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Abstract 

Stable distributions are a rich class of probability distributions that are widely used 

to model leptokurtic data. Since the probability density and distribution functions 

are not known in closed form, stable distributions are often specified by their 

characteristic functions. This paper reviews both the techniques used to compute 

the density functions and the methods used to estimate parameters of the stable 

distributions. A new Bayesian approach using Metropolis random walk chain and 

direct numerical integration is proposed. The performance of the method is 

examined by a simulation study.  
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1  Introduction  

Stable distributions allow skewness and heavy tails. Therefore, they are 

widely used in modeling heavy tailed data. Stable distributions, also called 

“Levy-Pareto distributions” are used to describe complex systems in physics, 
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biology, sociology and economics [1]. Recent studies show that stable 

distributions have been used for modeling stock returns, foreign exchange rate 

changes, commodity-price movements, and real estate returns [2]. 

A stable distribution does not have an analytic closed form but can be expressed 

by its characteristic function, 
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A stable distribution has four parameters , ,  and  (=c

). The parameter 

 is called the characteristic exponent (or index of stability) and it is interpreted as 

a shape parameter. The normal distribution is stable with =2 and is the only 

stable distribution for which second and higher absolute moments exist. When 

<2, absolute moments of order equal to and greater than  do not exist while 

those of order less than  do.  and c are the location and scale parameters 

respectively.  is the skewness parameter. When  is positive, the distribution is 

skewed to the right. When  is negative, the distribution is skewed to the left. 

When  is zero, the distribution is symmetric about location parameter, . As  

approaches 2,  loses its effect and the distribution approaches the normal 

distribution regardless of  [3]. 

 

 

2  Computation of density functions 

It is a widely known fact that stable distributions are appropriate for 

modeling extreme events because of allowing heavy tails. However, their usage 

has been limited due to lack of closed form of probability density and distribution 

functions.  

Researchers have worked on different techniques in order to compute 

probability density functions. Zolotarev [1,4,5] and Skorohod [6] approximately 

calculated the probability density and distribution function of stable distribution 

by using series expansion and proper integral representations. Nolan [7], improved 

the integration approach of Zolotarev [1]. Doganoglu and Mittnik [8] showed 

another algorithm for calculating the stable probability density function by using 

Fast Fourier Transform (FFT). 

Zolotarev [1], introduced five different parameterizations for the 

characteristic function of a stable distribution. Nolan [9], defined another 

parameterization based on Zolotarev’s (M) parameterization that is jointly 
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continuous in all four parameters. Joint continuity makes parameters more 

meaningful and parameter estimation well behaved over the entire parameter 

space. 

The direct numerical integration method will be introduced in the following 

way: 

The new parameterization that Nolan [7] used in integration is a slight variation of 

(1) and can be given as: 
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Some definitions of Nolan [7] are  
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Then, the probability density function for different values of  can be given 

by 

1 & x> : 
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   f(x; ,) = f(-x; ,-)                                         (9) 

 = 1: 

 




























0,
)x1(

1

0,d),1;(Veexp),1;(Ve
2

1

),1;x(f

2

2/

2/

)2/x()2/x(

(10) 

 

 

 

3  Parameter estimation methods 

3.1 General Methods 

Quantile, sample characteristic function, maximum likelihood and Bayesian 

methods are different estimation techniques for parameters of stable distributions. 

Fama and Roll [3,10] provided estimates for parameters of standardized 

symmetric stable distributions. They used series expansions to approximate 

probability density and distribution functions. They found parameter estimates 

using quantiles. McCulloch [11] generalized and improved the quantile method 

for skewness parameter, . Press [12] presented his method via method of 

moments using sample characteristic function. Koutrouvelis [13] also used sample 

characteristic function but the method that he showed was a regression-type 

method for the estimation. DuMouchel [14] tried to get approximate maximum 

likelihood estimates of . Later, maximum likelihood estimation was enhanced 

[15,16]. Hill proposed Hill estimator in 1975 [17]. Georgiou and Tsakalides [18] 

introduced Sinc Function and wavelet transform methods [19].    

 

  

3.2 Bayesian Inference 

Buckle [20] proposed a Bayesian inference by using MCMC (Markov Chain 

Monte Carlo) method, especially the Gibbs sampler.  
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Posterior density in Bayesian inference can be given as, 

(|x)  f(x|) () 

If the probability density function of x is not obtainable in closed form 

whereas the joint probability density function of x and y exists, then the posterior 

density is found by taking integration, 

(|x)   f(x,y|) ()dy 

Let f(z,y) be given by 
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l,=-,/. 

Then, Buckle [20] explained that the function in (11) is a bivariate probability 

density function for the distribution of (Z,Y) and the marginal distribution of Z is 

a stable distribution with parameters , , =0, and c=1: 
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The bivariate density in (11) is used in order to have a representation of the 

posterior density of the stable parameters:  
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where zi  = (xi-)/c  0, i=1,…,n, (0,1)(1,2], [-1,1], (-,), c(0, ). 

The Gibbs sampler can be implemented by the following procedure. At first, 

for each observation xi, yi is generated from ).x,c,,,|y(f ii   After generating 

vector 
~

,y  )y,x,c,,|(
~~

 , )y,x,c,,|(
~~

 , )y,x,c,,|(
~~

  and 

)y,x,,,|c(
~~

  are generated.  

This approach presents some difficulties. Due to lack of information about 

the shape of the conditional distributions in the generation process, sequential 

Metropolis steps is resorted. If there are n observations in a model, there have to 
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be n augmentation variables whose movement around the parameter space will be 

highly serially correlated when they are updated on a sequential basis and they 

result in a decline in efficiency. Tsionas [21] considered using Metropolis sampler 

that updates all components of the parameter vector at the same time in order to 

have simpler and more efficient method. He computed the likelihood by means of 

FFT and used a Metropolis random walk chain to explore the parameter space. 

Not using data augmentation makes the computations very fast and nearly 

independent of the sample size “n”. Although Metropolis chains do induce serial 

correlation, their performance is expected to be better when compared to 

augmentation methods since they update all components of the parameter vector at 

the same time. Tsionas [21] used a regression model given by: 

yi=g(xi;)+ui , i=1,…,n 

(g is a given function,  a parameter vector,  an unknown scale parameter, uis are 

independent and identically distributed random variables from a standard stable 

distribution with parameters  and . 

The steps for the procedure can be given as: 

Let =[, , , ] be parameter vector and ̂  maximum likelihood estimator. 

   ))(V,0(N)ˆ(n   in distribution where V()=   12 /)y,x;(LE


 .        

Let ))ˆ(Vd*,|(h 2   represent a fixed density with location vector * , scale 

matrix )ˆ(Vd 2  (d>0). Then, Metropolis-Hastings chain produces a sequence 
(i)

 

that converges in distribution to p(|x,y)/p(|x,y)d. Given 
(i)

, 
(i+1)

 is produced 

as:  


~

 is a draw from ))ˆ(Vd,|(h 2)i(   which is multivariate normal 
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3.3 Proposed Bayesian Approach 

Our proposed Bayesian approach, which does not use data augmentation, 

consists of Metropolis random walk chain and therefore increases the efficiency. 

In addition to this, the direct numerical integration method as an alternative to the 

FFT method is used to compute the likelihood function required for Bayesian 

estimation. The advantage of using the direct numerical integration method is that, 

the probability density function value for a particular value can be computed via 
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direct numerical integration method, whereas the FFT method basically needs 

calculation of a set of probability density function values [8]. As a result, the aim 

of this approach is to find a better technique used for estimation of the stable 

distribution parameters. 

 

 

4  Simulation Experiment 

The experiment consists of generating stable random variables and using 

Metropolis random walk chain in order to find parameter estimates. First of all, 

standard stable random variables of size n with parameter vector =[,] having 

the characteristic function in (2) are generated. Then, the likelihood function is as 

follows 

 



n

1i

i ,|yf)y;(L
 

and posterior density can be given as 

f(|y)  L(;y)(). 

The random sample of different sizes (25, 50, 75, 100, 500 and 1000) is 

generated from a standard stable distribution with parameters =[1.3, 0.5]. The 

maximum likelihood estimator of  and its variance-covariance matrix is 

calculated for each sample. 0=[0.5, 0.8], 0=[1.5, 0.2] and maximum likelihood 

estimates are taken as starting values. 50 independent sequences of length 1000, 

3000, 5000 and 10000 are produced. After that, the final values of each sequence 

are used in order to obtain an approximate independent and identically distributed 

sample from posterior density. The comparisons according to different starting 

values, sample sizes and iteration numbers can be made by using Table 1.  

The analysis of variance tables are constructed in order to test the effects of 

different sample sizes, starting values and iteration numbers on the estimates of  

and  parameters (tables 2-3). It can be concluded that starting values and iteration 

numbers don’t have any effect on the estimates while the effect of sample size 

exists with 99 percent confidence. When sample size gets larger, the estimated 

values get closer to real values. It can also be seen from Figures 1 and 2.  

As a result of having no effect on estimates, any starting value and iteration 

number can be chosen. Therefore, initial value is chosen as 0=(α0=0.5, β0=0.8) 

and independent sequences of length 1000 are produced in order to test the 

performance of the proposed method. Performance test is done by comparing 

Bayesian estimates with the maximum likelihood, quantile and sample 

characteristic function estimates at different sample sizes. 50 different random 

samples of sizes 25, 50, 75, 100, 500 and 1000 are generated from a standard 

stable distribution with parameters =[1.3, 0.5]. 50 independent sequences of 

length 1000 are produced for each 50 sample of different size group. The results 
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show that the mean square errors of Bayesian estimates are a bit less than the 

mean square errors of the maximum likelihood estimates whereas much less than 

those of the other two estimates. Moreover, all estimates’ mean square errors are 

getting smaller when the sample size is getting larger (Table 4). 

 

 

5  Conclusion 

Different parameter estimation techniques like quantile, sample characteristic 

function and maximum likelihood can be used for the stable distributions. In 

addition to these methods, Bayesian inference can also be used for the 

distributions and it is introduced in details. Buckle’s Bayesian method puts in use 

the data augmentation that can cause serial correlation. Tsionas [21] introduced a 

more efficient method which doesn’t use data augmentation. He calculated the 

likelihood by means of FFT and used a Metropolis random walk chain to explore 

the parameter space. In this paper, the likelihood is computed with the usage of the 

direct numerical integration method instead of FFT with the purpose of having a 

more effective Bayesian inference. Simulation experiment is done for testing the 

effect of starting values, iteration numbers and sample sizes. It is found that only 

the sample size has an effect on estimates. Bayesian estimates are compared with 

the maximum likelihood, quantile and sample characteristic function estimates at 

different sample sizes. According to the results, the mean square error of Bayesian 

estimates is less than the mean square error of all the other estimates.  

 

   

 

Table 1: Simulation Results 

  Iteration Numbers 

  1000 3000 

Sample Size Starting Values ̂  ̂  ̂  ̂ 

25 α0=0.5, β0=0.8  1.4050 0.0495 1.3185 -0.0451 

 α0=1.5, β0=0.2  1.4096 0.1439 1.3823 0.1326 

 α0=1.36, β0=0.10 (mle)  1.4192 0.0791 1.4503 0.0475 

50 α0=0.5, β0=0.8  1.1310 0.2157 1.1561 0.2405 

 α0=1.5, β0=0.2  1.0962 0.2092 1.1244 0.2103 

 α0=1.12, β0=0.25 (mle)  1.1165 0.1914 1.1429 0.2262 

75 α0=0.5, β0=0.8  1.2185 0.5833 1.1934 0.5508 

 α0=1.5, β0=0.2  1.2247 0.5754 1.2174 0.5700 

 α0=1.22, β0=0.61 (mle)  1.2506 0.5864 1.2265 0.5449 

100 α0=0.5, β0=0.8  1.2416 0.4064 1.2241 0.3730 

 α0=1.5, β0=0.2  1.2093 0.3837 1.1895 0.3568 
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 α0=1.21, β0=0.39 (mle)  1.2319 0.3544 1.2494 0.3598 

500 α0=0.5, β0=0.8  1.3223 0.4303 1.3163 0.4334 

 α0=1.5, β0=0.2  1.3205 0.4204 1.3124 0.4253 

 α0=1.31, β0=0.42 (mle) 1.3095 0.4272 1.3287 0.4216 

1000 α0=0.5, β0=0.8  1.2807 0.5160 1.3031 0.5474 

 α0=1.5, β0=0.2  1.2913 0.5390 1.2899 0.5551 

 α0=1.28, β0=0.55 (mle) 1.2851 0.5443 1.2813 0.5422 

Table 1: Simulation Results (continued) 

  Iteration Numbers 

  5000 10000 

Sample Size Starting Values ̂  ̂  ̂  ̂ 

25 α0=0.5, β0=0.8  1.4001 0.0632 1.3827 0.0240 

 α0=1.5, β0=0.2  1.4158 0.0950 1.3451 0.0993 

 α0=1.36, β0=0.10 (mle)  1.4537 0.0128 1.3451 -0.0073 

50 α0=0.5, β0=0.8  1.1756 0.1948 1.1174 0.2164 

 α0=1.5, β0=0.2  1.1802 0.2664 1.1324 0.1998 

 α0=1.12, β0=0.25 (mle)  1.1420 0.1690 1.1202 0.1400 

75 α0=0.5, β0=0.8  1.2248 0.5557 1.2465 0.5612 

 α0=1.5, β0=0.2  1.2476 0.5756 1.2654 0.5934 

 α0=1.22, β0=0.61 (mle)  1.2354 0.5583 1.2431 0.6173 

100 α0=0.5, β0=0.8  1.2076 0.3845 1.2142 0.3856 

 α0=1.5, β0=0.2  1.2164 0.3557 1.2357 0.4106 

 α0=1.21, β0=0.39 (mle)  1.2305 0.3828 1.2085 0.3368 

500 α0=0.5, β0=0.8  1.3108 0.4289 1.3083 0.4136 

 α0=1.5, β0=0.2  1.3094 0.4175 1.3211 0.4060 

 α0=1.31, β0=0.42 (mle) 1.3099 0.4346 1.3153 0.4231 

1000 α0=0.5, β0=0.8  1.2832 0.5462 1.2862 0.5406 

 α0=1.5, β0=0.2  1.2913 0.5305 1.2824 0.5516 

 α0=1.28, β0=0.55 (mle) 1.2828 0.5470 1.2827 0.5331 

 

 

Table 2: Analysis of Variance for  

Source of Variation 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F 

Significance 

Level 

Sample Size 0.4700 5 0.09393 185.704
*
 0.000 

Starting Values 0.0008 2 0.00043 0.848 0.433 

Iteration Numbers 0.0022 3 0.00072 1.431 0.243 

Error 0.0309 61 0.00051   

Total 0.5040 71    

* Significant at % 5 level. 
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Table 3: Analysis of Variance for  

Source of Variation 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F 

Significance 

Level 

Sample Size 2.3640 5 0.47300 574.555
* 

0.000 

Starting Values 0.0068 2 0.00340 4.131
* 

0.021  

Iteration Numbers 0.0014 3 0.00045 0.551 0.649 

Error 0.0521 61 0.00082   

Total 2.4230 71    

* Significant at % 5 level. 

 

 

Table 4: Comparisons of Estimation Methods 

Sample 

Size 
 

Bayesian 

Estimate 

Maximum Likelihood 

Estimate 

  ̂  ̂  ̂  ̂ 

25 

Mean 1.1670 0.1903 1.1447 0.2506 

Bias -0.1330 -0.3097 -0.1553 -0.2494 

MSE 0.0464 0.1715 0.0630 0.1997 

50 

Mean 1.2780 0.4008 1.2665 0.4683 

Bias -0.0220 -0.0992 -0.0335 -0.0317 

MSE 0.0280 0.0737 0.0335 0.1001 

75 

Mean 1.2798 0.3882 1.2711 0.4313 

Bias -0.0202 -0.1118 -0.0289 -0.0687 

MSE 0.0192 0.0696 0.0226 0.0745 

100 

Mean 1.2987 0.4179 1.2938 0.4649 

Bias -0.0013 -0.0821 -0.0062 -0.0351 

MSE 0.0211 0.0684 0.0244 0.0791 

500 

Mean 1.3139 0.5005 1.3115 0.5092 

Bias 0.0139 0.0005 0.0115 0.0092 

MSE 0.0035 0.0109 0.0033 0.0108 

1000 

Mean 1.3042 0.4861 1.3035 0.4929 

Bias 0.0042 -0.0140 0.0035 -0.0071 

MSE 0.0024 0.0047 0.0025 0.0044 

     MSE: Mean Square Error 
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Table 4: Comparisons of Estimation Methods (continued) 

Sample 

Size 
 Quantile Estimate 

Sample Characteristic 

Function  Estimate 

  ̂  ̂  ̂  ̂ 

25 

Mean 1.0136 0.2456 1.2206 0.2283 

Bias -0.2864 -0.2544 -0.0794 -0.2717 

MSE 0.1585 0.1772 0.0676 0.3267 

50 

Mean 1.3297 0.5327 1.2928 0.4205 

Bias 0.0297 0.0327 -0.0072 -0.0795 

MSE 0.0998 0.1455 0.0451 0.1564 

75 

Mean 1.2617 0.4548 1.3123 0.3565 

Bias -0.0383 -0.0452 0.0123 -0.1435 

MSE 0.0583 0.0765 0.0287 0.1937 

100 

Mean 1.2713 0.4493 1.3130 0.4648 

Bias -0.0287 -0.0507 0.0130 -0.0352 

MSE 0.0544 0.0965 0.0262 0.1003 

500 

Mean 1.3178 0.5244 1.3024 0.5095 

Bias 0.0178 0.0244 0.0024 0.0095 

MSE 0.0091 0.0180 0.0039 0.0129 

1000 

Mean 1.3128 0.5077 1.3014 0.4968 

Bias 0.0128 0.0077 0.0014 -0.0032 

MSE 0.0050 0.0066 0.0036 0.0106 

     MSE: Mean Square Error 
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Figure 1:  Bayes estimates of  at different sample sizes 

 

 

Figure 2:  Bayes estimates of  at different sample sizes 
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