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A Bayesian Framework for Active Artificial

Perception
João Filipe Ferreira, Member, IEEE, Jorge Lobo, Member, IEEE, Pierre Bessière,

Miguel Castelo-Branco, and Jorge Dias, Senior Member, IEEE

Abstract—In this text, we present a Bayesian framework

for active multimodal perception of 3D structure and

motion. The design of this framework finds its inspiration

in the role of the dorsal perceptual pathway of the

human brain. Its composing models build upon a common

egocentric spatial configuration that is naturally fitting for

the integration of readings from multiple sensors using

a Bayesian approach. In the process, we will contribute

with efficient and robust probabilistic solutions for cyclo-

pean geometry-based stereovision and auditory perception

based only on binaural cues, modelled using a consistent

formalisation that allows their hierarchical use as building

blocks for the multimodal sensor fusion framework. We

will explicitly or implicitly address the most important

challenges of sensor fusion using this framework, for vi-

sion, audition and vestibular sensing. Moreover, interaction

and navigation requires maximal awareness of spatial

surroundings, which in turn is obtained through active

attentional and behavioural exploration of the environ-

ment. The computational models described in this text

will support the construction of a simultaneously flexible

and powerful robotic implementation of multimodal active

perception to be used in real-world applications, such as

human-machine interaction or mobile robot navigation.

Index Terms—Sensing and Perception, Computer Vision,

Sensor Fusion, Biologically-Inspired Robots, Multisensory

Exploration, Active Perception, Multimodal Perception,

Bayesian Programming.

I. INTRODUCTION

Humans and robots alike have to deal with the un-

avoidable reality of sensory uncertainty. Consider the

following scenario — a static or moving observer is

presented with a non-static 3D scene containing several

static and moving entities, probably generating some

kind of sound: how does this observer perceive the 3D
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location, motion trajectory and velocity of all entities in

the scene, while taking into account the ambiguities and

conflicts inherent to the perceptual process?

Within the human brain, both dorsal and ventral visual

systems process information about spatial location, but

in very different ways: allocentric spatial information

about how objects are laid out in the scene is computed

by ventral stream mechanisms, while precise egocentric

spatial information about the location of each object in

a body-centred frame of reference is computed by the

dorsal stream mechanisms, and also the phylogeneti-

cally preceding superior colliculus (SC), both of which

mediate the perceptual control of action [1]. On the

other hand, several authors argue that recent findings

strongly suggest that the brain codes complex patterns

of sensory uncertainty in its internal representations and

computations [2, 3].

Finally, direction and distance in egocentric represen-

tations are believed to be separately specified by the

brain [4, 5]. Considering distance in particular, just-

discriminable depth thresholds have been usually plotted

as a function of the log of distance from the observer,

with analogy to contrast sensitivity functions based on

Weber’s fraction [6].

These findings inspired the construction of a prob-

abilistic framework that allows fast processing of

multisensory-based inputs to build a perceptual map of

space so as to promote immediate action on the environ-

ment (as in the dorsal stream and superior colliculus),

effectively postponing data association such as object

segmentation and recognition to higher-level stages of

processing (as in the ventral stream) — this would be

analogous to a tennis player being required to hit a

ball regardless of perception of its texture properties.

Our framework bears a spherical spatial configuration

(i.e. encoding 3D distance and direction), and constitutes

a short-term perceptual memory performing efficient,

lossless compression through log-partitioning of depth.
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Figure 1. View of the current version of the Integrated Multimodal

Perception Experimental Platform (IMPEP). The active perception

head mounting hardware and motors were designed by the Perception

on Purpose (POP - EC project number FP6-IST-2004-027268) team

of the ISR/FCT-UC, and the sensor systems mounted at the Mobile

Robotics Laboratory of the same institute, within the scope of the

Bayesian Approach to Cognitive Systems project (BACS - EC project

number FP6-IST-027140).

A. Contributions of this work

In this text, we intend to present an integrated account

of our work, which has been partially documented in

previous publications [7–13], together with unpublished

results. We will start in section II by presenting a

bioinspired perceptual solution with focus on Bayesian

visuoauditory integration. This solution serves as a short-

term spatial memory framework for active perception

and also sensory control of action, with no immediate

interest in object perception. We will try to explicitly

or implicitly address each of the challenges of sensor

fusion as described by Ernst and Bülthoff [14] using the

Bayesian Volumetric Map (BVM) framework for vision,

audition and vestibular sensing. It is our belief that

perceptual systems are unable to yield useful descriptions

of their environment without resorting to a temporal

series of sensory fusion processed on some kind of short-

term memory such as the BVM.

We mainly expect to contribute with a solution which:

• Deals inherently with perceptual uncertainty and

ambiguity.

• Deals with the geometry of sensor fusion in a

natural fashion.

• Allows for fast processing of perceptual inputs to

build a spatial representation that promotes imme-

diate action on the environment.

The Bayesian models for visuoauditory perception

which form the backbone of the framework are presented

next in section II. We propose to use proprioception (e.g.

vestibular sensing) as ancillary information to promote

visual and auditory sensing to satisfy the requirements

for integration.

To support our research work and to provide a test-

bed for some of the possible applications of the BVM, an

artificial multimodal perception system (IMPEP — In-

tegrated Multimodal Perception Experimental Platform)

has been constructed at the ISR/FCT-UC. The platform

consists of a stereovision, binaural and inertial measuring

unit (IMU) setup mounted on a motorised head, with

gaze control capabilities for image stabilisation and

perceptual attention purposes — see Fig. 1. It presents

the same sensory capabilities as a human head, thus

conforming to the biological conditions that originally

inspired our work. We believe IMPEP has great potential

for use in applications as diverse as active perception

in social robots or even robotic navigation. We present

a brief description of its implementation, its sensory

processing modules and system calibration in section III.

As an illustration of the particular application of

active perception, and also and more importantly to

test the performance of our solution, in section IV we

will present an algorithm that implements an active

exploration behaviour based on the entropy of the BVM

framework, together with results of using this algorithm

in real-time.

Finally, in section V conclusions will be drawn and re-

lated ongoing work will be mentioned, and in section VI

future work based on what is presented in this article will

be discussed.

B. Related work

Fusing computer vision, binaural sensing and vestibu-

lar sensing using a unified framework, to the authors’

knowledge, has never been addressed. Moreover, as far

as is known by the authors, the application of the well-

known probabilistic inference grid model [15] to an ego-

centric, log-spherical spatial configuration as a solution

to problems remotely similar to the ones presented in

this text is also unprecedented.

In our specific application domain, where a 3D met-

ric and egocentric representation is required, common

inference grid configurations which assume regularly

partitioned Euclidean space to build the cell lattice are

not appropriate:

1) Most sensors, vision and audition being notable

examples, are based on a process of energy pro-

jection onto transducers, ideally yielding a pencil

of projection lines that converge at the egocentric

reference origin; consequently, they are naturally

disposed to be directly modelled in polar or spher-

ical coordinates. The only example of the use of a

spherical configuration known to the authors was

presented by Zapata et al. [16].

2) Implementation-wise, regular partitioning in Eu-

clidean space, while still manageable in 2D, ren-

ders temporal performances impractical in 3D
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when fully updating a panoramic grid (i.e. per-

forming both prediction/estimation for all cells

on the grid) with satisfactory size and resolution

(typically grids with much more than a million

cells). There are, in fact, two solutions for this

problem: either non-regular partitioning of space

(e.g. octree compression), or regular partitioning

of log-distance space. Interestingly enough, the

latter also accounts for just-discriminable depth

thresholds found in human visual perception —

an example of an Euclidean solution following

a similar rationale was presented by Dankers,

Barnes, and Zelinsky [17].

An important part of recent work in active vision,

contrary to our solution, either use an explicit repre-

sentation for objects to implement active perception or

multisensory fusion (e.g. [18, 19]) or rely on object

detection/recognition to establish targets for active ob-

ject search (e.g. [20–22]). On the other hand, several

solutions for applications similar to ours (e.g. [23–25])

avoid explicit object representation by resorting to a

bottom-up saliency approach such as defined by Itti,

Koch, and Niebur [26]. The underlying rationale is that

postponing data association processing allows for the

implementation of fast automatic mechanisms of active

exploration that resemble what is believed to occur

within the human brain, as explained in the introductory

section of this paper.

Our solution implements active visuoauditory percep-

tion using an egocentric spatial representation, adding

to it vestibular sensing/proprioception so as to allow

for efficient sensor fusion given a rotational egomotion.

Moreover, the log-partitioning of the spatial represen-

tation intrinsically deals with just-discriminable depth

thresholds, while avoiding the use of complex error

dispersion models. Complementing the possibility of the

extension of our system to include sensory saliency-

fuelled behaviours [13], our solution differs from purely

saliency-based approaches in that it inherently imple-

ments an active exploration behaviour based on the

entropy of the occupancy grid (inspired in research work

such as [27]), so as to promote gaze shifts to regions of

high uncertainty. In summary, our framework elicits an

automatic behaviour of fixating interesting (i.e. salient)

and unexplored regions of space, without the need to

resort to active object search, as in [20–22].

II. BAYESIAN MODELS FOR MULTIMODAL

PERCEPTION

A. Background and definitions

Taking into account the goals stated in the introductory

section, the framework for spatial representation that

���

Figure 2. Egocentric, log-spherical configuration of the Bayesian

Volumetric Map.

will be presented in the rest of this section satisfies the

following criteria:

• It is egocentric and metric in nature.

• It is an inference grid, allowing for a probabilistic

representation of dynamical spatial occupation of

the environment. It therefore encompasses position-

ing, structure and motion of objects, avoiding any

need for any assumptions on the nature of those

objects, or in other words, for data association.

Given these requirements, we chose a log-spherical

coordinate system spatial configuration (see Fig. 2) for

the occupancy grid that we have developed and will

refer to as BVM, thus promoting an egocentric trait in

agreement with biological perception.

The BVM is primarily defined by its range of azimuth

and elevation angles, and by its maximum reach in dis-

tance ρMax, which in turn determines its log-distance base

through b = a
loga(ρMax−ρMin)

N , ∀a ∈ R, where ρMin defines

the egocentric gap, for a given number of partitions N ,

chosen according to application requirements. The BVM

space is therefore effectively defined by

Y ≡ ] logb ρMin; logb ρMax]× ]θMin; θMax]× ]φMin;φMax] (1)

In practice, the BVM is parametrised so as to cover

the full angular range for azimuth and elevation. This

configuration virtually delimits a horopter for sensor

fusion.

Each BVM cell is defined by two limiting log-

distances, logb ρmin and logb ρmax, two limiting azimuth

angles, θmin and θmax, and two limiting elevation angles,

φmin and φmax, through:

Y ⊃ C ≡ ] logb ρmin; logb ρmax]× ]θmin; θmax]× ]φmin;φmax] (2)
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Relevant variables:

C ∈ Y : indexes a cell on the BVM;

AC : identifier of the antecedents of cell C (stored as with C);

Z1, · · · , ZS ∈ {“No Detection”} ∪ Z: independent measurements taken by S sensors;

OC , O
−1
C

: binary values describing the occupancy of cell C,

for current and preceding instants, respectively;

VC : velocity of cell C,

discretised into N + 1 possible cases ∈ V ≡ {v0, · · · , vN}.

Decomposition:

P (C AC OC O
−1
C

VC Z1 · · ·ZS) =

P (AC)P (VC |AC)P (C|VC AC)P (O
−1
C

|AC)P (OC |O
−1
C

)
S∏

i=1

P (Zi|VC OC C)

Parametric forms:

P (AC): uniform;

P (VC |AC): histogram;

P (C|VC AC): Dirac, 1 iff clogb ρ = alogb ρ + vlogb ρδt, cθ = aθ + vθδt and cφ = aφ + vφδt

(constant velocity assumption);

P (O
−1
C

|AC): probability of preceding state of occupancy given set of antecedents;

P (OC |O
−1
C

): defined through transition matrix T =
[ 1−ǫ ǫ

ǫ 1−ǫ

]
,

where ǫ represents the probability of non-constant velocity;

P (Zi|VC OC C): direct measurement model for each sensor i, given by respective sub-BP.

Identification:

None.

Questions:

P (Oc Vc|z1 · · · zS c) →

{

P (Oc|z1 · · · zS c)

P (Vc|z1 · · · zS c)

Figure 3. Bayesian Program for the estimation of Bayesian Volumetric Map current cell state (on the left), and corresponding Bayesian

filter diagram (on the right – it considers only a single measurement Z for simpler reading, with no loss of generality). The respective

filtering equation is given by (3) and (4), using two different formulations.

Estimation (Joint Distribution)
︷ ︸︸ ︷

P (VC OC Z1 · · ·ZS C) =

Observation
︷ ︸︸ ︷

S∏

i=1

P (Zi|VC OC C)

Prediction
︷ ︸︸ ︷
∑

AC ,O
−1
C

P (AC)P (VC |AC)P (C|VC AC)P (O−1

C |AC)P (OC |O
−1

C ) (3)

Estimation
︷ ︸︸ ︷

P (VC OC |Z1 · · ·ZS C) =

Observation
︷ ︸︸ ︷

S∏

i=1

P (Zi|VC OC C)

Prediction
︷ ︸︸ ︷
∑

AC ,O
−1
C

P (AC)P (VC |AC)P (C|VC AC)P (O−1

C |AC)P (OC |O
−1

C )

∑

AC ,O
−1
C

,OC ,VC

P (AC)P (VC |AC)P (C|VC AC)P (O−1

C |AC)P (OC |O
−1

C )
S∏

i=1

P (Zi|VC OC C)

︸ ︷︷ ︸

Normalisation

(4)

where constant values for log-distance base b, and an-

gular ranges ∆θ = θmax − θmin and ∆φ = φmax − φmin,

chosen according to application resolution requirements,

ensure BVM grid regularity. Finally, each BVM cell is

formally indexed by the coordinates of its far corner,

defined as C = (logb ρmax, θmax, φmax).

The main hypothesis of inference grids is that the state

of each cell is considered independent of the states of the

remaining cells on the grid. This assumption effectively

breaks down the complexity of state estimation. As a

matter of fact, complete estimation of the state of the grid

resumes to applying N times the cell state estimation

process, N being the total number of cells that compose

the grid.

To compute the probability distributions for the current

states of each cell, the Bayesian Program (BP) formal-

ism, consolidated by Bessière et al. [28], will be used

throughout this text.
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B. Multimodal Sensor Fusion Using Log-Spherical

Bayesian Volumetric Maps

1) Using Bayesian filtering for visuoauditory integra-

tion: The independency hypothesis postulated earlier

allows for the independent processing of each cell, and

hence the Bayesian Program should be able to perform

the evaluation of the state of a cell knowing an observa-

tion of a particular sensor.

The Bayesian Program presented in Fig. 3 is based on

the solution presented by Tay et al. [29], the Bayesian

Occupancy Filter (BOF), adapted so as to conform to the

BVM egocentric, three-dimensional and log-spherical

nature. In the spirit of Bayesian programming, we start

by stating and defining the relevant variables:

• C ≡ (logb ρmax, θmax, φmax) ∈ Y is random variable

denoting a log-spherical index which simultane-

ously localises and identifies the reference BVM

cell, as has been defined in section II-A. It is used as

a subscript of most of the random variables defined

in this text, so as to explicitly state their relation to

cells in the grid.

• AC ≡ (logb ρmax, θmax, φmax) ∈ AC ⊂ Y is a

random variable that denotes the hypothetical an-

tecedent cell of reference cell C. The set of allowed

antecedents AC of reference cell C is composed

by the N + 1 cells on the BVM grid from which

an object might have moved from, within the time

interval going from the previous inference step t−1
to the present time t. The number of possible

antecedents of any cell is arbitrary; in the case

of the present work, we considered N + 1 = 7
antecedents: two immediate neighbours in distance,

two immediate neighbours in azimuth, and two

immediate neighbours in elevation, and cell C itself

(which would represent the hypothesis of an object

occupying the reference cell remaining still).

• OC is a binary variable denoting the occupancy

[OC = 1] or emptiness [OC = 0] of cell C;

O−1
C denotes the occupancy state of the effective

antecedent of C, AC , in the previous inference step,

which will propagate to the reference cell as the

object occupying a specific AC is moved to C.

• VC denotes the dynamics of the occupancy of cell

C as a vector signalling local motion to this cell

from its antecedents, discretised into N+1 possible

cases for velocities ∈ V ≡ {v0, · · · , vN}, with v0
signalling that the most probable antecedent of AC

is C, i.e. no motion between two consecutive time

instants.

• Z1, · · · , ZS ∈ {“No Detection”} ∪ Z are indepen-

dent measurements taken by S sensors.

The estimation of the joint state of occupancy and

velocity of a cell is answered through Bayesian infer-

ence on the decomposition equation given in Fig. 3.

This inference effectively leads to the Bayesian filtering

formulation as used in the BOF grids.

Using the decomposition equation given in Fig. 3, we

also have a more familiar formulation of the Bayesian

filter of (3), given that
∏S

i=1 P (Zi|VC OC C) does not

depend either on AC or O−1
C . Applying marginalisation

and Bayes rule, we obtain the answer to the Bayesian

Program question, the global filtering equation (4).

The process of solving the global filtering equation can

actually be separated into three stages, in practice. The

first stage consists on the prediction of the probabilities

of each occupancy and velocity state for cell [C = c],
∀k ∈ N0, 0 ≤ k ≤ N ,

αc([OC = 1], [VC = vk]) =
∑

AC ,O
−1
C

P (AC)P (vk|AC)P (C|vk AC)P (O−1
C |AC)P (oc|O

−1
C )

(5a)

αc([OC = 0], [VC = vk]) =
∑

AC ,O
−1
C

P (AC)P (vk|AC)P (C|vk AC)P (O−1
C |AC)P (¬oc|O

−1
C )

(5b)

with oc and ¬oc used as shorthand notations for [OC = 1]
and [OC = 0], respectively.

The prediction step thus consists on performing the

computations represented by (5) for each cell, essen-

tially by taking into account the velocity probability

P ([VC = vk]|AC) and the occupation probability of

the set of antecedent cells represented by P (O−1
C |AC),

therefore propagating occupancy states as a function of

the velocities of each cell.

The second stage of the BVM Bayesian filter es-

timation process is multiplying the results given by

the previous step with the observation from the sensor

model, yielding, ∀k ∈ N0, 0 ≤ k ≤ N ,

βc([OC = 1], [VC = vk]) =

S
∏

i=1

(

P (Zi|vk [OC = 1]C)
)

αc([OC = 1], vk)
(6a)

βc([OC = 0], [VC = vk]) =

S
∏

i=1

(

P (Zi|vk [OC = 0]C)
)

αc([OC = 0], vk)
(6b)

Performing these computations for each cell [C = c]
gives a non-normalised estimate for velocity and oc-

cupancy for each cell. The marginalisation over oc-

cupancy values gives the likelihood of each velocity,
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∀k ∈ N0, 0 ≤ k ≤ N ,

lc(vk) = βc([OC = 1], [VC = vk]) + βc([OC = 0], [VC = vk]) (7)

The final normalised estimate for the joint state of

occupancy and velocity for cell [C = c] is given by

P (OC [VC = vk]|Z1 · · ·ZS C) = βc(OC ,[VC=vk])∑

VC

lc(VC) (8)

The related remaining questions of the BP for the

BVM cell states, the estimation of the probability of

occupancy and the estimation of the probability of a

given velocity, are given through marginalisation of the

free variable by

P (OC |Z1 · · ·ZS C) =
∑

VC

P (VC OC |Z1 · · ·ZS C) (9a)

P (VC |Z1 · · ·ZS C) =
∑

OC

P (VC OC |Z1 · · ·ZS C) (9b)

In summary, prediction propagates cell occupancy

probabilities for each velocity and cell in the grid —

P (OC VC |C). During estimation, P (OC VC |C) is up-

dated by taking into account the observations yielded

by the sensors
∏S

i=1 P (Zi|VC OC C) to obtain the final

state estimate P (OC VC |Z1 · · ·ZS C). The result from

the Bayesian filter estimation will then be used for the

prediction step in the next iteration.

2) Using the BVM for sensory combination of vision

and audition with vestibular sensing: Consider the sim-

plest case, where the sensors may only rotate around

the egocentric axis and the whole perceptual system is

not allowed to perform any translation. In this case,

the vestibular sensor models, described ahead, will yield

measurements of angular velocity and position. These

can then be easily used to manipulate the BVM, which

is, by definition, in spherical coordinates.

Therefore, to compensate for this kind of egomotion,

instead of rotating the whole map, the most effective

solution is to perform the equivalent index shift. This

process is described by redefining C: C ∈ Y indexes

a cell in the BVM by its far corner, defined as C =
(logb ρmax, θmax + θinertial, φmax + φinertial).

This process relies on the uncontroversial assumption

that inertial precision on angular measurements is greater

than the chosen resolution parameters for the BVM.

3) Dealing with sensory synchronisation: The BVM

model presented earlier assumes that the state of a cell

C, given by (OC , VC), and the observation by any sensor

i, given by Zi, correspond to the same time instant t.

In accordance with the wide multisensory integration

temporal window theory for human perception reviewed

{ Cl }

X

Y

Z
{ Cr }

b

{E }

xr

xl

f

(i, k)

Figure 4. Cyclopean geometry for stereovision — b stands for the

baseline and f is the focal length. The use of cyclopean geometry

(pictured on the left for an assumed frontoparallel configuration)

allows direct use of the egocentric reference frame for depth maps

taken from the disparity maps yielded by the stereovision system (of

which an example is shown on the right).

in [30], the BVM may be used safely to integrate

auditory and vision measurements as soon they become

available; local motion estimation using the BVM en-

forces a periodical state update with constant rate to

ensure temporal consistency. Consequently, the modality

of highest measurement rate is forced to set the update

pace (i.e. by means of measurement buffers) in order

to satisfy the constant update requirement. The velocity

estimates for the local motion states of the BVM are thus

a function of this update rate.

Promotion through vestibular sensing is also perfectly

feasible, since inertial readings are available at a much

faster rate than visuoauditory perception.

C. Bayesian sensor models

Next, the sensor models that are used as observations

for the Bayesian filter of the BVM will be presented.

C as a random variable and P (C), although redundant

in this context, will be used in the following models to

maintain consistency with the Bayesian filter formulation

and also with cited work.

1) Vision sensor model: We have decided to model

these sensors in terms of their contribution to the es-

timation of cell occupancy in a similar fashion to the

solution proposed by Yguel, Aycard, and Laugier [31].

This solution incorporates a complete formal definition

of the physical phenomenon of occlusion (i.e. in the

case of visual occlusion, light reflecting from surfaces

occluded by opaque objects do not reach the vision

sensor’s photoreceptors).

Our motivations suggest a tentative data structure

analogous to neuronal population activity patterns to

represent uncertainty in the form of probability distri-

butions [32]. Thus, a spatially organised 2D grid may

have each cell (corresponding to a virtual photoreceptor

in the cyclopean view — see Fig. 4) associated to a

“population code” extending to additional dimensions,
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yielding a set of probability values encoding a N -

dimensional probability distribution function or pdf.

Given the first occupied cell [C = k] on the line-of-

sight, the likelihood functions yielded by the population

code data structure can be finally formalised as

Pk(Z) = Lk(Z, µρ(k), σρ(k)),

{

µρ(k) = ρ̂(δ̂)

σρ(k) = 1
λ
σmin

, (10)

a discrete probability distribution with mean µρ and

standard deviation σρ, both a function of the cell index

k, which directly relates to the log-distance from the

observer ρ. Values δ̂ and λ represent the disparity reading

and its correspondent confidence rating, respectively;

σmin and the expression for ρ̂(δ̂) are taken from cali-

bration, the former as the estimate of the smallest error

in depth yielded by the stereovision system and the

latter from the intrinsic camera geometry (see camera

calibration description later in this text). The likelihood

function constitutes, in fact, the elementary sensor model

as defined above for each vision sensor, and formally

represents soft evidence, or “Jeffrey’s evidence” in ref-

erence to Jeffrey’s rule [33] concerning the relation

between vision sensor measurements denoted generically

by Z and the corresponding readings δ̂ and λ, described

by the calibrated expected value ρ̂(δ̂) and standard

deviation σρ(λ) for each sensor.

Equation (10) only partially defines the resulting prob-

ability distribution by specifying the random variable

over which it is defined and an expected value plus a

standard deviation/variance — a full definition requires

the choice of a type of distribution that best fits the noisy

pdfs taken from the population code data structure. The

traditional choice, mainly due to the central limit the-

orem, favours normal distributions N (Z, µρ(k), σρ(k)).
Considering what happens in the mammalian brain, this

choice appears to be naturally justified — biological

population codes often yield bell-shaped distributions

around a preferred reading [34, 35]. For more details

on our adaptation of such a distribution, please refer to

[7].

To correctly formalise the Bayesian inference process,

a formal auxiliary definition with respective properties is

needed — for details, please refer to [7]. The Bayesian

Program that summarises this model is presented on

Fig. 5.

2) Audition sensor model: Current trends in robotic

implementations of sound-source localisation models

rely on microphone arrays with more than a couple of

sensors, either by resorting to steerable beamformers,

high-resolution spectral estimation, time difference of

arrival (TDOA) information, or fusion methods (i.e, the
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Relevant variables:

C: cell identifier,

stored as a 3-tuple of cell coordinates (logb ρC , θ, φ);

Z ∈ {“No Detection”} ∪ ZVisDepth: sensor depth measurement

along line-of-sight (θ, φ);

OC : binary value describing the occupancy of cell C;

GC ∈ GC ≡ O
N−1

: state of all cells in the line-of-sight except for C.

Decomposition:

P (Z C OC GC) =

P (C)P (OC |C) · P (GC |OC C)P (Z|GC OC C)
︸ ︷︷ ︸

Gives P (Z|OC C) through
∑

GC
.

Parametric forms:

P (C): uniform;

P (OC |C): uniform or prior estimate;

P (GC |OC C): unknown, apart from dependency on number of occupied

cells;

P (Z|GC OC C): probability of a measurement by sensor,

knowing first occupied cell is [C = k] ≡ elementary sensor model Pk(Z).

Identification:

Calibration for Pk(Z) ⇒ P (Z|GC OC C).

Question:

P (Z|oc c)

Figure 5. Bayesian Program for vision sensor model of occupancy.

integration of estimates from several distributed arrays).

Generically, it is found that increasing the number of

microphones also increases estimation accuracy. In fact,

there is theoretical (see the Cramer-Rao bound analyses

presented by Yang and Scheuing [36] for TDOA and

Chen et al. [37] for beamforming) and practical (see

Loesch et al. [38]) evidence supporting this notion. Con-

versely, it is also generally accepted that the computa-

tional burden of sound-source localisation increases with

the number of sensors involved; in fact, this provides the

support for the use of fusion methods, and also for one

of the reasons speculated for why humans, like many

animals, have only two ears [39].

The direct audition sensor model used in this work,

first presented in [8, 10], relies on binaural cues alone

to fully localise a sound-source in space. The reason for

its use resides in our biological inspiration mentioned in

section I-A and our desire to use the BVM framework in

future experiments where comparisons to human sensory

systems are to be made in “fair terms” (see future work

referred to in [13]); however, the inclusion within this

framework of any alternative model supporting the use of

more microphones to increase estimation accuracy would

be perfectly acceptable. The model is formulated as the

first question of the Bayesian Program in Fig. 6, where

all relevant variables and distributions and the decompo-

sition of the corresponding joint distribution, according

to Bayes’ rule and dependency assumptions, are defined.

The use of the auxiliary binary random variable SC ,

which signals the presence or absence of a sound-source
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Relevant variables:

C ≡ (logb ρmax, θmax, φmax) ∈ C: cell identifier;

Z ∈ ZBinauralMeasurements : sensor measurement vectors

[τ,∆L(f
1
c ) · · ·∆L(f

m
c )];

τ ≡ ITD and ∆L(f
k
c ) ≡ ILD; f

k
c denotes each k ∈ N, 1 ≤ k ≤ m

frequency band in m frequency channels).

SC : binary value describing the presence of a sound-source in cell C,

[SC = 1] if a sound-source is present at C, [SC = 0] otherwise;

OC : binary value describing the occupancy of cell C,

[OC = 1] if cell C is occupied by an object, [OC = 0] otherwise;

Decomposition:

P (Z C SC OC) =

P (C)P (OC |C)·

P (SC |OC C)P (τ |SC OC θmax)
m∏

k=1

P (∆L(f
k
c )|τ SC OC C)

︸ ︷︷ ︸

Gives P (Z|OC C) through
∑

SC

Parametric forms:

P (C): uniform;

P (OC |C): uniform or prior estimate;

P (SC |OC C) ≡ P (SC |OC): probability table (see table below);

P (Z|OC C): probability of a measurement [τ,∆L(f
1
c ) · · ·∆L(f

m
c )];

P (τ |SC OC θmax) ≡ P (τ |SC θmax): normal distribution, yielding the

probability of a measurement τ by sensor for cell C, given its azimuth θmax

and presence or absence of a sound-source SC in that cell;

P (∆L(f
k
c )|τ SC OC C) ≡ P (∆L(f

k
c )|τ SC C): normal distribution,

yielding the probability of a measurement ∆L(f
k
c ) by sensor for cell C,

given the presence or absence of a sound-source SC in that cell.

Identification:

Calibration for P (τ |SC OC θmax).

Calibration for P (∆L(f
k
c )|τ SC OC C) ≈ P (∆L(f

k
c )|SC OC C).

Questions:

P (Z|oc c)

max, argmax
C

P ([SC = 1]|z C)

P (SC |OC) [OC = 0] [OC = 1]

[SC = 0] 1 .5
[SC = 1] 0 .5∑

P (sc|OC) 1 1

Figure 6. Bayesian Program for binaural sensor model. At

the bottom is presented the probability table which was used for

P (SC |OC C) ≡ P (SC |OC), empirically chosen so as to reflect the

indisputable fact that there is no sound-source in a cell that is not

occupied (left column), and the safe assumption that when a cell is

known to be occupied there is little way of telling if it is in this

condition due to a sound-source or not (right column).

in cell C, and the corresponding family of probability

distributions P (SC |OC C) ≡ P (SC |OC) promotes the

assignment of probabilities of occupancy close to 1 for

cells for which the binaural cue readings seem to indicate

a presence of a sound-source and close to .5 otherwise

(i.e. the absence of a detected sound-source in a cell

doesn’t mean that the cell is empty). The second question

corresponds to the estimation of the position of cells

most probably occupied by sound-sources, through the

inversion of the direct model through Bayesian inference

on the joint distribution decomposition equation.

The former is used as a sub-BP for the BVM multi-
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Relevant variables:

ξ
t
= (Θ

t
,Ω

t
,A

t
): state variables,

S
t
= (Φ

t
,Υ

t
): sensor variables.

Decomposition:

P (ξ
t
ξ
t−δt

S
t
...S

0
) =

P (S
t
|ξ

t
)

.P (Ω
t
).P (A

t
).P (Θ

t
|Θ

t−δt
Ω

t
)

.P (ξ
t−δt

S
t−δt

...S
0
)

Parametric forms:

P (S
t
|ξ

t
) = P (Φ

t
|Ω

t
).P (Υ

t
|F

t
).P (F

t
|Θ

t
A

t
)

: sensor model, Gaussians and dirac;

P (Ω
t
), P (A

t
): a priori for state, Gaussians;

P (Θ
t
|Θ

t−δt
Ω

t
): state dynamic model, diracs;

P (ξ
t−δt

S
t−δt

...S
0
)

: previous iteration, distribution computed at last time step.

Identification:

Parameters of the Gaussians: σΦ , σΥ , σA and σΩ .

Question:

P (ξ
t
|S

t
...S

0
)

Figure 7. Bayesian Program for processing of inertial data.

modal sensor fusion framework described earlier, while

the answer to the latter yields a gaze direction of interest

in terms of auditory features which can be used by

a multimodal attention system, through a maximum a

posteriori (MAP) method.

3) Vestibular sensor model: To process the inertial

data, we follow the Bayesian model of the human

vestibular system proposed by Laurens and Droulez

[40, 41], adapted here to the use of inertial sensors. The

aim is to provide an estimate for the current angular

position and angular velocity of the system, that mimics

the human vestibular perception.

At time t the Bayesian program of Fig. 7 allows the

inference of the probability distribution of the current

state ξt = (Θt,Ωt,At) — where the orientation of the

system in space is encoded using a rotation matrix Θ, the

instantaneous angular velocity is defined as the vector Ω,

and linear acceleration by A — given all the previous

sensory inputs until the present instant, represented by

S0→t = (Φ0→t,Υ0→t) — where Φ denotes Ω with

added Gaussian noise measured by the gyros, and Υ

denotes the gravito-inertial acceleration F with added

Gaussian noise measured by the accelerometers — and

the initial distribution ξ0. Details regarding this model,

the respective implementation issues and preliminary

results have been presented in [11, 12].

III. THE INTEGRATED MULTIMODAL PERCEPTION

EXPERIMENTAL PLATFORM

A. Platform description

To support our research work, we have developed an

artificial multimodal perception system, of which an im-
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Figure 8. Implementation diagram for the BVM-IMPEP multimodal

perception framework.

plementation diagram is presented on Fig. 8, consisting

of a stereovision, binaural and inertial measuring unit

(IMU) setup mounted on a motorised head, with gaze

control capabilities for image stabilisation and perceptual

attention purposes.

The stereovision system is implemented using a pair

of Guppy IEEE 1394 digital cameras from Allied Vi-

sion Technologies (http://www.alliedvisiontec.com), the

binaural setup using two AKG Acoustics C417 linear mi-

crophones (http://www.akg.com/) and an FA-66 Firewire

Audio Capture interface from Edirol (http://www.edirol.

com/), and the miniature inertial sensor, Xsens MTi

(http://www.xsens.com/), provides digital output of 3D

acceleration, 3D rate of turn (rate gyro) and 3D earth-

magnetic field data for the IMU.

Full implementation details can be found in [12].

B. Sensory processing

In the following text, the foundations of the sensory

processing systems depicted on Fig. 9, which feed the

Bayesian sensor models that have been defined in previ-

ous text, will be presented.

1) Vision system: The stereovision algorithm used

yields an estimated disparity map δ̂(k, i) and a corre-

sponding confidence map λ(k, i), and is thus easily con-

verted from its deterministic nature into a probabilistic

implementation simulating the population code-type data

structure, as defined earlier.

2) Auditory system: The Bayesian binaural system

presented herewith is composed of three distinct and

consecutive modules (Fig. 9): the monaural cochlear

unit, which processes the pair of monaural signals

{x1, x2} coming from the binaural audio transducer

system by simulating the human cochlea, so as to

achieve a tonotopic representation (i.e. a frequency band

decomposition) of the left and right audio streams;
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�����������
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Figure 9. The IMPEP Bayesian sensor systems.

the binaural unit, which correlates these signals and

consequently estimates the binaural cues and segments

each sound-source; and, finally, the Bayesian 3D sound-

source localisation unit, which applies a Bayesian sensor

model so as to perform localisation of sound-sources in

3D space. We have adapted the realtime software by the

Speech and Hearing Group at the University of Shefield

[42] to implement the solution by Faller and Merimaa

[43] as the binaural processor — for more details, please

refer to [8, 10].

3) Inertial sensing system: The calibrated inertial sen-

sors in the IMU provide direct egocentric measurements

of body angular velocity and linear acceleration. The

gyros and the accelerometers provide noise-corrupted

measurements of angular velocity Ω
t and the gravito-

inertial acceleration F as input for the sensor model of

Fig. 7.

C. System calibration

Camera calibration was performed using the Camera

Calibration Toolbox by Bouguet [44], therefore allowing

the application of the reprojection equation:
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(11)

where ul and vl represent the horizontal and vertical

coordinates of a point on the left camera, respectively,

and δ̂ is the disparity estimate for that point, all of which

in pixels, f and b are the estimated focal length and

baseline, respectively, both of which in metric distance,

and X , Y and Z are 3D point coordinates respective to

the egocentric/cyclopean referential system {E}.

Using reprojection error measurements given by the

calibration procedure, parameter σmin as defined earlier

http://www.alliedvisiontec.com
http://www.akg.com/
http://www.edirol.com/
http://www.edirol.com/
http://www.xsens.com/
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Figure 10. Illustration of the entropy-based active exploration

process using the Bayesian Volumetric Map. Please refer to [9, 12]

for more details.

is taken as being equal to the maximum error exhibited

by the stereovision system.

Calibration of the binaural system involves the

characterisation of the families of normal distribu-

tions P (τ |SC OC θmax) and P (∆L(fk
c )|τ SC OC C) ≈

P (∆L(fk
c )|SC OC C) of the binaural sensor model de-

fined earlier through descriptive statistical learning of

their central tendency and statistical variability. This

is done following a proceeding similar to commonly

used head-related transfer function (HRTF) calibration

processes, and was described in detail in [10].

Visuoinertial calibration was performed using the In-

erVis toolbox [45], that adds on to the Camera Cali-

bration Toolbox by Bouguet [44]. The toolbox estimates

the rotation quaternion between the Inertial Measurement

Unit and a chosen camera, requiring a set of static

observations of a vertical chequered visual calibration

target and of sensed gravity [46].

IV. ACTIVE EXPLORATION USING BAYESIAN

MODELS FOR MULTIMODAL PERCEPTION

A. Active exploration using the Bayesian Volumetric

Map

Information in the BVM is stored as the probabil-

ity of each cell being in a certain state, defined as

P (VcOc|z c). The state of each cell thus belongs to the

state-space O × V . The joint entropy of the random

variables VC and OC that compose the state of each

BVM cell [C = c] is defined as follows:

H(c) ≡ H(Vc, Oc) = −
∑

oc∈O
vc∈V

P (vc oc|z c) logP (vc oc|z c) (12)

The joint entropy value H(c) is a sample of a continu-

ous joint entropy field H : Y → R, taken at log-spherical

positions [C = c] ∈ Y . Let cα− denote the contiguous

cell to C along the negative direction of the generic log-

spherical axis α, and consider the edge of cells to be of

unit length in log-spherical space, without any loss of

generality. A reasonable first order approximation to the

joint entropy gradient at [C = c] would be

−→
∇H(c) ≈ [H(c)−H(cρ−), H(c)−H(cθ−), H(c)−H(cφ−)]

T (13)

with magnitude ‖
−→
∇H(c)‖.

A great advantage of the BVM over Cartesian im-

plementations of occupancy maps is the fact that the

log-spherical configuration avoids the need for time-

consuming ray-casting techniques when computing a

gaze direction for active exploration, since the log-

spherical space is already defined based on directions

(θ, φ). In case there is more than one global joint

entropy gradient maximum, the cell corresponding to the

direction closest to the current heading is chosen, so as to

deal with equiprobability, while simultaneously ensuring

minimum gaze shift rotation effort (see Fig. 10). The

full description of the active exploration heuristics was

presented in [9, 12].

B. Results

The realtime implementation of all the processes of

the framework was subjected to performance testing for

each individual module — please refer to [12] for further

details. To avoid Bayesian update deadlocks due to 0 or

1-probabilities, a simple error model analogous to what

is proposed in [31] was implemented, both for occupancy

and for velocities. Addtionally, log-probabilities are used

to increase both the execution performance and the

numerical stability of the system.

The full active exploration system runs at about 6 to

10Hz. This is ensured by forcing the main BVM thread

to pause for each time-step when no visual measurement

is available (i.e. during 40ms for N = 10,∆φ =
2o). This guarantees that BVM time-steps are regularly

spaced, which is a very important requirement for correct

implementation of prediction/dynamics, and also ensures

that processing and memory resources are freed and

unlocked regularly.

In Fig. 11 a qualitative comparison is made between

the outcome of using each sensory modality individually,

and also with the result of multimodal fusion, using a

single speaker scenario, showcasing the advantages of

visuoauditory integration in the effective use of both

the spatial precision of visual sensing, and the temporal

precision and panoramic capabilities of auditory sensing.

The BVM renderings were produced from screenshots
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(a) Left camera snapshot of a male speaker, at −41o azimuth relatively to the Z axis, which defines the frontal heading respective to the

IMPEP “neck”.

(b) BVM results for binaural processing only. Interpretation, from left to right: 1) sound coming from speaker triggers

an estimate for occupancy from the binaural sensor model, and a consecutive exploratory gaze shift at approximately

1.6 seconds; 2) At approximately 10 seconds, noise coming from the background introduce a false positive, that is never

again removed from the map (i.e. no sound does not mean no object, only no audible sound-source).

(c) BVM results for stereovision processing only. Notice

the clean cut-out of speaker silhouette, as comparing to

results in (b). On the other hand, active exploration using

vision sensing alone took approximately 15 seconds longer

to start scanning the speaker’s position in space, while using

binaural processing the speaker was fixated a couple of

seconds into the experiment.

(d) BVM results for visuoauditory fusion. In this case, the

advantages of both binaural (immediacy from panoramic

scope) and stereovision (greater spatial resolution and the

ability to clean empty regions in space) influence the final

outcome of this particular instantiation of the BVM, taken

at 1.5 seconds.

Figure 11. Online results for the real-time prototype for multimodal perception of 3D structure and motion using the BVM — three

reenactments (binaural sensing only, stereovision sensing only and visuoauditory sensing) of a single speaker scenario. A scene consisting of

a male speaker talking in a cluttered lab is observed by the IMPEP active perception system and processed online by the BVM Bayesian filter,

using the active exploration heuristics described in the main text, in order to scan the surrounding environment. The heading arrow together

with an oriented 3D sketch of the IMPEP perception system depicted in each map denote the current gaze orientation. All results depict

frontal views, with Z pointing outward. The parameters for the BVM are as follows: N = 10, ρMin = 1000mm and ρMax = 2500mm,

θ ∈ [−180o, 180o], with ∆θ = 1o, and φ ∈ [−90o, 90o], with ∆φ = 2o, corresponding to 10 × 360 × 90 = 324, 000 cells, approximately

delimiting the so-called “personal space” (the zone immediately surrounding the observer’s head, generally within arm’s reach and slightly

beyond, within 2m range [6]).
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Figure 12. Temporal evolution of average information gain (i.e. average Kullback-Liebler divergence for the full set of cells which were

updated, either due to observations or propagation from prediction) and corresponding exploration span for the auditory-only, visual-only

and visuoauditory versions of the single speaker scenario (see Fig. 11), for a 30 second period since the start of each experiment.

of an online OpenGL-based viewer running throughout

the experiments. Fig. 12 presents a study based on

information gain and exploration span, yielding a quan-

titative comparison of these advantages and capabilities,

and demonstrating the superior results of visuoauditory

fusion as compared to using each sensory modality

separately. In [12], results were presented concerning the

effectiveness of active exploration when having to deal

with the ambiguity and uncertainty caused by multiple

sensory targets and complex noise in a two-speaker

scenario scenario. In order to provide a better view of

the BVM configuration, the supplemental MPEG file

presents a higher resolution rendering of a reenactment

of this scenario, processed offline from a saved instanti-

ation of the BVM occupancy grid.

The advantages of the log-spherical configuration were

made apparent in these experiments, when comparing

to other solutions in the literature: (a) an efficiency

advantage: as mentioned in the introductory section,

fewer cells are used to represent the environment —

for example, to achieve the resolution equivalent to

approximately the distance obtained half-way through

the log-scale using a regular Euclidean partition for

the examples in Figs. 11 and the supplemental video,

i.e. 40 mm-side cells and removing the egocentric gap,

around 1, 937, 500 cells would be needed, while, using

a similar rationale, around 1, 215, 000 cells would be

needed for a solution such as the one presented by

[17], roughly constituting at least a 3-fold reduction in

total cell count; (b) a robustness advantage: the fact

that sensor readings are directly referred to in spherical

coordinates and consequently no ray-tracing is needed

leads to inherent antialiasing, therefore avoiding the

Moiré effects which are present in other grid-based

solutions in the literature, as is reported by Yguel et al.

[31].

Moreover, the benefits of using an egocentric spherical

configuration have also been made clear: sensory fusion

is seamlessly performed, avoiding the consequences of

transformations between referentials and respective com-

plex registration and integration processes proposed in

related work, such as [20–22].

V. CONCLUSIONS

In this text we introduced Bayesian models for vi-

suoauditory perception and inertial sensing emulating

vestibular perception which form the basis of the prob-

abilistic framework for multimodal sensor fusion — the

Bayesian Volumetric Map. These models build upon a

common spatial configuration that is naturally fitting for
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the integration of readings from multiple sensors. We

also presented the robotic platform that supports the

use of these computational models for implementing an

entropy-based exploratory behaviour for multimodal ac-

tive perception. In the future, the computational models

described in this text will allow the construction of a

simultaneously flexible and powerful robotic implemen-

tation of multisensory active perception to be used in

real-world applications.

Regarding its future use in applications such as

human-machine interaction or mobile robot navigation,

the following conclusions may be drawn:

• The results presented in the previous section show

that active exploration algorithm successfully drives

the IMPEP-BVM framework to explore areas of the

environment mapped with high uncertainty in real-

time, with an intelligent heuristic that minimises the

effects of local minima by attending to the closest

regions of high entropy first.

• Moreover, since the human saccade-generation sys-

tem promotes fixation periods (i.e. time intervals

between gaze shifts) of a few hundred milliseconds

on average [47, 48], the overall rates of 6 to 10Hz

achieved with our CUDA implementation, in our

opinion, back up the claim that our system does, in

fact, achieve satisfactory real-time performance.

• Effective use of visual spatial accuracy and audi-

tory panoramic capabilities and temporal accuracy

by our system constitutes a powerful solution for

attention allocation in realistic settings, even in the

presence of ambiguity and uncertainty caused by

multiple sensory targets and complex noise.

• Although not explicitly providing for object rep-

resentation, many of the scene properties that are

already represented by the Bayesian filter allow

for clustering and tracking of neighbouring cells

sharing similar states, which in turn provides a

fast processing prior/cue generator for an additional

object detection and recognition module. An active

object search could then be implemented, as in

related work such as [20–22].

The BVM and its egocentric log-spherical configu-

ration carry with it, however, in its current state, a few

important limitations. In decreasing order of importance,

these would be the following:

1) The non-regular tesselation of space might intro-

duce perceptual distortions due to motion-based

prediction when a moving object becomes oc-

cluded: a big object moving towards the observer

will appear to shrink or, conversely, a small object

moving away from the observer will appear to

inflate. These perceptual illusions will of course

disappear as soon as the object returns to the

observer’s line-of-sight.

2) If an object happens to get outside of the robotic

observer’s field-of-view, either due to a gaze shift

or to object motion, the effect of the BVM repre-

senting a persistent memory might result in “ghost

occupancies” and consequent cluttering of the spa-

tial map. This did not visibly happen during the

experiments described in section IV-B; however,

it is a definite concern, and will be addressed in

future work (see section VI).

3) If this system is to be used by an autonomous

mobile robot to perform allocentric mapping, then

some care must be taken when dealing with

the non-trivial integration of reconstructions taken

from different points of view. This is, however,

beyond the scope of our current research.

We are currently developing a complex artificial active

perception system that follows human-like bottom-up

driven behaviours using vision, audition and vestibular

sensing, building upon the work presented in this text.

More specifically, we have devised a hierarchical modu-

lar probabilistic framework that allows the combination

of active perception behaviours, adding to the active

exploration behaviour described in this text automatic

orientation based on sensory saliency. This research work

has demonstrated in practice the usefulness rendered

by the extensibility, adaptivity and scalability of the

proposed framework – for more details, please refer to

[13].

Further details on the development and application

of these models can be found at http://paloma.isr.uc.pt/

~jfilipe/BayesianMultimodalPerception.

VI. FUTURE WORK

Long-term improvements to the BVM-IMPEP frame-

work would include sensor models specifically for local

motion, in contrast to the occupancy-only-based sensor

models presented in this paper. These models could

be built upon concepts such as optical flow processing

for vision (which could be enhanced by visuoinertial

integration), the Doppler effect for audition, etc. – and

perceptual grouping solutions, through clustering pro-

cesses similar to what was presented by Tay et al.

[29], but in our case using prior distributions based

on multimodal perceptual integration processes, some

of which are currently being studied in psychophysical

studies performed by our research group, to be concluded

soon.

Another important addition would be the introduction

of a decay factor to the BVM – in other words a “forget-

http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception
http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception


14

fulness” factor – thus avoiding the cluttering limitation

of the framework, pointed out in section V.
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