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Genomic sequencing is no longer a novelty, but gene function
annotation remains a key challenge in modern biology. A variety
of functional genomics experimental techniques are available,
from classic methods such as affinity precipitation to advanced
high-throughput techniques such as gene expression microarrays.
In the future, more disparate methods will be developed, further
increasing the need for integrated computational analysis of data
generated by these studies. We address this problem with MAGIC

(Multisource Association of Genes by Integration of Clusters), a
general framework that uses formal Bayesian reasoning to inte-
grate heterogeneous types of high-throughput biological data
(such as large-scale two-hybrid screens and multiple microarray
analyses) for accurate gene function prediction. The system for-
mally incorporates expert knowledge about relative accuracies of
data sources to combine them within a normative framework.
MAGIC provides a belief level with its output that allows the user to
vary the stringency of predictions. We applied MAGIC to Saccharo-
myces cerevisiae genetic and physical interactions, microarray, and
transcription factor binding sites data and assessed the biological
relevance of gene groupings using Gene Ontology annotations
produced by the Saccaromyces Genome Database. We found that
by creating functional groupings based on heterogeneous data
types, MAGIC improved accuracy of the groupings compared with
microarray analysis alone. We describe several of the biological
gene groupings identified.

In recent years, increasing quantities of high-throughput bio-
logical data have become available. Many of these, such as

protein–protein interaction studies [affinity precipitation (1),
two-hybrid techniques (2), synthetic rescue (3) and lethality (3,
4) experiments, and microarray analysis (5)], assess functional
relationships between gene products on a large scale. Because
the functions of significant numbers of proteins remain un-
known, even in model organisms, these high-throughput data
may be key to assigning accurate functional annotation on a large
scale. Such predictions can advance experimental studies by
providing specific hypotheses for targeted experimental testing.

However, many high-throughput methods sacrifice specificity
for scale. Microarray analysis can provide gene function predic-
tions by assessing coexpression relationships in a high-
throughput fashion. Whereas gene coexpression data are an
excellent tool for hypothesis generation, microarray data alone
often lack the degree of specificity needed for accurate gene
function prediction. For such purposes, an increase in accuracy
is needed, even if it comes at the cost of some sensitivity. This
improvement in specificity can be achieved through incorpora-
tion of heterogeneous functional data in an integrated analysis.

The value of combining groupings of genes obtained from
different methods has been illustrated by several studies where
functional predictions were made based on several types of data
(6–9). For example, Marcotte et al. predicted a number of
potential protein functions for Saccharomyces cerevisiae based on
a heuristic combination of different types of data (6, 7). How-
ever, these studies combine the information from different

sources in a semimanual and heuristic fashion, where confidence
levels for protein–protein links are defined subjectively on a
case-by-case basis and no general scheme or probabilistic rep-
resentation is applied. Other groups have developed methods to
combine gene expression data with one or two specific nonmi-
croarray data sources (10–15), and such combinations lead to
improved functional annotation (16, 17). There is a need for a
general method of integrating disparate high-throughput bio-
logical data for gene function prediction.

Here we introduce MAGIC (Multisource Association of Genes
by Integration of Clusters), a flexible probabilistic framework for
integrated analysis of high-throughput biological data. The
current version of the system is implemented for S. cerevisiae, for
which multiple useful data sources exist. The system is based on
a Bayesian network (18) that combines evidence from diverse
data sources (including microarray analysis methods) to predict
whether two proteins are functionally related (involved in a
common biological process). The network essentially performs
a probabilistic ‘‘weighting’’ of data sources, thus avoiding double
counting evidence and allowing for formal representation of
expert knowledge about the methods. Each predicted functional
relationship is assigned a posterior belief, allowing the user to
vary the level of stringency of the predictions.

In this study, we describe MAGIC and illustrate its utility on
physical and genetic interactions data, information about exper-
imentally determined transcription factor binding sites, and a
published S. cerevisiae stress-response expression dataset. We
show that MAGIC can systematically incorporate nonexpression
biological data in microarray analysis, a task that cannot be
accomplished by simply adding this complex pairwise data to
microarray clustering methods. We demonstrate an increase in
accuracy of predicted functional relationships by MAGIC, as
compared with its input methods. We describe top gene group-
ings created by MAGIC and functional predictions based on them.

Methods
System Design. The MAGIC system has a distributed design that
promotes flexibility for adding new input methods and datasets.
MAGIC provides a general framework that can incorporate a
number of data types and microarray analysis methods. The
network includes yeast protein–protein interactions from Gen-
eral Repository of Interaction Datasets (GRID) (19) and pairs
of genes that have experimentally determined binding sites for
the same transcription factor, derived from The Promoter
Database of Saccharomyces cerevisiae (20). In addition, MAGIC
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incorporates gene expression data analyses by the three most
widely used microarray analysis methods: K-means clustering,
self-organizing maps, and hierarchical clustering.

The inputs of the system are groupings (or clusters) of genes
based on coexpression or other experimental data (e.g., tran-
scription factor binding sites). MAGIC’s main component, its
Bayesian network, combines evidence from input groupings and
generates a posterior belief for whether each gene i–gene j pair
has a functional relationship. For each pair of genes, MAGIC
essentially asks the following question: What is the probability,
based on the evidence presented, that products of genes i and j
have a functional relationship (i.e., are involved in the same
biological process)? We define biological process broadly as a
systematic combination of molecular functions for the purpose
of a specific biological goal, e.g., metabolism. This definition is
based on the definition of biological process given by the Gene
Ontology (GO) Consortium (21).

The Bayesian network receives as input gene–gene relation-
ship matrices, each representing one data source, where element
si,j � 0 if genes i and j are believed to have a functional
relationship and si,j � 0 if they do not. As each different method
(or a different set of parameters of the same method) creates
each matrix, the definition of criteria for functional relationship
for each input matrix relies on the method used to create the
particular matrix (e.g., genes that are in the same cluster for
clustering algorithms). The score si,j corresponds to the strength
of each method’s belief in the existence of relationship between
genes i and j. This score can be a binary (e.g., results of
coimmunoprecipitation experiments), continuous, or discrete
variable (e.g., �1 � s � 1 for Pearson correlation; see supporting
information, which is published on the PNAS web site, www.
pnas.org, and at genome-www.stanford.edu�magic).

The flexible input format allows genes to be members of more
than one group or cluster and thus does not exclude biclustering
or fuzzy clustering methods. The output format is the same as the
input format. The flexibility of input and output formats ensures
that MAGIC can incorporate any type of gene–gene grouping,

including protein–protein interaction data, outputs of clustering
methods, and sequence-based data (e.g., similar transcription
factor binding sites).

MAGIC is implemented in C�� under Linux, and a web-based
user interface is under development. The implementation uses
SMILE library and the GENIE modeling environment developed by
the Decision Systems Laboratory of the University of Pittsburgh
(www.sis.pitt.edu��dsl).

Structure of the MAGIC Bayesian Network. To design a Bayesian
network structure that adequately reflects relationships between
evidence from different data types for the purpose of ensemble
analysis and avoids double counting of evidence, we consulted
experts in microarray analysis and yeast molecular biology. The
resulting structure� (Fig. 1, and see Fig. 5, which is published as
supporting information on the PNAS web site and at genome-
www.stanford.edu�magic) combines inputs based on the type of
relationship they detect (e.g., coexpression for microarray clus-
tering methods). It makes some independence assumptions that
allow for a more accurate population of the conditional prob-
ability tables based on information elicited from yeast experts.
Given the relatively sparse nature of nonmicroarray experimen-
tal data, these independence assumptions are unlikely to affect
the results. In addition, the different underlying principles of the
methods represented in the network make their combination
robust for functional inference (7, 11, 16).

The prior probabilities were formally assessed from seven
experts in the field of yeast molecular biology.** The experts
were questioned independently and displayed substantial agree-
ment in their prior beliefs. The method of constructing Bayesian
networks based on probabilities provided by experts in the field

�Naming of protein–protein interaction detection methods included in MAGIC follows GRID.
More details are provided in the supporting information.

**The assessment was performed by using formal questionnaires of experts (most of the
Saccharomyces Genome Database curators).

Fig. 1. General architecture of the MAGIC Bayesian Network. A separate network is instantiated for each pair of genes by initializing bottom-level nodes with
evidence. Conditional probability tables for each connection were assessed formally from yeast genetics experts. The network contains discrete nodes and uses
the clustering algorithm for belief updating, as initially proposed in ref. 31. The combination of outputs of expression clustering methods is performed through
a single ‘‘Coexpression’’ node, which allows all of the expression analysis method’s outputs for one dataset to be combined based on each method’s
characteristics, such as robustness to noise level in data or optimality for a specific data type (e.g., temporal data). The input nodes for expression-based clustering
methods (K-means Clustering, Self Organizing Maps, and Hierarchical Clustering) incorporate pairwise data binned into three categories: high, medium, and
low confidence, based on Pearson correlation to the cluster centroid (see supporting information). Nonexpression-based data are incorporated through binary
input nodes for colocalization data, experimentally identified transcription factor binding sites, and various experimental evidence for physical or genetic
associations of two proteins. The genetic and physical relationship data are divided into experimental evidence types according to the GRID database
(http:��biodata.mshri.on.ca�grid�servlet�HelpHtmlPages?pageID�3; see supporting information for details).
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has been successfully used, for example, in the PATHFINDER
Network for pathology diagnosis (the network structure and
prior probabilities for PATHFINDER were based on consulta-
tions with one pathology expert; ref. 22). In the future, when a
sufficient amount of functional data are available, the network
priors and structure could be automatically learned (23).

Evaluation Method. To evaluate the quality of a gene grouping, we
need to measure the biological relevance or accuracy of gene–
gene functional pairs belonging to that gene grouping. Biological
relevance is the key criterion in evaluating pairs of genes with
predicted functional relationships, yet it is a difficult metric to
assess. If genes i and j are predicted to have a functional
relationship, but no prior biological knowledge links their func-
tionality, is that a relevant clustering, an experimental error, or
a biological discovery? Although no perfect gold standard for
gene groupings exists, the curator-controlled annotation of the
S. cerevisiae genome with GO terms (21, 24) provides a reflection
of the current biological knowledge and thus a reasonable
biological standard for the evaluation of functional pairs of S.
cerevisiae genes.

GO contains three types of terms: (i) molecular function, (ii)
biological process, and (iii) cellular component. GO has a
hierarchical structure with multiple inheritance, and each gene
(or protein) can be annotated with one or more GO terms
from disparate parts of the GO tree. For the purpose of
this evaluation, we focus on the biological process part of
GO, which is the most relevant part of the ontology for

evaluation of gene groupings based on the presence of func-
tional relationships, because genes annotated to the same GO
term from the biological process ontology are believed (in
current biological literature) to be involved in the same
biological process.

The hierarchical nature of GO and multiple inheritance in the
GO structure can lead to evaluation problems if we consider only
the particular GO term with which a gene is annotated. For
example, gene i may be annotated with term g, and gene j with
g’s immediate ancestor, g� (e.g., gene i is annotated with
‘‘GO:0007216 : metabotropic glutamate receptor signaling path-
way’’ and gene j is annotated with ‘‘GO:0007215 : glutamate
signaling pathway,’’ a parent node of GO:0007216). Although
genes i and j are functionally similar based on their GO anno-
tation, they are technically annotated with different GO terms.
To alleviate this problem, we consider any gene annotated with
GO term g to be also implicitly annotated with every ancestor of
g, up to level 3 of the GO tree (with ‘‘Gene Ontology’’ considered
level 1). On tests we found that this rule is robust to changes of
the exact level of cutoff.

Because of the cost of follow-up experimental investigation,
the key problem in creating biologically relevant gene group-
ings tends to be specificity, not sensitivity. Unfortunately,
calculating specificity and sensitivity requires knowledge of the
total number of true positives (TP) and true negative pairs of
related genes in S. cerevisiae, numbers that are currently
impossible to assess accurately. Therefore, we assess the
accuracy of each method through the proportion of TP pairs

Fig. 2. Tradeoff between the number of TP and FP pairs for each method. (A) MAGIC increases the proportion of TP pairs in a broad high-specificity region
compared with expression-based clustering methods, MAGIC based on purely microarray data (MAGIC-microarray only) or purely on nonexpression data
(MAGIC-nonexpression only). (B) Comparison in the region of highest accuracy (�1,000 TP pairs). MAGIC predicts more TP pairs than its input methods for each
number of FPs.
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in its predictions, where TP pairs are defined as pairs of genes
i and j, such that genes i and j have an overlapping (explicit or
implicit) GO term annotation:

proportionTPmethod

�

no. of pairs predicted by method that share GO
term assignment

total no. of pairs predicted by method
.

The predicted pairs for each input method are available from
gene–gene relationship matrices representing gene groupings, as
described above.

MAGIC integrates various gene groupings in a systematic
fashion, yielding posterior probabilities for functional relation-
ship between every pair of genes in the yeast genome. Because
the stringency of MAGIC’s predictions can be controlled by
varying a cutoff for the posterior beliefs sufficient to consider
two genes functionally related, we can compare MAGIC’s perfor-
mance at different levels of stringency to that of its input
methods. We can vary the stringency of the input clustering
methods by varying cutoff of score (sA, B), the average correlation
of two genes (A, B) to the centroid of the cluster (c) they are both
members of

sA,B �
1
2

� �
g�A,B

Cov�g, centroidc	

�g�centroidc

.

Such optimization is not performed when these clustering meth-
ods are used routinely for microarray analysis. By comparing the
performance of the input clustering methods and MAGIC at each
stringency level, we avoid the problem of favoring methods that
predict a smaller number of pairs in this evaluation.

Results and Discussion
To illustrate the utility of MAGIC for integrated analysis of
heterogeneous biological data, we use MAGIC to combine S.
cerevisiae protein–protein interactions (from GRID; see Meth-
ods) and transcription factor binding sites (from The Promoter
Database of Saccharomyces cerevisiae; see Methods) data with
clustering analyses (hierarchical, self-organizing maps, and
k-means) of a stress-response microarray dataset (25). We
evaluate the accuracy of predicted functional pairs for MAGIC as
compared with the input clustering methods and demonstrate
the utility of MAGIC in combining heterogeneous information.

Our evaluation reflects the biological relevance of gene group-
ings by using GO as a gold standard. This evaluation approach
is not flawless: GO may have annotation errors, and the func-
tions of many genes in the yeast genome are unknown. The
evaluation is conservative: a false positive (FP) pair of genes
could represent a true error or a novel discovery. There may be
some biases in the subsets of genes that are or are not currently
annotated by GO terms, but there is no reason to believe these
biases would affect clustering methods differently. This method

Fig. 3. Protein biosynthesis group identified by MAGIC, represented using GO Term Finder (http:��genome-www4.stanford.edu�cgi-bin�SGD�GO�
goTermFinder). The color of each GO term is associated with its P value, representing the level of significance of that GO term’s assignment to the cluster (see
http:��genome-www.stanford.edu�Saccharomyces�help�goTermFinder.html). Only known genes associated with protein biosynthesis are shown. The cluster
contains 49 genes annotated to protein biosynthesis and 10 unknown genes. It also includes nine genes not directly annotated to protein biosynthesis but
involved in potentially related processes: three genes involved in ribosome biogenesis and assembly (RRB1, SIK1, and CBF5), two transcription-related genes
(RPA49 and RPC40), two involved in budding and sporulation (BUD28 and LSG1), and PRS1, a ribose-phosphate pyrophosphokinase involved in histidine
biosynthesis.
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therefore provides a reasonable and biologically grounded com-
parative evaluation framework for gene groupings.

MAGIC incorporates gene groupings based on microarray
analysis with the often more accurate nonexpression-based data
sources, and MAGIC consistently increases the proportion of TP
pairs when compared with its input methods (Fig. 2A). In gene
function prediction, high specificity is key for creating biologi-
cally relevant gene groupings. We thus focus on the highest
specificity region, where 1,000 and fewer TP pairs are predicted
by each method (Fig. 2B). When we consider predictions with
the highest proportion of TP pairs made by each method (when
at least 100 TP pairs are predicted), MAGIC, which uses the
nonoptimized inputs, performs better than the optimized clus-
tering methods, with a 17% increase in proportion of TP pairs
over the best of the input methods and the largest number of TP
pairs predicted (see Fig. 6, which is published as supporting
information on the PNAS web site and at genome-www.stanford.
edu�magic). This difference in performance declines at very
large numbers of predicted pairs (40,000 and higher), where
proportion of TP rates for all methods is around or below 50%
and thus at levels not suitable for accurate gene function
prediction. Thus, MAGIC creates more biologically relevant gene
groupings, with the highest improvement seen in the high-
specificity region.

MAGIC relies on microarray data (which is very sensitive but
often not specific enough) and nonexpression data (which is
often more specific but significantly more sparse). It is thus
interesting to consider MAGIC’s performance based only on
microarray data or only on nonexpression data. MAGIC partly
draws its accuracy from incorporating nonexpression experi-
mental data in the analysis. It is thus not surprising that
MAGIC’s performance without the microarray data is similar to
that of the complete system for the range with �6,200 TP pairs
predicted (Fig. 2 A). As the number of predictions increases
further, MAGIC application based on purely nonexpression data
does not perform as well as the full version, probably because
it gets close to the limit of information available from nonex-
pression data sources. On the other hand, when only microar-
ray data are considered, MAGIC improves performance over
that of clustering methods for the region with small number of
pairs but displays clearly lower TP rates than the full version
of MAGIC. For larger numbers of pairs (more than 
4,000), the
microarray-only method performs approximately on the same
level as the clustering methods. Thus, MAGIC builds on both
types of inputs. It creates highly accurate gene groupings based
largely on reliable sources of nonmicroarray experimental data
(e.g., affinity precipitation). These grouping are enriched
based on microarray data and other high-sensitivity methods
(e.g., two-hybrid data), often with genes whose function is
unknown and for which functional predictions can thus be
made.

We construct groupings of genes (clusters) based on MAGIC’s
pairwise output by considering all genes with functional
relationship to the same gene a group (see Conversions
Between Pairs and Gene Groupings in Supporting Text, which is
published as supporting information on the PNAS web site).
MAGIC identifies clusters that represent the general environ-
mental stress response described by Gasch et al. (ref. 25;
repressed ribosomal genes, genes involved in RNA metabolism
and protein biosynthesis, and induced genes involved in car-
bohydrate metabolism, protein degradation, vacuolar func-
tions, etc.). These clusters are more specific for a particular
biological process than manually chosen clusters based on
hierarchical clustering. For example, MAGIC detects a cluster of
Rgt1, Snf3, and five hexose transporters induced in response
to glucose (compared with a heterogeneous carbohydrate
metabolism cluster based on hierarchical clustering, as de-
scribed in ref. 25). The transporters are induced in response to

glucose by regulator Rgt1, which in turn receives signals from
Snf3, a glucose sensor in the membrane (see Table 1, which
is published as supporting information on the PNAS web site
and at genome-www.stanford.edu�magic). MAGIC also identi-
fies larger gene groupings for coherent processes involving a
large number of genes, such as protein biosynthesis (Fig. 3). In
the protein biosynthesis cluster, 49 of 58 known genes are
annotated to protein biosynthesis. The cluster also includes
10 genes with unknown annotations that our analysis predicts
may be involved in protein biosynthesis.

Genes involved in protein degradation are induced during the
response to environmental stress. MAGIC identifies a cluster of
genes involved in ubiquitin-dependent protein catabolism, pro-
vides potential functional annotation for an ORF present in that
cluster (YGL004C), and confirms the recently added annotation
for YNL311C (Fig. 4). This group also includes Rad23, although
its current GO annotation is to ‘‘nucleotide-excision repair,
DNA damage recognition.’’ On examination of the literature for
Rad23, we find that its involvement in DNA repair is likely due
to its inhibition of the degradation of repair proteins in response
to DNA damage (26). It has been shown that Rad23 physically
interacts with the 26S proteasome and may also be involved in
other protein degradation pathways (26). The grouping gener-

Fig. 4. Ubiquitin-dependent protein catabolism cluster represented using
GO Term Finder (http:��genome-www4.stanford.edu�cgi-bin�SGD�GO�
goTermFinder). The cluster contains 12 genes. In the version of SGD annota-
tions used for evaluation in this study, nine of the proteins are annotated to
ubiquitin-dependent protein catabolism, one (RAD23) is annotated to ‘‘nu-
cleotide excision repair,’’ and YNL311C and YGL004C do not have a known
biological process assignment. MAGIC predicted that YNL311C and YGL004C are
likely involved in ubiquitin-dependent protein catabolism. In the most recent
release of the annotation (February 2003), YNL311C has been annotated to
this process. The other unknown ORF, YGL004C, is annotated as biological
process unknown (not shown), but has been assigned the Saccharomyces
Genome Database reserved name RPN14. This example illustrates the utility of
MAGIC as a tool to aid gene function annotation.
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ated by MAGIC identifies the outdated and potentially misleading
annotation of Rad23.

Thus, in addition to predicting the function of unknown genes
that are found in groups with well characterized genes, MAGIC
also provides a means of quality control for the existing func-
tional annotations of partially characterized genes. Another such
example is a group that consists of three genes: BUD31, CEF1,
and PRP8. Both CEF1 and PRP8 are well characterized splicing
factors (27, 28). BUD31 is currently annotated to bud site
selection based on a genome-wide screen for mutants defective
in the bipolar budding pattern (29). However, Ni and Snyder
found that several nuclear proteins, including genes involved in
RNA processing, also exhibit defects in bud site selection, most
likely as an indirect effect of the processing of RNA for genes
directly involved in budding (29). In addition, BUD31 has a
putative nuclear localization signal (ref. 30; http:��us.expasy.
org�cgi-bin�sprot-ft-details.pl?P25337@DOMAIN@2@11).
Thus, BUD31 might be involved in RNA processing rather than
directly playing a role in bud site selection. By searching for genes
with annotations that do not fit with the other annotations of
genes in a group, one can target particular genes that may be
associated with spurious or incomplete functional information.

Conclusions and Future Work. We have shown that MAGIC is an
accurate and efficient gene function annotation tool. The system
integrates heterogeneous biological information in a rigorous
probabilistic fashion, leading to more biologically accurate
gene groupings, which can be used for gene function predic-
tion. MAGIC circumvents the problem of identifying an ‘‘ideal’’
clustering algorithm for microarray data by incorporating
outputs of several methods and incorporates the knowledge of
yeast biology experts in the prior probabilities of the Bayesian
framework. The f lexibility of the system allows for easy
inclusion of new methods and data sources, as well as data
from different organisms.

We thank all of the Saccharomyces Genome Database curators for their
input into the Bayesian network, and the GRID database staff for
providing their data. We appreciate valuable input from Gavin Sherlock,
Dianna Fisk, Mike Liang, and Peter Kasson. This research was supported
by National Institutes of Health Grants CA77097 (to D.B.), HG01315 (to
J. M. Cherry), GM61374, and LM06244; a Howard Hughes Medical
Institute Predoctoral Fellowship (to O.G.T.); National Science Foun-
dation Grant DBI-9600637; SUN Microsystems; and a grant from the
Burroughs Wellcome Foundation (to R.B.A.).

1. Larsson, P. O. & Mosbach, K. (1979) FEBS Lett. 98, 333–338.
2. Fields, S. & Song, O. (1989) Nature 340, 245–246.
3. Novick, P., Osmond, B. C. & Botstein, D. (1989) Genetics 121, 659–674.
4. Bender, A. & Pringle, J. R. (1991) Mol. Cell. Biol. 11, 1295–1305.
5. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. (1995) Science 270,

467–470.
6. Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O. &

Eisenberg, D. (1999) Science 285, 751–753.
7. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. & Eisenberg,

D. (1999) Nature 402, 83–86.
8. Schwikowski, B., Uetz, P. & Fields, S. (2000) Nat. Biotechnol. 18, 1257–1261.
9. Bader, G. D. & Hogue, C. W. (2002) Nat. Biotechnol. 20, 991–997.

10. Pavlidis, P., Weston, J., Cai, J. & Grundy, W. N. (2001) Proc. Int. Conf. Intell.
Syst. Mol. Biol. 5, 242–248.

11. Pavlidis, P., Weston, J., Cai, J. & Noble, W. S. (2002) J. Comput. Biol. 9,
401–411.

12. Raychaudhuri, S., Schutze, H. & Altman, R. B. (2002) Genome Res. 12,
1582–1590.

13. Friedman, N., Linial, M., Nachman, I. & Pe’er, D. (2000) J. Comput. Biol. 7,
601–620.

14. Segal, E., Taskar, B., Gasch, A., Friedman, N. & Koller, D. (2001) Bioinfor-
matics 17, S243–S252.

15. Imoto, S., Goto, T. & Miyano, S. (2002) Pac. Symp. Biocomput., 175–186.
16. Marcotte, E. & Date, S. (2001) Brief. Bioinform. 2, 363–374.
17. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S. &

Bork, P. (2002) Nature 417, 399–403.

18. Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference (Morgan Kaufmann, San Mateo, CA).

19. Breitkreutz, B. J., Stark, C. & Tyers, M. (2003) Genome Biol. 4, R23.
20. Zhu, J. & Zhang, M. Q. (1999) Bioinformatics 15, 607–611.
21. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M.,

Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000) Nat. Genet.
25, 25–29.

22. Heckerman, D. (1991) Probabilistic Similarity Networks (MIT Press, Cam-
bridge, MA).

23. Heckerman, D. (1999) in Learning in Graphical Models, ed. Jordan, M. I. (MIT
Press, Cambridge, MA), pp. 301–354.

24. Dwight, S. S., Harris, M. A., Dolinski, K., Ball, C. A., Binkley, G., Christie,
K. R., Fisk, D. G., Issel-Tarver, L., Schroeder, M., Sherlock, G., et al. (2002)
Nucleic Acids Res. 30, 69–72.

25. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B.,
Storz, G., Botstein, D. & Brown, P. O. (2000) Mol. Biol. Cell 11, 4241–4257.

26. van Laar, T., van der Eb, A. J. & Terleth, C. (2002) Mutat. Res. 499, 53–61.
27. Will, C. L. & Luhrmann, R. (1997) Curr. Opin. Cell Biol. 9, 320–328.
28. Tsai, W. Y., Chow, Y. T., Chen, H. R., Huang, K. T., Hong, R. I., Jan, S. P.,

Kuo, N. Y., Tsao, T. Y., Chen, C. H. & Cheng, S. C. (1999) J. Biol. Chem. 274,
9455–9462.

29. Ni, L. & Snyder, M. (2001) Mol. Biol. Cell 12, 2147–2170.
30. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A.,

Gasteiger, E., Martin, M. J., Michoud, K., O’Donovan, C., Phan, I., et al. (2003)
Nucleic Acids Res. 31, 365–370.

31. Lauritzen, S. L. & Spiegelhalter, D. J. (1988) J. R. Stat. Soc. B 50, 157–224.

Troyanskaya et al. PNAS � July 8, 2003 � vol. 100 � no. 14 � 8353

G
EN

ET
IC

S


