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A Bayesian experimental autonomous researcher 
for mechanical design

Aldair E. Gongora1, Bowen Xu1, Wyatt Perry1, Chika Okoye1, Patrick Riley2, Kristofer G. Reyes3*, 

Elise F. Morgan1,4,5*, Keith A. Brown1,5,6*

While additive manufacturing (AM) has facilitated the production of complex structures, it has also highlighted 
the immense challenge inherent in identifying the optimum AM structure for a given application. Numerical 
methods are important tools for optimization, but experiment remains the gold standard for studying nonlinear, 
but critical, mechanical properties such as toughness. To address the vastness of AM design space and the need 
for experiment, we develop a Bayesian experimental autonomous researcher (BEAR) that combines Bayesian 
optimization and high-throughput automated experimentation. In addition to rapidly performing experiments, 
the BEAR leverages iterative experimentation by selecting experiments based on all available results. Using the 
BEAR, we explore the toughness of a parametric family of structures and observe an almost 60-fold reduction in 
the number of experiments needed to identify high-performing structures relative to a grid-based search. These 
results show the value of machine learning in experimental fields where data are sparse.

INTRODUCTION

The processes by which mechanical structures are designed have 
evolved to include a variety of computational tools that have been 
successful in producing structures with highly tuned properties (1–10). 
However, realizing high-performance mechanical structures often 
involves optimizing properties that cannot be reliably and rapidly 
predicted using computation, namely, nonlinear mechanical properties 
(11–16). Phenomena such as dynamic self-contacts during large de-
formation and the dominance of stochastic defects in determining 
failure in real samples make computation difficult and necessitate 
experiments. Additive manufacturing (AM) has compounded this 
problem by both vastly increasing the available design space and 
introducing a host of previously unknown defects for which researchers 
and practitioners do not have the benefit of empirical engineering 
guidelines built on decades of intense study (17–19). This raises the 
question of how best to design and optimize structures for properties 
that are difficult to simulate. One approach that has been successful 
in chemistry, biology, and, more recently, materials science has been 
autonomous research in which experiments are selected by machine 
learning and carried out without human intervention (20–24). 
Autonomous research systems have been beneficial in these fields 
because many properties of interest must be experimentally deter-
mined, the vast size of the parameter space limits the effectiveness 
of brute-force experimentation, and the necessary experiments are 
compatible with automation. However, autonomous research systems 
are highly specific to certain classes of experiments and have not been 
realized in the mechanical domain. Moreover, most prior experimental 
autonomous research systems have not used Bayesian optimization 
(BO) to guide the selection of experiments, although simulations have 
revealed that using BO would be more efficient (25–28).

Here, we test the hypothesis that combining automated experi-
mentation and BO can accelerate the pace of structural design. 
Conceptually, realizing a Bayesian experimental autonomous re-
searcher (BEAR) involves two steps: the development of an auto-
mated system that performs experiments without human intervention 
and the incorporation of active learning to choose subsequent 
experiments in a Bayesian framework. First, we report the design 
and realization of a mechanical testing system that automatically 
three-dimensionally (3D) prints and tests parts to determine their 
mechanical properties such as toughness (Fig. 1A). The high- 
throughput nature of this system, relative to manual testing, allows 
for the comprehensive exploration of a large family of structures 
(Fig. 1B) and the determination of uncertainty inherent to AM 
using thousands of experiments, a previously impractical concept. 
Using this experimental data, we run a series of simulations to find 
that BO should use experiments more efficiently than grid-based 
searching. Subsequently, we instruct the BEAR to perform experi-
mental campaigns and find that these campaigns resulted in higher- 
performance structures than those identified through a grid-based 
campaign that involved 18 times more experiments than were allotted 
to the BEAR. Last, rather than evaluating a campaign by the required 
number of experiments, we investigate how campaign duration can 
be reduced by multiple printers acting in parallel in a multiagent 
approach and find that the BEAR identifies high-performing struc-
tures within 24 hours. Collectively, this work shows the potential 
for BEARs to affect fields where computational tools are imperfect 
and experiments are slow and complex.

RESULTS

Automating mechanical testing of additively 
manufactured parts
Toughness is difficult to optimize because it requires maximizing a 
combination of two properties that tend to be inversely correlated, 
namely, strength and ductility (14, 15). Defined as the area under the 
force (F)–displacement (D) curve, toughness represents how much 
energy a component can absorb before failure, which makes it an im-
portant property to optimize in the context of design for safety and 
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failure tolerance (29, 30). Further compounding the design challenge, 
it is commonly important to maximize toughness while not exceeding 
a specified force threshold to avoid damaging more sensitive elements 
elsewhere in the system. For example, the crumple zone of a car is 
designed to maximize toughness by absorbing the impact of a collision 
while not transmitting harmful reactionary forces to the passengers. 
Because of the importance of dynamic self-contacts, the stochastic 
influence of defects, and other variations from processing, compu-
tational optimization of toughness is extremely difficult (13, 16). To 
illustrate this, we designed a crossed barrel family of structures (Fig. 1B) 
with two platforms that are held apart by n hollow columns of outer 
radius r and thickness t and that are twisted with an angle q. Structures 
in this family include those with a wide array of F-D responses, in-
cluding structures that exceed a ~5-kN force threshold before yielding 
(Fig. 1C) and weak structures that fail in a brittle manner (Fig. 1D). 
The inclusion of a force threshold, as well as the subsequent definition 
of structure as “too strong,” was incorporated to reflect the presence of 
a force constraint in designing for toughness, such as in the design 
of crumple zones. Considering that superlative toughness requires 
both high ductility and high strength, the best crossed barrel in terms 
of toughness is not simple to predict. Crossed barrels with high 
toughness exhibit complex F-D responses (Fig. 1E) with a number 
of reentrant contacts and local buckling events.

Acknowledging that toughness needs to be evaluated using ex-
periment, we sought to explore the degree to which the pace of me-
chanical testing could be accelerated. In particular, we designed and 
constructed an automated testing system that combines AM, robotics, 
and mechanical testing (movie S1). In particular, fused deposition 
modeling (FDM) 3D printers are among the most commonly used 
3D printers due to their low cost, versatility, and reliability. Further-
more, FDM-printed parts can be used without additional process-
ing, enabling rapid testing. Thus, five dual extruder FDM printers 
(M3, MakerGear) were positioned in the working radius of a six-axis 
robotic arm (UR5e, Universal Robotics). To perform testing and 
characterization of parts, a scale (CP225D, Sartorius) and a universal 
testing machine (5965, Instron Inc.) were also positioned in the 

working radius of the arm. All instruments were coordinated using 
custom software (MATLAB) (fig. S1).

Before undertaking more complex design or optimization pro-
cesses, it is necessary to consider that quality control is a pervasive 
challenge in AM. The extensive exploration of manufacturing un-
certainty can be onerous in some cases; however, the automated 
testing system provided an avenue for rapidly quantifying the uncer-
tainty inherent to properties such as toughness. Thus, we initially 
performed a series of experiments in which the same design was printed 
and tested 240 times using all available printers (Fig. 2A) and the 
mass of each part— measured in situ—had a standard deviation (SD) 
equal to 4.6% of the mean. The toughness U was found to have an 
SD equal to 12.8% of the mean (Fig. 2B). Because of the empirical 
nature of these quantities, it would be difficult or impossible to pre-
dict the sensitivity with which toughness depends on mass. Having 
this vast dataset, which is made possible by the high-throughput 
nature of the system, allows us to approximate the variation in 
toughness that is uncorrelated with mass, which we find to be 5.8% 
of the mean. The individual printer mass and toughness variations 
are reported in fig. S2. This study allowed for the exploration of the 
correlation between these two properties (Fig. 2B), revealing a cor-
relation coefficient of 0.71 between U and m, indicating that measur-
able deviations in print outcome are at least partially responsible for 
the observed variation in mechanical behavior. The fit in Fig. 2B is 
insensitive to the removal of the seemingly spurious data.

High-throughput experimentation and sequential 
design selection
Despite the large observed variability in performance, it is conceivable 
that the high-throughput nature of this research platform could allow 
for sufficient experiments to empirically identify an optimal design 
within a family of structures. To test this, we performed a grid-based 
experimental campaign in which 600 distinct designs were tested in 
triplicate without human intervention (fig. S3). During this auto-
mated experimental campaign, a wide variation in U was observed, 
ranging from 0.3 to 51.5 J with a mean value of 15.3 J (Fig. 2C). To 

Fig. 1. BEAR for studying the mechanics of additively manufactured components. (A) Experimental system composed of (i) five dual extruder fused deposition 

modeling (FDM) printers (M3, MakerGear), (ii) a six-axis robotic arm (UR5e, Universal Robotics), (iii) a scale (CP225D, Sartorius), and (iv) a universal testing machine 

(5965, Instron Inc.). (Photo credit: Aldair E. Gongora and Bowen Xu, Boston University). (B) Model “crossed barrel” family of parametric structures with two circular plat-

forms that are held apart by a series of n hollow columns of outer radius r and thickness t and that are twisted with an angle q. Force F and corresponding displacement 

D from the testing of (C) a crossed barrel that did not yield before ~5 kN (designated too strong), (D) a crossed barrel that failed in a brittle manner (designated “brittle”), 

and (E) a crossed barrel that exhibited appreciable strength after an initial yield point (designated “ductile”).
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estimate the value and uncertainty of the experimental response U(x), 
where x = (n, q, r, t) was approximated using a Gaussian process 
regression (GPR) model Ugrid with a squared exponential kernel 
(Fig. 2D) (25). Ugrid revealed a complex response with several high- 
performing regions (Fig. 2E) and a predicted optimum of 43.4 ± 6.0 J 
at (12,85°, 2.45 mm, 0.7 mm).

While brute-force experimentation allowed us to predict an op-
timum design, the active learning community has shown through 
simulations that sequentially selecting experiments using BO finds 
optima using fewer samples. The BO framework is composed of two 
components, a belief model that captures the relationship between 

parameters and response and a decision-making policy that guides 
the selection of experiments (25). While U(x) is ultimately an exper-
imentally observed function, Ugrid(x) represents an approximation 
of U(x) that can be used to evaluate BO strategies in simulation. 
Thus, we performed a series of simulations using the BO framework 
with Ugrid(x) treated as a surrogate for the ground truth U(x). To 
approximate experimental variations, we added a zero-mean Gaussian 
noise with SD s to each simulated measurement.

We studied three principal decision-making policies: pure ex-
ploration (PE), maximum variance (MV) (Fig. 3A), and expected 
improvement (EI) (Fig. 3B). These decision-making policies were 
selected because of their popularity in the optimization community 
and their distinctive explorative and exploitative qualities (25, 26). 
PE is a purely explorative decision-making policy, where each sub-
sequent experiment was chosen randomly. While PE will eventually 
explore the parameter space and is unlikely to get trapped by local 
maxima, an appropriate experimental budget is often unknown or 
too large. The MV decision-making policy also prioritizes exploration 
but takes the surrogate model into account by choosing experiments 
in regions with the largest uncertainty. An advantage of this ap-
proach is the exploration of undiscovered regions that might have 
high-performing designs; however, the number of experiments neces-
sary to adequately explore parameter space is also often unknown 
or too large. The EI decision-making policy is an improvement- 
based policy in which subsequent experiments are selected on the 
basis of the likelihood of surpassing previously observed responses. 
In contrast with MV and PE, EI is more likely to get trapped by local 
maxima. Purely exploitative policies were not considered because of 
the use of an uninformative prior in the experimental campaigns.

The performance P of a given campaign after i experiments was given 
by its predicted optimum xi and was defined as P(i) = Ugrid(xi)/ max (Ugrid). 
On the basis of this definition, P = 1 indicated that the campaign 
had found the optimum design. In the low noise limit (s = 0.1 J), all 
policies achieved median performance    

~
 P   ≥ 85%  in 100 experiments, 

with EI achieving    
~

 P   > 98%  (Fig. 3C). However, when the noise level 
was increased (s = 5 J), EI alone achieved    

~
 P   > 90%  within 100 ex-

periments (Fig. 3D). The incomplete convergence in the low noise 
and high noise limits is a result of the limited experimental budget 
allotted to the simulated campaigns. As a comparison to BO, we also 
simulated campaigns based on Latin hypercube sampling (LHS) with 
the same experimental budget. For the high noise limit, LHS-based 
campaigns achieved    

~
 P   = 75% , which is similar to PE but is inferior 

to EI-based campaigns. Note that the EI approach used here differs 
from standard approaches, which have been reported to result in EI 
being too greedy (31), by selecting from a finite number of random 
candidate experiments to be evaluated by EI. This stochastic ap-
proach was seen to markedly improve the convergence of EI-based 
campaigns (fig. S4).

Realizing and benchmarking autonomous 
experimental optimization
While simulation predicts that BO will outperform grid-based ap-
proaches, such as LHS, these simulations were based on a number 
of assumptions, namely, the model of ground truth, the noise profile, 
and the sampling strategy. Thus, it is imperative to experimentally 
explore the utility of the BO framework. We therefore integrated 
the BO framework with the automated research system to produce 
a BEAR that chose, performed, and learned from experiments. We 
performed six experimental campaigns, three that were guided by 

Fig. 2. Experimental exploration of the toughness of a family of parametric 

structures. (A) Overlaid F versus D curves for 240 samples printed with x = (n, q, r, t) = 

(8,100 ° ,2 mm,1.05 mm). (B) Experimental toughness U versus component mass 

m for the samples shown in (A). Red line denotes a linear fit with a correlation 

coefficient of 0.71. (C) U versus m for 1800 samples taken in a grid across the entire 

parameter space. Marker shape denotes the category of mechanical response. 

(D) Predicted toughness Ugrid based on a Gaussian process regression (GPR) trained 

on the 1800 experimental data points evaluated at x versus average U(x). The red 

line has zero intercept and a slope of one as a guide to the eye. (E) Surface plot 

of Ugrid across the entire 4D parameter space with the discretization of the experi-

mental grid represented as white circles in the top right panel.
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EI and three that were guided by MV. The results of the BEAR’s 
experimental campaigns were compared with the predicted best- 
performance structure according to Ugrid, where P, on average, in-
creased with i (Fig. 4, A and B). However, it is worth emphasizing 
that, first, unlike in the simulated campaigns where Ugrid is treated 
as ground truth, Ugrid here is a statistically regressed model and, second, 
the only reliable method to assess the performance of an experimental 
campaign is to experimentally test the predicted best-performance 
structure. Here, we accomplished this by testing 10 copies of the 
optimum structures predicted by each experimental campaign 
(Fig. 4C). On the basis of the experimental tests, five of the six optimum 
structures found by the experimental campaigns outperformed the 
best structure predicted by Ugrid, showing that, in five instances—
including all three based on the EI decision-making policy—100 
well-chosen experiments were superior to 1800 experiments chosen 
on a grid.

While the BEAR was successful in optimizing the crossed barrel, 
the superiority of experimental performance (Fig. 4C) over simulated 
performance (Fig. 4, A and B) was likely because the results of ex-
periment (U) differed markedly from the experimentally derived 
surrogate model (Ugrid). Two possible reasons for this discrepancy 
were insufficient data to build an accurate surrogate model and that 
the experimental function was observed to be heteroscedastic, while 
Ugrid was fit using a homoscedastic model. While, in principle, one 
could perform enough experiments to accurately model the noise 

profile and obtain a more faithful model of the truth more generally, 
this would likely require a prohibitive number of experiments. Thus, 
these results not only highlight the need for experiments in bench-
marking optimization strategies but also emphasize the importance 
of experiment selection when the design space is high dimensional 
and when building an accurate surrogate model is impossible or im-
practical. Moreover, these results position uncertainty quantification 
as an equal partner to balance exploration and exploitation in an 
optimization process.

While the BEAR was found to be efficient with respect to the 
number of experiments, it is often more important to be efficient in 
terms of time when optimizing a property. Thus, we explored how 
multiple printers could be used in concert to optimize performance 
in minimal time. We note that using all printers at all times necessitated 
selecting samples in parallel. The decision-making policy associated 
with choosing jobs in such a batch system is the topic of current 
research, with recently developed batch-based EI policies showing 
promise in simulation (32–35). The BEAR provides an experimental 
platform to evaluate these policies. As an initial campaign to serve 
as a benchmark, we performed a Bayesian experimental campaign 
in which six agents selected experiments based on the data collected 
from all agents. While, in theory, EI should balance exploration and 
exploitation if uncertainties are properly quantified, the use of an 
initially uninformative prior belief limits uncertainty quantification. 
In practice, a standard approach is to select a number of randomly 
chosen samples to explore the parameter space and train the Gaussian 
process. Here, we spend the first 12 hours of the campaign selecting 
experiments (32 samples) using MV. MV-guided simulated campaigns 
show that convergence saturates at ~30 experiments (Fig. 3D), further 
motivating this practice. After this initial 12-hour period, we switched 
to an EI decision-making policy. The predicted best-performance 
structures at T = 12, 24, and 36 hours were each experimentally tested 
to determine their performance. The BEAR matched the toughness 
from the grid-based experimental campaign (1800 experiments) after 
12 hours (32 experiments) and outperformed the grid-based exper-
imental campaign after 24 hours (64 experiments) (Fig. 4D).

Ultimately, the extensive experiments described herein allowed us 
to identify the member of the crossed barrel family with the largest U, 
namely, (12, 131°, 1.95 mm, 1.4 mm). Inspecting the F-D curve cor-
responding to one such sample, a number of interesting features were 
evident (Fig. 4E). In particular, a series of six inflection points were 
observed, which corresponded to different mechanical processes 
including the initial yield point and a series of buckling and reentrant 
contact modes. Notably, the precise parameter values that produce 
the largest net positive effect of these sometimes competing and 
sometimes synergistic processes on U would be difficult to predict 
in the absence of experiment.

DISCUSSION

The observation that a BEAR can, in the case of optimizing toughness, 
reduce the number of experiments needed by a factor of almost 60 has 
potentially far-reaching implications spanning mechanics and the 
field of autonomous experimentation more broadly. In mechanics, 
the combination of a BEAR and simulation-based approaches such 
as topological optimization could allow for the rapid optimization 
and discovery of novel properties that are difficult or impossible to 
find using other means. More generally, the use of AM in a BEAR 
adds a critical degree of versatility that is analogous to the use of 

Fig. 3. Simulated learning using BO. Distribution of experimental points when 

guided using (A) MV and (B) EI decision-making policies. The color gradient indicates 

the start and end of the campaign. Axis limits are the same as in Fig. 2E. Performance 

P versus experiment number i of simulated Bayesian campaigns with noise added 

to each simulated measurement drawn from a zero-mean Gaussian with (C) SD s = 0.1 J 

and (D) s = 5 J. EI- and MV-guided campaigns are benchmarked against PE and the 

average result of selecting 100 experiments using Latin hypercube sampling (LHS). 

Shaded regions correspond to the middle two quartiles of 100 simulated campaigns. 

The inset bar charts show the distribution in P at i = 100.
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automated liquid handling in chemistry. Building an autonomous 
research system is most justified in fields such as mechanics where 
even a single AM instrument is versatile enough to allow a wide range 
of experiments. In this way, a BEAR may have a transformative impact 
on mechanics. Last, however, it is worth emphasizing that throughout 
this work, >2500 experiments were spent, proving that only 32 
experiments were required to reach an optimal structure. As an 
emerging field, it is critical that autonomous experimentation pro-
vides these benchmarks to illustrate the possible improvement using 
BEARs. Looking forward, this validation of the transformative 
acceleration inherent to BEARs, at least in this class of problems, will 
allow future work to transition from benchmarking to discovery.

Through the combination of a high-throughput automated ex-
perimental system and BO to select experiments, we have developed 

a BEAR that reduced the experimental time and experiments needed 
to optimize toughness, a mechanical property that is difficult or im-
possible to simulate. This work is based on (i) a system that com-
bines an array of 3D printers with robotics and testing equipment 
such that samples can be tested without human intervention and 
(ii) a BO framework that guides the action of the high-throughput 
system. In addition to addressing how to effectively choose a decision- 
making policy when the ground truth function is unknown, the high- 
throughput nature of this process allowed us to quantify and explore 
a large parameter space of AM parts. From a learning perspective, 
realizing a BEAR required advancing several facets including the 
development of modifications to standard EI algorithms and facile 
processes for performing BO in batch. Considering the ubiquity of 
properties that cannot be effectively simulated at present, we anticipate 
that BEARs based on the principles describe herein could have a 
transformative impact in mechanics and in fields ranging from 
chemistry, materials, and biology.

MATERIALS AND METHODS

All structures were printed using a MakerGear M3 FDM printers 
out of polylactic acid (PLA). The diameters of the printer nozzle and 
the PLA filament were 0.35 and 1.75 mm, respectively. The struc-
tures were printed with a rectilinear infill pattern at 100% infill. 
During printing, the printer bed was set to 85°C for the first layer 
and 75°C for all subsequent layers. The PLA filament was extruded 
at 215°C. After the print completed, the structures were retrieved 
when the bed temperature was below 40°C. The structures were uni-
axially compressed at a speed of 3 mm/min with a maximum force 
threshold of 4.8 kN. Toughness was computed as the area under the 
force-displacement curve, where the force-displacement curve was 
truncated if the force was below 50 N (1% of the maximum allow-
able force) after an initial 2 mm of displacement. The threshold was 
used to avoid including the loads from the compression of fragments 
of the fractured barrel.

Gaussian process priors in the BO framework were specified with 
a zero-mean function and a squared exponential covariance kernel, 

  ∑(x, x') =  a   2  exp (   −  1 _ 
2
   ∑ i=1  d

     
 ( x  i   −  x'  i  )   2 

 _ 
 b 

i
  2 
   )    , where x = (n, q, r, t). The kernel 

is parametrized by d + 1 parameters, a, bi, …, bd, where d = 4 is the 
dimensionality of the design parameter space. The parameters were 
initialized as a = 50, bi = ( max (xi) − min (xi))/(10). In addition, the 
Gaussian process formulation assumed independent, homoscedastic 
noise, and the SD of the noise was initialized as 5 J. The parameters 
of the kernel and the noise were optimized using maximum likelihood 
estimation after every subsequent observation. The parameters in the 
optimization were bounded to be greater than or less than their in-
dividual initial values by a factor of 10 or were individually reset to 
their initial values. This was performed to avoid obtaining extremal 
hyperparameters. The decision-making policy selected the next 
experiment from a uniformly random finite number of candidate 
designs (fig. S4).

For each autonomous experiment (fig. S1), the crossed barrel design 
input x = (n, q, r, t) was converted to a standard triangle language 
(STL) file using OpenSCAD, an open-source software for parametric 
computer-aided design. The generated STL file was then converted to 
g-code using Slic3r, an open- source tool for converting a 3D model 
into g-code. The g-code was then uploaded for 3D printing using 
OctoPrint, a web-based software to interface with the 3D printer. 

Fig. 4. Optimization of a family of mechanical structures using the BEAR. 

Computed P from six experimental campaigns carried out by the BEAR using (A) MV 

and (B) EI. (C) Average U measured from 10 samples of the best predicted structure 

from each of the six experimental campaigns and the best-performance structure 

predicted by the grid search. (D) Experimental optimization of U versus time T with 

ticks to the left of each bar denoting measurements taken before that time, ticks to the 

right denoting the 10 samples taken at the end of the campaign to evaluate the best 

predicted sample, and bars denoting the average measurement of the 10 samples. 

In (C) and (D), error bars correspond to SD. (E) Photographs overlaid on the F versus 

D curve corresponding to a structure printed with the best-performance design (12, 131°, 

1.95 mm, 1.4 mm). (Photo credit: Aldair E. Gongora, Boston University).
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After the structure was printed, the robotic arm retrieved the struc-
ture when the bed temperature was below 40°C. The structure was 
then weighed on the scale and then tested on the universal test-
ing machine (5965, Instron Inc.). The weight reading, the force- 
displacement curve, and the computed toughness were all saved to 
a local database. Using the database, the BEAR built a belief model 
using GPR and selected the design parameters of the next experi-
ment using a decision-making policy. This process was repeated for 
a given experiment budget or experiment run time and was operated 
without a human in the loop. A custom script written in MATLAB 
was used to coordinate the operation of these components.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/6/15/eaaz1708/DC1
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