) with a constant dose effect γ2zτ .

Due to the small sample size of early-phase trials, we take a parameter approach and

assume an exponential distribution for the time to efficacy with a constant baseline hazard,

i.e., λ0(t) = λ0, resulting in the following survival function for the time to efficacy

Sjk(t) = exp[−λ0t exp{γ1wj + γ2(zk1(k < τ) + zτ1(k ≥ τ))}].

Then, the response rate at the end of T for patients treated at the combination (j, k),

denoted by qjk, is given by qij = 1−Sjk(T ). In our design, qjk will be used as the measure
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of efficacy for determining the dose transition and selection.

For patient i, let si denote the actual follow-up time, ti denote the time to response,

and (ji, ki) denote the combination administered to the patient. Define xi = min(T, si, ti)

and censoring indicator δi = 1(xi = ti). Given the efficacy data Deff = {xi, δi} obtained

from n patients, the likelihood is given by

L(Deff |λ0, γ1, γ2, τ) ∝
n∏

i=1

λδi
jiki

(xi)Sjiki(xi),

and the posterior is

f(λ0, γ1, γ2, τ |Deff) ∝ π(λ0, γ1, γ2, τ)L(Deff |λ0, γ1, γ2, τ), (3)

where π(λ0, γ1, γ2, τ) is the prior for the unknown parameters.

3.3. Specification of prior and effective doses

We first discuss the specification of priors for the model parameters. For the toxicity

model, we adopted a vague normal prior N(0, 100) for the intercept β0, and, following

Chevret (1993), we assigned the slopes β1 and β2 independent exponential distributions

with a rate parameter of 1, i.e., β1, β2 ∼ Exp(1). For the efficacy model, we took vague

priors λ0 ∼ Exp(0.01) and γ1, γ2 ∼ Exp(0.1), and assigned τ a multinomial distribution

with probability parameters π = (π1, ..., πK), where πk is the prior probability that the

dose-efficacy curve plateaus at dose level k of the MTA. When there is rich information on

the location of τ , e.g., we know the saturation dosage of the MTA from pharmacokinetic

and pharmacodynamic studies, we can choose a set of π to reflect the likelihood of each

dose level being the plateau point. When there is no good prior information regarding the

location of τ , we recommend assigning τ an increasing sequence of prior probabilities (i.e.,

π1 < π2 < ... < πK) rather than a noninformative flat prior π1 = π2 = ... = πK . This

recommendation is based on our experience with numerical studies, in which we found that
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using a noninformative prior often caused the dose selection to remain at low dose levels due

to the sparsity of data; whereas the prior with increasing πk’s encourages the dose-finding

algorithm to explore higher dose levels of agent B and actively learn the shape of the dose-

efficacy curve, thereby improving the ODC selection accuracy. In our simulation study, we

took π = (0.14, 0.20, 0.28, 0.39), which led to good operating characteristics across various

scenarios. A summary of prior distributions is given in Table 1. After specifying the prior

distributions, we sampled posterior distributions (2) and (3) using the Gibbs sampler.

We next discuss how to specify the effective doses (i.e., uj ’s and vk’s in the toxicity

model, and wj ’s and zk’s in the efficacy model) based on the prior estimates of the single-

agent toxicity and efficacy probabilities. In practice, before two agents are to be combined,

each of them typically has been studied individually. For example, prior to the solid tumor

clinical trial that combines imatinib with paclitaxel (Pishvaian et al., 2012), many phase I

and II trials have been conducted to study the single-agent toxicity and efficacy profiles for

imatinib (Ramanathan et al., 2008; Gibbons et al., 2008; Lipton et al., 2010; van Oosterom

et al., 2001) and paclitaxel (Kato et al., 2011; Tsimberidou et al., 2011; Takano et al., 2002;

Lim et al., 2010; Horiguchi et al., 2009). Therefore, we often have good prior estimates of the

single-agent toxicity and efficacy probabilities for each of the agents. The purpose of defining

and using the effective doses is to match the prior estimates of (single-agent) toxicity and

efficacy probabilities under our model with those elicited from the prior information. By

doing so, we incorporate the available single-agent dose-toxicity and -efficacy information

into our model and thus improve the efficiency of the design. This approach has been

previously used for dose finding in single-agent trials (Chevret, 2006; Zohar et al., 2013)

and drug-combination trials (Liu and Ning, 2013).

Specifically, let p̂j0 and p̂0k denote the estimates of the single-agent toxicity probabilities
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for the jth level of agent A and the kth level of agent B, respectively, and q̂j0 ≡ 1− Ŝj0(T )

and q̂0k ≡ 1− Ŝ0k(T ) denote the estimates of the single-agent efficacy probabilities for the

jth level of agent A and the kth level of agent B (at the end of follow-up). Under toxicity

model (1), by setting the dosage of agent B (or A) as zero, we obtain the single-agent

toxicity model logit(pj0) = β0 + β1uj for agent A and logit(p0k) = β0 + β2vk for agent B.

Therefore, based on the prior estimates p̂j0 and p̂0k , we backsolve the effective doses uj

and vk as

uj = {logit(p̂j0)− β̂0}/β̂1

vk = {logit(p̂0k)− β̂0}/β̂2,

where β̂0 and β̂1 are prior means of β0 and β1. Similarly, under efficacy survival model

(2), the single-agent efficacy model is Sj0(t) = exp{−λ0.t.exp(γ1wj)} for agent A and

S0k(t) = exp[−λ0.t.exp{γ2(zk1(k < τ) + zτ1(k ≥ τ))}] for agent B. We determine the

effective doses

wj = log[−log{1− q̂j0}/(λ̂0T )]/γ̂1

zk = log[−log{1− q̂0k}/(λ̂0T )]/γ̂2,

where λ̂0, γ̂1, γ̂2 are prior estimates of the corresponding parameters, and τ̂ is the highest

dose levels.

3.4. Dose-finding algorithm

At the beginning of the trial, data are very sparse and the estimates of the toxicity and

efficacy models are highly unreliable. To improve the reliability of dose finding, we use a

start-up phase to collect some preliminary data prior to switching to the formal model-based

dose-finding algorithm.
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We adopted a start-up phase similar to that proposed by Huang et al. (2007), which

divides the dose combination matrix into a sequence of zones along the diagonal from low

doses to high doses (see Figure 1), and then conducts a “3+3” type dose escalation across the

zones. Specifically, we initiate the start-up phase by treating the first cohort of 3 patients at

the lowest zone, i.e., the lowest combination (1, 1), and then continuously escalate the dose

to higher dose zones until we first encounter a zone in which all doses are “closed.” Given

a dose, if more than 1 patient were to experience toxicity out of the 3 or 6 patients who

have been administered that dose, we close the dose and require that all higher doses (i.e.,

any combination having a higher dose level of A or B or A and B) are automatically closed

and not eligible for use in treating future patients in the start-up phase. More precisely, if

we close dose combination (j, k), we also close higher doses {(j′, k′); j′ ≥ j and k′ ≥ k}.

The “closed” dose combinations can be reopened later to treat patients in the subsequent

model-based dose-finding phase if the accumulating data indicate that they are actually

safe. The dose escalation across zones is analogous to the traditional “3+3” dose escalation

rule: among three patients, if we observe no toxicity, we escalate the dose; if more than 2

patients experience toxicity, we close the dose; and if 1 patient experiences toxicity, we treat

three more patients at the current dose. In the latter case, if 0 or 1 out of the 6 patients

experiences toxicity, we escalate the dose; otherwise we close the dose. When we escalate

to a higher dose zone, if there are multiple combinations that are not closed in that zone,

we simultaneously assign patients to each of the combinations.

After the start-up phase, we switch to the model-based dose-finding phase. Let θ and ξ

denote the prespecified toxicity upper bound and efficacy lower bound, respectively. Let N

denote the total sample size, and n denote the number of patients treated in the trial. We
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define that a combination (j, k) is admissible if it satisfies the safety requirement

P (pjk > θ) < CT (4)

and also the efficacy requirement

P (Sjk(T ) > ξ) ≥ CE1(n ≥ N/2), (5)

where CT and CE are the respective probability thresholds for toxicity and efficacy. Note

that the efficacy requirement (5) takes effect when only half of the patients have been

enrolled, as controlled by the indicator function 1(n ≥ N/2). We found that introducing

the efficacy condition too early caused a high frequency of misclassification of the admissible

doses as inadmissible and thus resulted in the early termination of the trial. This situation

can arise because, compared to the evaluation of the toxicity condition (4), the reliable

evaluation of the efficacy condition (5) requires more data, as the efficacy outcome is not

immediately observable and the efficacy model is relatively more complicated.

Let (j, k) denote the current dose, A denote the set of combinations that have been

previously used to treat patients, and B = {(j′, k′); j′ ≤ j + 1, k′ ≤ k + 1, and (j′, k′) ̸=

(j+1, k+1)} denote the set of combinations for which the doses are not two levels higher than

the current dose (j, k). Our model-based dose-finding algorithm can be described as follows:

after the start-up phase, we assign the next cohort of patients to the optimal combination

that is admissible and which also has the highest estimate of efficacy, i.e., 1− Ŝ(T ), selected

from the set A∪B. If several such optimal combinations exist, e.g., the efficacy has reached

a plateau with respect to the dose level of the MTA, we select the one with the lowest

toxicity probability (e.g., the optimal combination with the lowest MTA dose level) to treat

the new cohort. At any time, if all combinations are not admissible, then we terminate the

trial; otherwise, we continue this dose assignment process until the maximum sample size
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is reached. At the end of the trial, we select the ODC as the admissible combination that

has the highest estimate of efficacy along with the lowest estimate of toxicity.

4. Numerical Studies

4.1. Simulation study

We carried out extensive simulations to evaluate the operating characteristics of the pro-

posed phase I/II design. Taking the setting of the aforementioned solid tumor trial, we

assumed 3 dose levels for cytotoxic agent A (i.e., paclitaxel) and 4 dose levels for molec-

ularly targeted agent B (i.e., imatinib), resulting in a total of 12 combinations. We took

the initial guesses of the single-agent toxicity and efficacy as (0.2, 0.3, 0.4) and (0.3, 0.4, 0.5),

respectively, for agent A, and (0.12, 0.2, 0.3, 0.4) and (0.3, 0.4, 0.5, 0.59) for agent B. The

maximum sample size was 75 and patients were treated sequentially in cohorts of size 3.

We assumed that the patient accrual followed a Poisson process with the rate of 1/3.5

patients per week. The toxicity upper bound was θ = 0.30 and the efficacy lower bound

was ξ = 0.20. We set the toxicity threshold as CT = 0.85 and the efficacy threshold as

CE = 0.10, and took the prior probabilities of the dose-efficacy curve reaching a plateau

at the different dose levels of agent B as (0.16, 0.21, 0.27, 0.36). We considered 8 different

dose-toxicity and efficacy scenarios (see Table 2), representing what we may encounter in

practice. We assumed that toxicity was quickly evaluable, while the evaluation of efficacy

required 7 weeks, i.e., T = 7 weeks. Under each scenario, we assumed that at each com-

bination, the time to efficacy followed an exponential distribution. The parameter of the

exponential distribution was chosen such that at the end of follow-up, the efficacy rate of

each dose combination (i.e., 1−Sjk(T )) matched those displayed in Table 2. As a result, the

parameter of the exponential distribution had to vary across doses. Under each scenario,

we conducted 1,000 simulations.
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Table 3 shows the simulation results, including the ODC selection percentage, the av-

erage number of patients assigned to the ODC, and the average number of dose-limiting

toxicities (DLTs). We also reported the “effective dose combination” (EDC) selection per-

centage, defining the EDCs as the admissible combinations that yield the same (highest)

efficacy as the ODC and which also have acceptable toxicity, i.e., the toxicity probability of

the EDC is not necessarily the lowest among several equally efficacious combinations. For

example, in scenario 2 in Table 2, both (3, 1) and (3, 2) have the same high efficacy rate of

55% and acceptable toxicity rates not higher than 30%. The ODC is (3, 1) as it has a lower

toxicity probability or lower MTA dose level (i.e., agent B); whereas both (3, 1) and (3, 2)

are EDCs as they are both safe and efficacious. Although the ODC is optimal, in practice,

the EDCs are also of interest due to their high efficacy even though their dose of agent B

may be higher than what is actually needed. Note that under our definitions, the ODC is

one of the EDCs, but not vice versa. Table 4 provides more detailed simulation results for

the selection percentages and the number of patients treated at each dose combination.

In general, the proposed design performed well across 8 scenarios. The ODC and EDC

selection percentages were generally greater than 50%, and the design allocated a large

number of patients to the ODC and EDCs. Specifically, in scenario 1, the dose-efficacy

curve (approximately) plateaus at the lowest dose level of the targeted agent B, and the

ODC is the combination (3, 1), which yields the highest efficacy with the lowest dose of

the targeted agent. This ODC is also the only EDC in scenario 1. To mimic what may

happen in practice, we designed the scenarios to allow for some variation in efficacy, even

when it has reached the plateau. The proposed design selected the ODC 75.6% of the time,

and allocated on average 35.1 patients to the ODC. As in scenario 1, in scenario 2, the

dose-efficacy curve plateaued from the lowest dose level of the targeted agent B with (3, 1)
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as the ODC, but with two EDCs, i.e., (3, 1) and (3, 2). Note that combinations (3, 3) and

(3, 4) have high efficacy probabilities that are similar to that of the ODC (3, 1), but they

are not EDCs because they are not admissible combinations due to high toxicity. In this

case, the proposed design selected the ODC and EDCs 62.0% and 94.0% of the time. In

scenario 3, the dose-efficacy curve plateaus after dose level 1 of agent B. The ODC and

EDC selection percentages in that scenario were 51.3% and 96.9%, respectively. Scenarios 4

and 5 both have efficacy plateaus after dose level 2 of agent B, but with different locations

for the ODC and EDCs. In these two cases, the ODC selection percentages were more than

40%. Scenarios 6 to 8 simulate efficacy monotonically increasing with the dose of agent B

(e.g., agent B does not reach a level of saturation within the range of the investigational

doses), with different numbers for the ODCs, which is similar to what may happen in

conventional combination trials with two cytotoxic agents. The simulations demonstrate

that our proposed design performed well and achieved ODC and EDC selection percentages

that were all higher than 60%, suggesting that the proposed design can also be applied to

the combination of two cytotoxic agents.

4.2. Sensitivity analysis

We performed sensitivity analyses to study the robustness of our design. We varied four fac-

tors: (1) the prior estimates of the single-agent toxicity and efficacy probabilities; (2) the dis-

tribution of time to efficacy; (3) the variance of the prior distribution for β0, β1, β2, λ0, γ1, andγ2;

and (4) the prior distribution for τ . We assumed that the single-agent toxicity and ef-

ficacy probabilities, used to determine the “effective” dose in the toxicity and efficacy

model, were (0.06, 0.12, 0.2) and (0.12, 0.2, 0.3) for agent A, and (0.06, 0.12, 0.2, 0.3) and

(0.4, 0.5, 0.59, 0.67) for agent B. We simulated the time to efficacy from a Weibull distribu-

tion with a fixed shape parameter of 3. We chose the scale parameter of the Weibull distribu-
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tion such that the efficacy probabilities at the end of follow-up, i.e., 1−S(T ), matched those

given in Table 2. We inflated the prior variances of parameters β0, β1, β2, λ0, γ1, and γ2 by

2-fold, and used π = (0.11, 0.17, 0.28, 0.44) as the prior probabilities of τ . Table 5 shows

the results of the sensitivity analyses. We can see that the ODC and EDC selection per-

centages and the number of patients treated at the ODC and EDCs are generally similar to

those reported in Table 3, which suggests that the proposed design is not sensitive to the

aforementioned design factors.

4.3. Application

We retrospectively applied our design to the solid tumor trial. As described previously,

the trial selectively studied six dose combinations out of 12 possible combinations. Because

the dosing schedule used in the original protocol resulted in too many toxicities, the protocol

was amended to use a less intensive dose schedule. As a result, five dose combinations were

actually used for dose finding under the amended schedule, as shown in Table 6. The window

for assessing treatment response was set at T = 13 weeks. The trial did not report the time

to response; thus, we assumed that it was uniformly distributed within the assessment

window. To be consistent with the “3+3” method used by the trial, we set CT = 0.33 and

CE = 0.0, and forbade skipping untried doses during the dose escalation.

The trial started by treating the first cohort of 3 patients at the lowest dose combination

(60, 400), at which one response and no dose-limiting toxicity (DLT) was observed. Based

on the data, our method identified dose combination (100, 600) as the ODC, with an

estimated response rate of 0.54, and thus recommended dose escalation to (80, 400) for

treating the second cohort of patients. Among the three patients treated at (80, 400), two

responded to the treatment and no DLT was observed. In light of this new information,
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our method estimated combination (100, 600) as the ODC, with an estimated response rate

of 0.56. Accordingly, we escalated the dose to (80, 600) for treating the third cohort of 3

patients, among which 2 patients responded to the treatment and no DLT was observed.

Our method then escalated the dose and assigned the fourth cohort to dose combination

(100, 600), at which we observed 2 responses and no DLT. At that moment, the estimated

ODC was dose combination (100, 600), with the estimated response rate of 0.45. Based on

this result, our method would retain the current dose and assign the remaining 6 patients

to (100, 600); whereas the “3+3” design dictated a dose escalation to (100, 800). At the

end of the trial, our design selected (100, 600) as the ODC, while the “3+3” design picked

(100, 800). According to the literature, a dose of 600mg of imatinib reaches the plateau of

the dose-response curve and actually is the dosage that has been widely administered to

cancer patients in practice. It seems that our design successfully identified that, while the

“3+3” design might have resulted in overdosing of patients by selecting a dose of 800mg.

5. Conclusions

We have proposed a Bayesian phase I/II design for trials that combine a cytotoxic agent

with a molecularly targeted agent. We assumed that toxicity is quickly evaluable and

used a logistic regression model to evaluate toxicity as a binary outcome. In contrast, we

assumed that efficacy takes a relatively long time to evaluate, and correspondingly used a

proportional hazard model to evaluate efficacy as a time-to-event outcome. To account for

the characteristic dose-efficacy curve for MTAs, which initially increases and then plateaus,

we incorporated a plateau point into the time-to-efficacy model. During the trial conduct,

we continuously updated the model estimates and used them to assign patients to the ODC.

We evaluated our design through a simulation study under various practical scenarios. Our

design performed well by selecting the optimal dose combination a high percentage of the
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time.

The proposed design assumes that the treatment response can be observed anytime

during the followup period. For some clinical trials, the response however can only be

ascertained at the end of followup, for example, when the response is defined as a certain

percentage of tumor shrinkage at time T . In these cases, rather than modeling the time to

response, we can model the time to disease progression (i.e., time to nonresponse), which

typically is observable in real time based on patient’s symptoms. The proposed model and

design can still be used. We just need to treat t as the time to nonresponse, and accordingly

estimate the response rate qjk at T by Sjk(T ), rather than 1− Sjk(T ).

There are several possible extensions of the proposed design to further improve its per-

formance or flexibility in order to accommodate different clinical applications. For example,

rather than modeling toxicity as a binary outcome, we can use measurements of the various

grades of toxicity and model it as an ordinary outcome. This approach uses more refined

information and can potentially improve the efficiency of the trial design. In addition, when

late-onset toxicity is of concern, we can model toxicity as a time-to-event outcome, as we

have done for efficacy. Lastly, our dose assignment and selection criteria focus on efficacy

while controlling for toxicity. In some applications, it may be more appropriate to consider

the tradeoff between toxicity and efficacy. To accommodate these cases, we can define a

utility function for the tradeoff between toxicity and efficacy and then use the utility as the

criterion for dose assignment and selection.
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Table 1. Prior distributions for model parameters.
Parameter Prior distribution

β0 N(0, 100)
β1, β2 Exp(1)
λ0 Exp(0.01)

γ1, γ2 Exp(0.1)
τ Multinomial(π1, ..., πK) with π1 < ... < πK
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Table 2. Eight toxicity and efficacy scenarios for the combination of a cytotoxic agent (agent A) with a
molecularly targeted agent (agent B). The optimal dose combinations (ODCs) are in bold and the effective
dose combinations (EDCs) are underlined. The dashed lines indicate the dose level of the MTA at which the
efficacy plateaus.

Agent A Agent A
Agent 1 2 3 1 2 3 1 2 3 1 2 3
B Toxicity Efficacy Toxicity Efficacy

Scenario 1 Scenario 2
4 0.45 0.50 0.65 0.27 0.42 0.56 0.30 0.45 0.55 0.28 0.43 0.57
3 0.30 0.45 0.55 0.26 0.41 0.56 0.15 0.30 0.45 0.27 0.42 0.56
2 0.15 0.30 0.45 0.25 0.41 0.55 0.12 0.15 0.30 0.26 0.40 0.55
1 0.10 0.15 0.30 0.25 0.40 0.55 0.08 0.10 0.15 0.25 0.40 0.55

Scenario 3 Scenario 4
4 0.10 0.15 0.30 0.37 0.52 0.67 0.10 0.15 0.30 0.32 0.46 0.61
3 0.07 0.10 0.15 0.36 0.51 0.66 0.08 0.10 0.15 0.30 0.45 0.60
2 0.05 0.08 0.10 0.35 0.50 0.65 0.04 0.05 0.10 0.20 0.30 0.40
1 0.01 0.05 0.07 0.15 0.25 0.35 0.01 0.03 0.07 0.05 0.10 0.20

Scenario 5 Scenario 6
4 0.30 0.55 0.65 0.41 0.56 0.67 0.10 0.15 0.30 0.40 0.55 0.70
3 0.15 0.45 0.55 0.40 0.55 0.65 0.07 0.10 0.15 0.25 0.40 0.55
2 0.10 0.30 0.45 0.15 0.20 0.25 0.05 0.08 0.10 0.15 0.30 0.40
1 0.05 0.15 0.30 0.05 0.10 0.15 0.01 0.05 0.07 0.05 0.10 0.30

Scenario 7 Scenario 8
4 0.50 0.60 0.65 0.50 0.60 0.70 0.45 0.55 0.65 0.50 0.60 0.70
3 0.45 0.55 0.60 0.45 0.50 0.60 0.30 0.45 0.60 0.45 0.52 0.63
2 0.30 0.45 0.50 0.30 0.45 0.50 0.15 0.30 0.50 0.30 0.45 0.50
1 0.15 0.30 0.45 0.15 0.30 0.45 0.10 0.15 0.30 0.20 0.30 0.45
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Table 3. Selection percentage of the optimal dose combination (ODC) and effective dose combination (EDC),
the average number of patients treated at the ODC and EDC, and the average number of dose-limiting toxicities
(DLTs).

Scenarios
1 2 3 4 5 6 7 8

ODC selection percentage 75.6 62.0 51.3 51.3 42.1 66.4 62.8 78.3
Mean number of patients at ODC 35.1 25.1 17.4 18.1 14.4 23.1 32.5 40.9

Mean number of DLTs 22.5 16.7 9.4 10.8 21.9 12.0 25.8 23.7
EDC selection percentage 75.6 94.0 96.9 83.8 68.1 66.4 62.8 78.3

Mean number of patients at EDC 35.1 43.9 42.2 34.4 28.8 23.1 32.5 40.9
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Table 4. ODC (in boldface) and EDC (underlined) selection percentages and the average number of
patients treated at each combination.

Selection percentage Average number of patients
Scenario 1 Scenario 2 Scenario 1 Scenario 2

0.4 0.1 0.1 0.2 0.2 0.0 2.0 0.2 0.2 3.0 0.9 1.2
0.9 1.0 0.0 0.1 1.0 3.6 4.0 1.3 1.3 3.4 2.7 5.2
0.5 7.4 6.0 0.0 0.8 32.0 3.9 5.8 10.3 3.6 3.5 18.8
0.1 7.9 75.6 0.0 0.0 62.0 4.0 6.9 35.1 3.7 3.8 25.1

Scenario 3 Scenario 4 Scenario 3 Scenario 4
0.0 0.0 16.7 0.0 0.8 32.5 3.5 2.9 10.3 3.5 3.3 16.3
0.0 0.0 28.9 0.0 0.1 51.3 3.4 3.3 14.5 3.6 3.4 18.1
0.0 0.0 51.3 0.0 0.0 13.9 3.3 3.5 17.4 3.4 3.3 9.4
0.0 0.0 3.1 0.0 0.0 1.4 3.1 3.4 6.5 3.1 3.2 4.5

Scenario 5 Scenario 6 Scenario 5 Scenario 6
26.0 0.8 0.0 0.0 1.2 66.4 14.4 3.3 0.9 3.4 3.2 23.1
42.1 16.5 1.3 0.0 0.0 19.8 14.4 10.0 2.6 3.5 3.2 13.1
0.1 2.9 3.9 0.0 0.0 9.1 4.4 5.5 5.1 3.4 3.4 7.1
0.0 0.1 5.1 0.0 0.0 3.5 3.4 4.2 6.6 3.1 3.4 5.1

Scenario 7 Scenario 8 Scenario 7 Scenario 8
1.8 0.0 0.0 4.8 0.3 0.0 2.6 0.2 0.1 4.8 0.7 0.3
8.0 0.1 0.0 16.3 3.1 0.0 7.8 0.7 0.3 9.4 3.3 1.4
27.7 3.6 1.1 3.4 19.5 7.2 14.9 4.1 2.3 5.3 9.5 8.6
2.7 35.1 13.0 0.0 2.8 42.5 7.1 17.6 14.9 3.8 5.7 22.0
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Table 5. Results of the sensitivity analysis.
Scenarios

1 2 3 4 5 6 7 8

Different prior estimates for single agents
ODC selection percentage 74.7 63.4 50.6 56.9 44.2 65.4 62.2 79.7

Mean number of patients at ODC 74.7 93.6 96.4 85.0 70.0 65.4 62.2 79.7
Mean number of DLTs 0.4 0.0 0.0 0.0 1.8 0.0 7.4 0.3

EDC selection percentage 34.8 25.6 17.1 19.1 15.0 23.0 33.9 41.8
Mean number of patients at EDC 34.8 43.9 41.9 34.4 29.8 23.0 33.9 41.8

Time to efficacy following a Weibull distribution
ODC selection percentage 78.3 72.0 64.0 47.1 38.1 49.4 64.1 78.5

Mean number of patients at ODC 78.3 96.2 92.6 65.0 56.5 49.4 64.1 78.5
Mean number of DLTs 0.4 0.2 0.0 0.0 0.0 0.0 2.3 0.2

EDC selection percentage 35.7 27.7 20.2 17.3 12.8 16.9 32.8 41.0
Mean number of patients at EDC 35.7 45.2 40.4 29.0 23.5 16.9 32.8 41.0

Double the prior variances of (β0, β1, β2, λ0, γ1, γ2)
ODC selection percentage 70.5 46.3 45.9 52.5 45.9 70.4 61.0 74.4

Mean number of patients at ODC 70.5 88.6 97.9 88.0 72.0 70.4 61.0 74.4
Mean number of DLTs 0.1 0.0 0.0 0.0 0.9 0.0 6.4 0.2

EDC selection percentage 31.5 19.3 16.0 19.1 15.6 24.7 32.3 37.7
Mean number of patients at EDC 31.5 39.8 42.7 35.8 30.1 24.7 32.3 37.7

Different prior for plateau parameter τ
ODC selection percentage 71.9 54.0 43.3 49.5 42.1 72.4 61.1 78.0

Mean number of patients at ODC 71.9 91.5 96.1 85.8 68.6 72.4 61.1 78.0
Mean number of DLTs 0.3 0.0 0.0 0.0 1.4 0.0 8.3 0.1

EDC selection percentage 32.6 21.7 14.7 18.3 14.7 25.9 32.8 39.5
Mean number of patients at EDC 32.6 42.0 42.6 35.5 29.7 25.9 32.8 39.5
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Table 6. Summarized data from the case study combination clinical trial involving Imatinib with Pacli-
taxel. The number of responses is the addition of stabilities and partial responses.
Cohort Paclitaxel Imatinib No. of evaluable No. of No. of evaluable No. of
no. (mg/m2) (mg) patients for DLT DLTs patients for response responses

1 60 400 3 0 3 1
2 80 400 3 0 3 2
3 80 600 3 0 3 2
4 100 600 3 0 3 1
5 100 800 6 1 4 3
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Figure 1. An illustration of combination zones for the start-up phase.
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