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ABSTRACT
With the recent advancements in radar systems, radar sensors offer a promising and effective perception of

the surrounding. This includes target detection, classification and tracking. Compared to the state-of-the-

art, where the state vector of classical tracker considers only localization parameters, this paper proposes an

integrated Bayesian framework by augmenting state vector with feature embedding as appearance parameter

together with localization parameter. In context of automotive vulnerable road users (VRUs) such as

pedestrian and cyclist, the classical tracker poses multiple challenges to preserve the identity of the tracked

target during partial or complete occlusion, due to low inter-class (pedestrian-cyclist) variations and strong

similarity between intra-class (pedestrian-pedestrian). Subsequently, feature embedding corresponding to

target’s micro-Doppler signature are learned using novel Bayesian based deep metric learning approaches.

The tracker’s performance is optimized due to a better separability of the targets. At the same time, the

classifiers’ performance is enhanced due to Bayesian formulation utilizing the temporal smoothing of the

classifier’s embedding vector. In this work, we demonstrate the performance of the proposed Bayesian

framework using several vulnerable user targets based on a 77GHz automotive radar.

INDEX TERMS Automotive Radar, Bayesian Framework, Deep Metric learning, Integrated Classification-

Tracking, Unscented Kalman Filter

I. INTRODUCTION

Both reliability and safety of autonomous vehicles require

a precise perception of the operating environment, which in

turn necessitates high-quality and accurate measurements of

sensors [1]–[4]. Thus, reliable sensing capabilities are the key

towards a successful implementation of automated or self-

driving vehicles. Compared to other sensing technologies

e.g., camera or Lidar, radar sensors combine a lot of advan-

tages: they are relatively robust to bad weather conditions,

work in dark environments and can sense distance and veloc-

ity of the targets simultaneously [5]. Typically, automotive

radar can detect targets up to ranges of more than 200m

and provide a high range-resolution of multiple targets in its

field of view. As a result, radar sensors are widely accepted

and are becoming one of the major enablers for advanced

driver assistance systems (ADASs) and fully automated driv-

ing [6], [7]. The typical applications for ADAS includes

adaptive cruise control, forward collision avoidance (FCA),

lane change assistance, parking aid, and safety of vulnerable

road users (VRUs) [5], [8].

Automotive radar mmWave sensing has shifted from

24GHz to 77GHz due to the larger available bandwidth

(76–77GHz for long-range and 77–81GHz for short-range

applications), higher Doppler sensitivity and smaller anten-
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nas leading to small form-factors [9]. Traditional automo-

tive radars transmit a sequence of up-chirps with low chirp

times. The typical signal processing involves a chirp pulse

compression along the fast-time (intra-chirp time), followed

by Doppler processing along the slow-time (inter-chirp time)

and digital beamforming across the receive channels, gener-

ating a 3D data tensor. Following the 3D radar data tensor, au-

tomotive radar processing includes target parameter (range,

Doppler and angle) estimation, followed by target tracking.

However, conventional automotive radar systems face a lot of

challenges, especially in complex urban environments, where

the sensor needs to detect, classify and track multiple targets,

e.g. VRUs like pedestrians and cyclists. While [10]–[14]

propose different methods to address these challenges sep-

arately, an overview of the traditional radar signal processing

is provided in [15]. Additionally, [16] provides overview on

target detection and tracking and [5] examined target classifi-

cation. With the recent advancement in radar systems and the

processing of high-resolution data using different concepts

of neural networks, target classification is typically done via

extracting target specific parameters such as micro-Doppler

spectrograms. Later, these spectra are fed into a classifier

such as a deep convolutional neural network (DCNN) or long

short-term memory (LSTM) networks for the classification

of the target [9], [17]. In order to classify different targets

(VRUs in our case), they need to be detected and separated

first in one of the three measurement dimensions, namely

range, velocity and angle [18]. In urban environments, dif-

ferent VRUs can be closely located and have quite similar

velocity magnitudes as well, resulting in a low separability

among them. E.g. where the relative velocity of vehicles on

a highway can vary from 20m/s to 80m/s, the velocities

of VRUs typically are within the range of 0m/s to 10m/s.
Furthermore, the strength of the received signal depends on

the targets surface area, visible to the radar sensor, the so-

called radar cross-section (RCS). The RCS of VRU targets

are up to 20 dB lower than a RCS of vehicles [9]. Thus, urban

scenarios require an highly sophisticated signal processing

for a reliable detection and classification of VRUs.

To increase the robustness of VRU classification and to

reduce detection false-alarms, the concept of target tracking

can be used. This helps to estimate the desired unknown

state variables from the observed noisy measurements. The

problem of target tracking, has been extensively studied in

the literature [19]–[26]. These trackers are based on various

motion models, like e.g. the constant velocity (CV) model,

constant acceleration model, current statistic model, interact-

ing multiple model and varied structure multiple model. The

most common tracking algorithms integrating such models

are the extended Kalman filter, the unscented Kalman filter

(UKF), multiple hypothesis testing and particle filters. In

this paper, UKF is used as a tracker to realize the over-

all process and measurement model through the unscented

transformation that tries to approximate the distribution of

a random variable which is transformed non-linearly. The

state-of-the-art UKF algorithms in an automotive use-cases

majorly focus on single modalities by using the target’s

localization information as a state vector [27], [28]. However,

tracking of automotive VRUs exhibits challenges in the form

of very distinct and different dynamic models, resulting in

multiple switches in the associated track-ID. Additionally,

an inaccurate measurement of the track association leads to

divergence in the innovation squared metric [9]. In an attempt

to solve the association problem, we propose an integrated

Bayesian framework combining target’s feature embeddings

as appearance model and localization as motion model to

simultaneously classify and track VRUs. As a result, the

choice of feature extraction model and input data representa-

tion plays a critical role. While the reflected signal obtained

from the radar sensor is processed for the estimation of

the detected target’s localization parameters, namely range,

angle and velocity, the features corresponding to the detected

target are estimated from the latent (embedding) space of a

deep neural network architecture.

Conventional deep learning based approaches, trained with

a cross entropy loss, requires massive amounts of data to

be trained [29]. Additionally, in the context of radar sensors

and micro-Doppler signatures, learned models often do not

generalize well on different sensors, target orientations or

inter/intra-class variations. However, for systems to work in

an open set of environments, a higher distinction among the

classes are required. To address these issues, deep metric

learning and meta-learning have gained prominence in the

literature. Deep metric learning models are optimized on

certain distance metrics that aim to learn both similarity and

dissimilarity among targets/classes, such that similar targets

are grouped together, whereas dissimilar targets are far sep-

arated in the embedding space [30]–[36]. While techniques,

such as principal component analysis or linear discriminant

analysis, also project the input data into the representational

space, deep metric learning utilizes a neural network to learn

a rather optimized representational space using various loss

functions and training approaches [37]–[43]. In [44], the

authors have proposed a Siamese network for material clas-

sification of known and unknown materials using a 60GHz
radar sensor. In [45], the authors proposed a triplet loss

for radar-based gesture sensing using 3D CNN for demon-

strating the generalization capabilities of this approach. Fur-

ther in [46], authors proposed a novel Euclidean softmax

approach for learning both discriminative and separability

in the feature space for human activity classification using

FMCW radar sensors. Additionally, recent work [47]–[49] in

computer vision domain successfully demonstrate person re-

identification by leveraging the concept of metric learning.

[49] propose a concept of adaptive weighted convolution

which learns part-based representational learning. Whereas,

to the best author’s knowledge, proposed framework bring

novelty of combination Bayesian features embedding inside

tracker. While the latent embedding is directly being tracked

by the tracker and leads to improvement in target classifi-

cation, the learned variance over latent embedding help in

target gating (association). As a result, framework enables
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an integrated full Bayesian framework. This article gives

a detailed analysis on advantage of proposed framework.

Additionally, similar to [49], triplet loss function is modified

to have adaptive weighting over latent embedding in contrast

to euclidean distance. Furthermore, instead of triplet pairs,

quadruplet pairs are mined to include both inter-class and

intra-class pairs for an anchor class.

In this paper, we generate a realistic automotive radar

dataset with different target maneuvering of vulnerable road

users using MATLAB®’s phased-array toolbox, which we

describe in Section II. In Section III, we present the tradi-

tional automotive radar signal processing involving range,

Doppler, angle processing, target detection, target cluster-

ing, extraction of micro-Doppler spectra and target tracking.

Section IV introduces the target appearance model and our

dataset. In Section V, we present the various deep metric

learning approaches including loss functions, to learn the

feature embedding for the target classification problem. We

also explain our extension of adding the decoder and varia-

tional auto-encoder that improves the feature representation

to conventional triplet loss and quadruplet loss training. In

Section VI, we introduce our integrated framework which

combines the proposed metric learning embedding model to

the conventional tracker to augment its state vector to track

the target embedding vector along with the target location

parameters to achieve a Bayesian framework. We demon-

strate the superior representational learning performance of

the proposed solution by comparing it with the conventional

metric-learning counterparts in Section VII, and discuss the

classification accuracy using k-nearest-neighbor. We further

analyze the superior tracking performance of the proposed

solution compared to conventional tracker, in terms of local-

ization error and normalized innovation square metric, under

exemplary scenarios in Sec. VII.

II. SYSTEM SIMULATION

A large amount of data is needed to train and evaluate the

proposed framework. In real scenarios, these can only be

generated at great expense, whereby cross-influences from

the environment are also always recorded and thus detailed

investigations can become difficult due to reproducibility.

Therefore, a simulative approach is primarily used, which is

described in detail in the following. This following section

introduces the simulation setups which will be the underlying

basis of the further signal processing. Therefore, radar signals

of different types of road users are simulated in consid-

eration of micro-Doppler signatures. As there are several

approaches of radio frequency (RF) systems and environment

simulations available, a short overview, focusing on the main

advantages and disadvantages of each approach is provided.

This leads to describing our own environment simulation

framework, regarding the used radar system model, channel

model, target models, and trajectory models.

A. STATE-OF-THE-ART RF PROPAGATION SIMULATORS

The most advanced and accurate RF wave propagation simu-

lation is a full electromagnetic (EM) simulation, e.g. as pro-

vided by COMSOL1 or FEKO2. Commonly used for static

scenarios like e.g. antenna pattern or radar-cross-section sim-

ulations, the system and target characteristics can be simu-

lated accurately. However, as it is computational expensive,

it is not well suited for large and dynamic scenarios. A hybrid

approach, based on a combination of a finite difference

time domain solver for RF wave propagation, and computer

animations for the human motion simulation, has been used

in [50] to obtain micro-Doppler signatures.

Some more efficient simulators, e.g. WinProp3 or Wave-

Farer4 use ray tracing in order to obtain highly accurate

approximations of propagation effects, like diffraction, re-

flection, scattering or multipath effects in general. They are

usually based on a deterministic ray optical model, com-

bining the Fresnel equations with the geometrical theory of

diffraction (GTD) and uniform theory of diffraction (UTD)

and are commonly used for propagation channel evaluations

[51]–[54]. Within the simulators, scenarios and the used

materials are configurable, radar-cross-sections (RCS) and

antenna patterns can be imported from full EM simulations,

to lower computational costs. Thus, time variant and there-

fore dynamic scenarios with macro movements can be sim-

ulated. Advantages are the high accuracy and flexibility, e.g.

the evaluation grid size can be chosen arbitrarily. The main

drawbacks, however, are the time-consuming generation of

scenarios and the limited support for micro-movements,

which are necessary to generate micro-Doppler signatures.

Stochastic simulators, like NYUSIM [55] or MilliCar [56],

can overcome the problem of high computational costs, as

they are based on statistical channel models. These models

are derived from real measurements of certain scenarios. The

accuracy of the results, therefore, strongly depends on the

similarity of the simulated scenario and the environment of

the original measurements. Results of the stochastic simu-

lations are mainly used in the communication sector today,

e.g. in designing the physical layer of new communication

standards [57]. As the aim of the proposed work is to address

micro-Doppler radar applications, these kinds of models will

not be further evaluated here.

Low cost statistical simulations of radar target detections

are provided via the Automated Driving Toolbox™5 from

MathWorks®. The considered scenario is simplified to a cu-

bic world, where road users are approximated as cuboids, and

the detections are randomly generated. It provides a simple

user interface for a fast generation of scenarios, including

configuration of targets’ trajectories or the movement of the

ego vehicle. The stochastic generation of target detections

is very fast, as the RCS patterns can be set for each road

1https://www.comsol.com/comsol-multiphysics
2https://www.altair.com/feko/
3https://www.altair.com/resource/altair-winprop-datasheet
4https://www.remcom.com/wavefarer-automotive-radar-software
5https://de.mathworks.com/help/driving/ref/radardetectiongenerator.html
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user individually. A drawback is that the simulator just out-

puts a target list with the measurable parameters like range,

velocity or angle. Additionally, only macro-movements are

considered in the simulator setup. These properties make it a

common choice for use cases like occupancy grid generation

in automotive radar [58].

In summary, a different approach is necessary to fulfill

the needs of an automotive radar micro-Doppler simula-

tion framework. Compared to the deterministic and stochas-

tic simulators, with the problem of being commercial, not

adaptable, or not addressing micro-Doppler scenes at all,

a MATLAB® based solution seems to be the best fitting

approach. Thus, we chose to further optimize the MATLAB®

approach and extend it with a micro-Doppler simulation.

B. RADAR SYSTEM SIMULATION

Automotive radar sensors typically take advantage of fre-

quency modulated continuous wave (FMCW) signal wave-

forms, as they can be used to estimate both range and

velocity of targets. In Fig. 1, a simplified block diagram of a

typical FMCW radar system is shown. A waveform generator

provides a frequency ramp, also called chirp, of duration Tc

with a bandwidth B at a center frequency fc. The signal is

transmitted, gets reflected by a target at a distance of r, and

then is collected by the receive antenna with a total delay of

τ = 2r/c0. The received signal is amplified, down-mixed

BPFMixer
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A

Chirps

S
am

p
le

s

sIF(t)

sIF[k]

LNA

Target

D

FIGURE 1. Simplified FMCW radar system block diagram.

with the original transmit signal, as well as band-pass filtered

to obtain an intermediate frequency (IF) signal. This signal is

sampled with a sampling frequency fs to obtain Ns samples.

All target parameters of interest (i.e. range, velocity and

angle) can be estimated from the sampled IF signal. In the

baseband, the delay τ is converted to a frequency shift frange

of the chirp signal. However, moving targets additionally

cause a Doppler shift on the reflected signal. Utilizing a

so called fast-chirp configuration, i.e. sending Nc frequency

ramps in a sequence, the Doppler induced frequency shift

fD can be extracted. Finally, by using antenna arrays in

a multiple-input multiple-output (MIMO) configuration, the

angle of arrival can be obtained from the phase differences

at different receive antenna positions [59]. Altogether, the

frequency and phase components to be estimated, can be

described as

frange =
2Br

c0Tc
; fD =

2vr

λ
; ν(m,φ) =

2kmd sin(φ)

λ
,

(1)

where the constant c0 corresponds to the velocity of light in

vacuum, vr is the relative velocity of a target, λ the signal

wavelength, k the wavenumber, and d the antenna spacing

of the virtual MIMO array. The fast-time frequency frange

gives the measured frequency shift induced by the signal

delay, whereas the slow-time frequency fD describes the

frequency shift induced by the relative velocity vr between

the target and the radar. Finally, the spatial "frequency"

ν(m,φ) corresponds to the phase shift of the reflected signal

at an azimuth angle φ observed at the antenna element

m ∈ [0, . . . , NRx − 1].
The sum of all Kt incoming signal reflections is computed

for each antenna element, down-mixed with the transmit

signal and filtered. The sampled receive signal thus consists

of a superposition of Kt sinusoids with three frequency

components

sIF (l,m, n) =

Kt
∑

i=1

aie
j2π(νi(m,φi)+fD,ilTc+frange,inTs)

+ w (l,m, n) ,

(2)

with l = [0, . . . , Nc − 1], m = [0, . . . , NRx − 1], n =
[0, . . . , Ns − 1], the complex receive amplitudes ai, and

additive white circular complex Gaussian noise w (l,m, n)
[60]. The three components νi, fD,i, and frange,i correspond

to spatial "frequency", relative velocity frequency and range

frequency for each target, respectively. Thus, equation (2)

describes the IF signal simulated for each sample point, chirp

and antenna. The receive amplitude can be calculated for

each target using the radar equation

a2i =
PTxGTxGRxσiλ

2

(4π)3r4i
, (3)

with a total transmit power PTx, a transmit antenna gain GTx,

a receive antenna gain GRx, and the target’s RCS σi and range

ri [61].

In an attempt to model a realistic system setup while keep-

ing the computations simple, a complete radar transceiver,

similar to the one described in Fig 1, is simulated using the

Phased Array System Toolbox™. We use a fast-chirp FMCW

configuration at 77.5GHz with a bandwidth B of 1GHz,

which corresponds to a maximum unambiguous range of

50m, typical for mid-range radar. The radar system generates

Nc = 64 consecutive linear frequency chirps, transmitted

with a peak power of PTX = 13dBm via one isotropic

transmit antenna. During the scattering of the signals at Kt

targets, the respective target RCS for different road users is

used. Additionally, reflections from targets visible in line of

sight are considered in the simulation. This helps to have

partial or complete occlusion scenario. On the receiver side, a

uniform linear array (ULA) of NRx = 8 identical receive an-

tennas with inter-element spacing d of exactly λ/2 is utilized.

Receive antennas are modeled with a gain of GRx = 16dB,

while phase noise is introduced within the receiver with a

noise figure of NF = 4.5 dB. All relevant system parameters,

used for simulations are summarized in Table 1.
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TABLE 1. FMCW radar simulation parameters and resulting system
properties used throughout this work.

Parameter Abbr. Value

Ramp center frequency fc 77.5GHz
Bandwidth B 1GHz
Sampling frequency fs 1MHz
Number of samples/chirp Ns 256
Unambiguous range rmax 50m
Range resolution rmin 15 cm
Chirp duration Tc 10 µs
Chirp repetition time Tcc 150 µs
Number of chirps/frame Nc 64
Frame duration TFrame 9.6ms
Unambiguous velocity vmax 3.9m/s
Velocity resolution vmin 0.15m/s
Number of Tx antennas NTx 1
Number of Rx antennas NRx 8
Antenna element spacing d λ/2
Transmit power PTx 13dBm
Receive antenna gain GRx 16dB
Receiver noise figure NF 4.5dB

C. SIMULATION APPROACH

A detailed radar system model, based on MATLAB®’s

Phased Array System Toolbox™, enables the simulation of

different system and modulation parameters. In order to

consider VRUs and their micro-Doppler signatures, we had

to further extend the simulation framework. Therefore, the

generation of raw radar data is achieved by using point target

scatterer simulations in combination with realistic motion

models for VRUs. In order to provide a simple and intuitive

way of generating scenarios, MATLAB®’s driving scenario

designer6 is used to set up the environment, the road users

and their trajectories. From this scene, radar scattering tar-

gets with an integrated motion model are created for each

pedestrian and cyclist. The resulting framework yields raw

radar data in time domain, which will be used throughout

this work.

We divide the environment model of an automotive sce-

nario into multiple parts: channel model, target model and

trajectory model. In the following, these will be described in

detail.

1) Channel Model

In general, the propagation of RF signals induces a phase

shift on the receive signal. Additionally, the signal is atten-

uated, we model this so-called path loss and the range depen-

dent phase shift by a two-ray free-space propagation channel,

assuming narrowband signals. This is a common assumption

in automotive fast-chirp radar signal processing, and greatly

simplifies the Doppler frequency estimation [62]. The chosen

two-ray channel is essentially a very simple model of a multi-

path channel with just a line-of-sight component plus a single

ground reflection.

6https://de.mathworks.com/help/driving/ref/drivingscenariodesigner-
app.html
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FIGURE 2. Dynamic VRU point target models for a pedestrian and a cyclist.
The pedestrian joint positions are displayed as light blue circles, while static
points of the cyclist model are shown by yellow diamonds and dynamic points
are highlighted as blue dots. All scattering positions are marked as red
crosses.

2) Target Model

In order to obtain an accurate receive signal including micro-

Doppler components, the simulation also needs to take into

account several scattering points of a human body or a

bicycle. For the human motion model, an implementation of

the so called Eigenwalker model is used [63]. It has some

important benefits, such as a more realistic gait pattern in

comparison to the MATLAB® default human motion model,

as well as the possibility to alter the motion characteristics

with respect to gender. Simulation data is generated using

female, male, and the average human gait motions. Motions

are calculated based on the joint positions of all extremities,

whereas the middle point between two joints is considered as

a radar scattering point. The full pedestrian model is shown in

Fig. 2, where joints are depicted as light blue circles, whereas

the scattering points are illustrated as red crosses.

To the right of the pedestrian, the cyclist model is dis-

played, where points with linear velocity are marked by yel-

low diamonds and dynamic points with rotational velocities

are marked by blue circles. We use a modified version of the

default MATLAB® motion model for cyclists, with overall

less scattering points (marked by red crosses), to reduce the

computational load and obtain less cluttered micro-Doppler

spectra. The wheels are modeled with 5 wheel spokes, while

just a small subset of the total available points in the model

are picked as reflection points. The upper body, as well as

the bike frame are kept "static", i.e. they only move linearly

with the total velocity of the cyclist. In contrast, the wheels

and pedals follow a circular motion, while the riders legs are

fixed to the pedal and hip joint positions and thus experi-

ence an oscillating motion. Examples of relative velocities

obtained from the described motion models are shown in

Fig. 3, both road users move with constant velocities along

a linear trajectory towards the radar sensor. The velocities in

Fig. 3a are obtained from a male (solid lines) and a female

(dashed lines) pedestrian model. The pedestrians are walking

with 1.0m s−1 towards the radar sensor, noticeable by the

oscillating pattern around this velocity value. Differences

from the gender based gait are visible as distortions as

well as different maximum velocities. However, the absolute

VOLUME 4, 2016 5
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FIGURE 3. Relative velocities of the VRU scattering points for a female
(dashed) and a male (solid) pedestrian (a) walking with 1.0m /s and two
different cyclists (b), both with a constant speed of 3m /s.

differences are relatively small and only in the order of

0.1m s−1. Apart from that, Fig. 3b shows the different radial

velocities of the cyclists’ scattering points, with a constant

velocity of v = 3.0m s−1 of the frame and body, as well

as faster radial velocities for the wheel spokes, pedals and

legs. Different cyclist models are obtained by using different

subsets of scattering points from the total available motion

points. Figure 3b shows the effect on the simulated velocities

for two different cyclists (solid lines vs. dashed lines) for two

different subsets of scattering points. Overall the pedestrian

model uses 14 scattering points, while the bicycle model uses

11 scattering points.

In the next step, the radar cross-sections for both VRU

targets are derived using a simplified model. For the pedes-

trian model, the average RCS for the respective operating fre-

quency is determined and then divided by the total number of

scatterers to obtain the individual scattering point’s RCS. For

77GHz, an average RCS in azimuth of σped = −8.1 dBm2

is used, in agreement with [64]. The same principle holds for

the cyclist model, but the model uses a measured RCS pattern

at 77GHz from [65].

3) Trajectory Model

To have a complete automotive scenario, road users and the

ego car equipped with the radar sensor need additionally to

be moving along some trajectory. For this purpose, nonlinear

motions for all VRUs, with constant velocities, are defined.

Their trajectories are interpolated from individual waypoints

as a piecewise clothoid curve, in order to obtain smooth mo-

tions. However, in reality there is an unaccountable amount

of possibilities and permutations for the number and classes

of targets, their individual motion, velocity and trajectory,

as well as other physical and environmental parameters, e.g.

radar modulations or channel characteristics. Thus, training

a machine learning model on an equal distribution of pos-

sibilities from the entire space of input data is not feasible.

Instead, we aim to include different features of targets and

environments in our database and try to get the network to

learn these features separately. Consequentially, the network

should be able to infer the correct class of targets based on

individual features and not on a combination of them.

For the combined target tracking and classification, we

generate different scenarios of VRU targets following pre-
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FIGURE 4. Simulation scenarios with one target (T1) used for training (a) and
two (T1, T2) or three (T1, T2, T3) targets used for testing (b), with their
respective trajectories. The radar sensor position is marked by a red cross.

defined trajectories. The scenario used to extract single tar-

get micro-Doppler signatures is shown in Fig.4a. The ego

vehicle, equipped with the radar sensor, is kept stationary.

The sensor position is depicted by a red cross. The target

follows a trajectory with an ’eight’ shape, as the actual view

angle of the pedestrians and cyclists has a strong impact on

micro-Doppler based classification [66]. Therefore, we want

to make sure to include all the variations in our training data.

To capture the whole set of variations, the ’eight’ shaped

trajectory is in addition rotated along the y-axis with an

angle of 45°. For the testing data, we use a scenario with

multiple road users and crossing trajectories, limited to a

maximum of three targets. In Fig. 4b, three targets (T1-

T3) with their individual trajectories, highlighted in different

colors, are displayed. Each target can be either a pedestrian

or a cyclist, with the aforementioned properties. All possible

permutations of pedestrian and cyclist combinations are used

for these two and three target scenarios.

III. AUTOMOTIVE RADAR SIGNAL PROCESSING

The previously described simulation framework outputs raw

sensor data, which needs to be further processed in order to

obtain the target estimates for each data frame. This chapter

gives a summary of the necessary automotive radar signal

processing chain, with a special focus on the generation of

micro-Doppler signatures. According to (2), the received IF

signal contains all the information about the target’s radial

distance, relative velocity besides the spatial information

in azimuth dimension. As indicated in Fig. 1, the sampled

signal of a single receive channel is stored in a matrix-

like format. Combining the time-domain data of multiple

receive channels, a radar data cube with three dimensions,

namely samples, chirps and antennas, is obtained. For a target

classification and target tracking, all targets need to be suc-

cessfully identified and separated in the receive signal. Thus,

targets have to be resolved in either of the three available

dimensions: range, velocity or angle [18]. Additionally, the

extraction of a micro-Doppler signature is done based on

target reflections from a specific range and, in turn, requires

a target detection in the range domain.
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A. RANGE-DOPPLER-ANGLE PROCESSING

As a first step, a mean subtraction is applied along the

samples and chirps, to suppress Tx-Rx leakage as well as

reflections from stationary targets, also referred to as clut-

ter. This clutter removal is also known as moving target

indicator (MTI) processing [67]. In order to resolve targets,

the corresponding frequencies from (1) need to be estimated

from the pre-processed signal. This is accomplished by us-

ing a 3D fast-Fourier transform (FFT) along the respective

dimensions, effectively converting the samples dimension to

the fast-time, the chirps dimension to the slow-time, and

the antennas dimension to the azimuth angle, respectively

[59], [60]. The resulting 3D spectrum is referred to as range-

Doppler-angle (RDA) cube. Two targets can be resolved

from any dimension in the resulting RDA cube, e.g. if they

are separated by at least rmin or vmin in range or velocity

dimension (compare the exact parameter values in Table 1).

B. TARGET DETECTION AND CLUSTERING

Following the FFT processing, the targets’ range and veloc-

ity can be extracted by searching for local maxima in the

magnitude spectrum. Usually the detection is carried out in

either the range-Doppler (RD) or in the range-Angle (RA)

domain. The actual detection is achieved by using a constant

false alarm rate (CFAR) algorithm, as it provides a better

performance, compared to applying a constant threshold,

under varying noise levels. It benefits from an adaptive

threshold depending on each individual cell’s signal-to-noise

ratio (SNR). More specifically, the ordered statistics (OS)-

CFAR algorithm is used in our work, as its performance is

superior for closely spaced targets [67]. Applying the OS-

CFAR algorithm for the peak detection, requires a clustering

to group all detections of the same individual target. There-

fore, a density-based spatial clustering (DBSCAN) is used

[68].

TABLE 2. Radar signal processing parameters used throughout this work.

Parameter Abbr. Value

CFAR threshold PFA 1e−5
Number of FFT points (fast-time) NFFTr 256
Number of FFT points (slow-time) NFFTd 256
DBSCAN Epsilon neighborhood ǫ 4
DBSCAN Minimum number of neighbors minPoints 6
Sliding window size Nwin 200
Sliding window overlap No 48
Number of STFT points NSTFT 512

C. MICRO-DOPPLER SPECTROGRAM

Even though, reflections from VRUs contain multiple ve-

locity components due to the micro-motions of the different

extremities, most of these components can not be separated

in the RD spectrum, as their range or velocities are very

closely spaced. To extract the micro-Doppler components of

a single target, just the FFT along the short time dimension

has to be computed over the raw data sIF cube. Doing so,

the range spectrum Sr(r, t) is obtained for each chirp. Then,

a specific target range rdet is selected to obtain the signal

Sr(rdet, t) with an effective sampling rate equal to the chirp-

to-chirp duration Tcc. Finally, a short-time Fourier transform

(STFT) is performed, which can be described as a Fourier

transform applied within a sliding window pattern of the

signal, resulting in overlapping windows

STFT(τ, ω) =

∫ ∞

−∞

Sr(rdet, t)w
∗(t− τ)e−jωtdt, (4)

This operation results in a Doppler frequency spectrum over

time, which is usually visualized as the micro-Doppler spec-

trogram by taking its square magnitude [17]. Applying a

smaller window function w∗(t−τ) will result in a better time

resolution at the cost of frequency resolution and vice-versa

[69]. Adapting this trade-off between time and frequency

resolution dynamically, is still an open point in the current

research. However, it could be addressed by using the concept

of a wavelet transform or even learning window parameters

using neural networks [70]. In this work, the STFT of the

micro-Doppler signatures for both pedestrian and cyclist are

estimated using a Kaiser windowing function with a sliding

window size of Nwin = 200 and an overlap of 48 samples.

The number of FFT points NSTFT for STFT is set to twice the

window size Nwin which is a factor of 2n i.e 512.

By combining the previously described simulation frame-

work and this radar signal processing chain, we are now able

to obtain micro-Doppler signatures for arbitrary scenarios. In

order to verify the framework from chapter II, we use the

same scenario like in Fig. 3, where road users are walking

with a constant velocity towards the radar sensor. We extract

the micro-Doppler signatures in a time window of 1 s, by

using the described STFT approach. The results, obtained

with an effective sampling time of 150 µs for the pedes-

trian scenario and 100 µs for the cyclist scenario, are shown

in Fig. 5. The individual frequency components, resulting

from scattering points with different relative velocities, are

visible. Note the strong agreement of the overall frequency

characteristics with Fig. 5, as well as the fluctuations in the

total received amplitudes, resulting from the used multi-path

channel.
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FIGURE 5. Simulated micro-Doppler signatures of a male pedestrian (a) and
a cyclist (b) from the same scenario as used for Fig. 3.
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D. TARGET TRACKING

Conventional radar signal processing usually applies a track-

ing algorithm after the clustering, to filter measurements over

time, and to create object detections and tracks of individual

targets. False detections are usually also eliminated during

the tracking. In order to avoid decreasing the measurement

accuracy as well as the introduction of inherent noise, the

usage of recursive filters is preferred in literature. The most

widely used tracking algorithms are Kalman filters. The

performance of Kalman filters relies on the state vector (i.e.

the parameters to be tracked), measurement noise, process

noise and the transition from measurement to the state space.

In our case of tracking radar detections, the state vector can

be described as x =
[

px py v θ
]T

, where px, py, v, θ
are the position coordinates along the x- and y-axis, the radial

velocity and the azimuth angle, respectively. Due to low vari-

ations in the spatial dimension, azimuth information is also

used as part of the state vector and improves the robustness

of the target localization. We use the Root MUSIC7 algo-

rithm for direction of arrival (DoA) estimation. Generally,

heading angle and turn-rate bring additional information for

a dynamic target with non-linear motion.

However, as VRUs may have very high variations in

their heading, parameters such as orientation angle, turn-

rate etc are not considered in definition of the state vector.

Additionally, the variance corresponding to each of the esti-

mated localization parameters (range, Doppler, azimuth) are

calculated for each detection. While SNR of each detection

is used for variance over range and Doppler, variance over

azimuth angle is calculated as the ratio of maximum power

of the beamformer over the noise around the corresponding

bin in the RD-map. Considering a radar system which is

stochastic in nature and observations are either prone to noise

or incomplete, a recursive Bayesian estimation algorithm

becomes the popular choice. This helps to periodically pre-

dict the posterior density of the system state for every new

observation.

For most general real-world (nonlinear, non-Gaussian)

systems, the multi-dimensional Bayesian recursion becomes

intractable and therefor, approximations have to be used.

This includes methods such as Gaussian approximations

(extended Kalman filters), hybrid Gaussian methods (score

function EKF, Gaussian sum filters), direct and adaptive

numerical integration (grid-based filters), sequential Monte

Carlo methods (particle filters) and variational methods

(Bayesian mixture of factor analyzers). Especially, the ex-

tended Kalman filter (EKF), a sub-optimal approximation

of the recursive Bayesian framework, applied to a Gaussian

random variable (GRV) of a non-linear state, is widely used.

It approximates and propagates the state distribution through

the first-order Taylor series linearization, which expands the

non-linear state around a single-point. As a result, the EKF

is not able to capture the uncertainty of the distribution,

introducing large errors in the estimation of the true pos-

7https://www.mathworks.com/help/phased/ref/musicdoa.html

terior mean and covariance, respectively. Alternatives can

be unscented Kalman filters (UKF), which use deterministic

sampling filters, i.e a sigma-point Kalman filter (SPKF), to

approximate the GRV by a minimal set of sample points.

These sample points can capture the true mean and covari-

ance of the GRV. While Fig. 6 gives a visual overview on the

prediction and update operation of the UKF to track mean

(x̂k−1) and covariance (P x
k−1) of the input state vector at a

time instance k − 1, the algorithm 1 gives a mathematical

understanding on its implementation.

x̂k|k−1

Px
k|k−1

x̂k

Px
k

x̂k−1

Px
k−1

FIGURE 6. Graphical representation of predict and update stage for an UKF
where mean and variance is estimated at each stage by approximation over
sigma point matrix.

Unscented Transformation

The state-of-the-art tracking algorithms for automotive use-

cases mainly focus on single modalities by having target’s

localization information as a state vector [27], [28]. Addi-

tional target parameters such as Doppler spectra are either

ignored or computed separately. In this paper, the authors use

both the localization and appearance model for the tracking

of detected targets, by augmenting the state-vector target

features.

To develop UKF, UT is applied at both prediction and

update steps, which includes non-linear state transformation

based on f and h, respectively. As input, state vector xk−1

of dimension nx with mean x̂
(i)
k|k−1 and covariance P x

k|k−1 is

given. At prediction stage, sigma points x̂
(i)
k−1|k−1 are gen-

erated which is goes under UT (f(.)) to estimate predicted

mean x̂k|k−1 and covariance P x
k|k−1 of state vector. Since

predicted mean and variance changed, a new set of sigma

point matrix is calculated due to its dependency on mean and

variance. Afterwards, the new sigma point matrix is trans-

formed into measurement space using h(.) as transformation

function.

A constant-velocity (CV) system is considered with the

localization state vector x. A non-linear measurement model

h(·) accounts for the transformation of the state vector into

the measurement domain. Mapping part of the localiza-

tion parameters (radial range and azimuth angle) from the

tracker’s state vector to the measurement domain follows

a non-linearity (Cartesian to Spherical), whereas mapping

the radial velocity and augmented parameters (appearance

embedding) corresponds to an identity mapping between
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Algorithm 1: Unscented Kalman Filter

Prediction: Generate sigma points

x̂
(i)
k−1|k−1, i = 0, 1, · · · , 2nx

x̂
(i)
k|k−1 =f

(

x̂
(i)
k−1|k−1

)

, i = 0, 1, · · · , 2nx,

x̂k|k−1 =
2n
∑

i=0

W
(m)
i x̂

(i)
k|k−1,

P x
k|k−1 =

2nx
∑

i=0

W
(c)
i

(

x̂
(i)
k|k−1 − x̂k|k−1

)

×

(

x̂
(i)
k|k−1 − x̂k|k−1

)T

+Q,

Update: Generate sigma points

x̂
(i)
k|k−1, i = 0, 1, · · · , 2nx

ŷ
(i)
k|k−1 = h

(

x̂
(i)
k|k−1

)

, i = 0, 1, · · · , 2nx,

ŷk|k−1 =

2nx
∑

i=0

W
(m)
i ŷ

(i)
k|k−1,

P y
k|k−1 =

2nx
∑

i=0

W
(c)
i

(

ŷ
(i)
k|k−1 − ŷk|k−1

)

(

ŷ
(i)
k|k−1 − ŷk|k−1

)T

+R,

P xy
k|k−1 =

2nx
∑

i=0

W
(c)
i

(

x̂
(i)
k|k−1 − x̂k|k−1

)

(

ŷ
(i)
k|k−1 − ŷk|k−1

)T

,

x̂k|k = x̂k|k−1 + P xy
k|k−1

(

P y
k|k−1

)−1
(

yk − ŷk|k−1

)

,

P x
k|k = P x

k|k−1 − P xy
k|k−1

(

P y
k|k−1

)−1 (

P xy
k|k−1

)⊤

,

state vector and measurement domain. However, the overall

non-linear transformation in the process model xP = g(xa)
and the measurement model zP = h(xP

a ) can be achieved

through unscented transformation, using so-called ’sigma

points’. These are generated to approximate the statistical

properties of the state distribution [28].

In addition, due to high similarity within input space

(Doppler spectra), it would be hard for tracker to discrim-

inate between different appearance embedding of VRUs.

It is important to note that the original dimension of the

micro-Doppler spectra is very large and thus, will increase

computational complexity for the tracker to estimate the

new state vector. As a result, the choice of feature extractor

becomes very critical to bring unique appearance modalities

into the tracker and get a better discrimination between the

targets. Additionally, tracker takes variance as input noise

over observed input state vector. This further imposes another

challenge to find variance over extracted appearance embed-

ding for the integration of appearance model into tracker’s

state vector. The details about different data processing tech-

niques, feature extraction architecture together with making

it compatible with Bayesian framework and the different

optimization functions are addressed in the following Section

IV and V, respectively.

IV. TARGET APPEARANCE MODEL

In general, the appearance model of a target in computer

vision consists of statistical information about the target’s

shape, size or motion characteristics. In order to uniquely

identify the target between similar looking targets, the tar-

get’s motion characteristics are considered in this paper.

Therefore, different features, in our case micro-Doppler sig-

natures of each target, are extracted to learn a unique sta-

tistical model of the target’s appearance. However, the char-

acteristics of the extracted features depend on the choice of

the applied feature extractor and especially on the used data-

sets. In consequence, the data preparation and the feature

extraction as the two major stages are needed, which are

discussed in the following.

A. DATA PREPARATION

As the accuracy and generalization of the feature-learning

algorithm depends highly on the quality of data-sets and

the information variability, preprocessing becomes essential.

Different techniques of preprocessing, followed by a data

augmentation, resolve these issues. Nevertheless, data pre-

processing is critical as it forms the basis of subsequent

feature extraction methods. In general, suitable methods are

selected based on the characteristics of the used datasets

and the problem definition, respectively. In real radar mea-

surement scenarios, radar cross-sections will be inherently

smaller for VRUs, i.e. as opposed to vehicles, resulting in

a lower signal-to-noise ratio, which in consequence leads

to weaker signatures. Additionally, varying viewing angles,

as discussed in Section II-C3, also distort the signatures of

VRUs, resulting in deformed or missing micro-Doppler com-

ponents. Therefore, the most common techniques of prepro-

cessing, like noise removal, morphology and transformation

correction, are not very well fitting for the radar domain.

That’s why, in this paper, the preprocessing stage is split into

three consecutive steps. First, the signatures are converted

from a linear to a log scale, which strengthens the weaker

Doppler components of the VRUs. Afterwards, the extracted

signatures are standardized to have a zero mean, right before

the extracted signature magnitudes are normalized to the

range of 0 to 1 in the last step.

However, in reality, the sample distribution (mean) over

the training set p (xi | θ̂) is not large enough in compar-

ison to the actual distribution (population mean) p (xi | θ).
This influences the model uncertainty (epistemic) [71] and

therefore, the concept of data augmentation next to data

preprocessing is required. Additionally, this also addresses
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the bias-variance trade-off by balancing the distribution over

a class. As a result, mainly two data-augmentation techniques

from the literature [72] are exploited in the paper. This

includes on the one hand an addition of artificial (Gaussian)

noise, which can emulate superimposed clutter noise on the

received echo signal. On the other hand vertical flips are

used, to consider also varying Doppler frequencies caused

by different directions of target’s motion (towards or away)

relative to the radar sensor.

A visual summary for each stage in data-processing and

data-augmentation is given by Fig. 7. Here an arbitrary exam-

ple of a cyclist micro-Doppler signature is considered. While

Fig. 7(a) shows the Doppler spectrum of one target in linear

scale, Fig. 7(b-c) corresponds to a data preprocessing step,

where the linear-scale is converted to logarithmic-scale first,

followed by the normalization of the spectrum. Moreover,

Fig. 7(d-e) show vertical flips and augmented Gaussian noise

as part of the data-augmentation techniques. Additionally, the

signatures are resized to 64 × 64 and used as a gray-scale

for training the network to reduce computational cost. Thus,

a total of 476 samples for each class of pedestrian and 680
samples for each class of cyclist is created.

a) b) c) d) e)

FIGURE 7. Visual illustration of Doppler signatures in (a) linear-scale and (b)
logarithmic-scale and the normalization (c) as data preprocessing step.
Additionally, (d) and (e) shows vertical flip and augmented Gaussian noise.

B. FEATURE EXTRACTION

Using the processed data, the goal of feature extractor is

now to find reduced sets of parameters that can be used as

key features. These should contain information to define and

differentiate between different available classes, being at the

same time robust to environmental changes (e.g. regarding

the target view points or motions). This is done by project-

ing the input space into a latent space dimension. With an

increasing size of the input dimensions, however, the com-

plexity of the problem statement grows exponentially. As a

result, feature extractors tend to over-fit easily to the training

data. In order to avoid over-fitting, different regularization

methods (L1, L2) are used together with the feature learning

methods. This helps by applying penalties to learned model

parameters and weight coefficients.

Prior to the evaluation of the feature extraction methods,

the structural similarity index measure (SSIM) over all per-

mutations of sample classes are calculated. SSIM values

closer to 1 indicate a high similarity between two images,

and is in contrast to e.g. MSE more robust to noisy variations

of the image [73]. Results on our dataset show a strong visual

similarity among intra-class samples as well as between

inter-class targets, as indicated in Table 3. Most similarity

indices lie around 0.5-0.7, without noticeable differences

between cyclist and pedestrian class combinations. In general

this demonstrates the complexity of the problem and the im-

portance of finding the optimum feature embeddings, which

can be used for distinct appearance modeling of targets.

TABLE 3. Similarity indices (SSIM) for simulated micro-Doppler spectra of
inter and intra classes for different VRU targets.

mPed fPed nPed Cyc1 Cyc2 Cyc3

mPed 1.0 0.71 0.68 0.57 0.60 0.61
fPed - 1.0 0.70 0.64 0.62 0.66
nPed - - 1.0 0.61 0.61 0.63
Cyc1 - - - 1.0 0.52 0.55
Cyc2 - - - - 1.0 0.53
Cyc3 - - - - - 1.0

The history of feature extraction and selection methods in

literature is substantial. The optimal choice for the feature ex-

tractor for this work was done via a systematic evaluation of

available and most commonly used methods such as principle

component analysis (PCA), independent component analysis

(ICA), linear discriminant analysis (LDA) and locally linear

embedding (LLE). Additionally, with a huge popularity of

deep learning in vision techniques in the last decades [29]

and the recent interest in radar applications, a convolutional

neural network (CNN) based architecture is also evaluated.

In this work, CNN is trained by using the cross-entropy loss,

similar to the concept of image classification. Therefore, an

encoder based architecture is used during training, gradually

reducing the size of layers. Table 4 shows the test accuracy

of different feature extractors, comparing CNN against the

PCA, ICA, LDA and LLE. The test accuracy of CNN based

TABLE 4. Test accuracy on Doppler classification using different feature
extractor.

PCA ICA LDA LLE CNN

Test
Accuracy

24.14% 16.09% 22.99% 26.44% 42.5%

approaches gives a clear indication on choice of feature

extractor over PCA, ICA, LDA and LLE. Additionally, it is

interesting to observe that CNN performance is still less than

50% which indicates the strong correlation within pedestrian

and cyclist sub-class as well as between pedestrian and

cyclist class, similar to as indicated by SSIM measure in

Table 3. Furthermore, the CNN-encoder based classification

architectures are good to learn global learning based on

spatial dimension. Whereas, it fails to provide robust local

representation corresponding to input spatial dimension for

unique identification of target class. This indicates on bet-

ter choice of CNN architecture and different optimization

function. As a result, an encoder-decoder based architecture

is evaluated for the appearance modeling. Additionally, the

make learned features follow Bayesian representation with

mean and variance and the concept of variation inference

is applied. Fig. 8 gives an overview of the structure of the

network architecture used for the later experiments.
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FIGURE 8. A summary of CNN based feature extractor illustrating different
layers used for metric learning (1), Bayesian inference (1 and 2) and image
reconstruction (4).

The design-space of the CNN architecture involves large

number of parameters which makes it hard to find the op-

timum architecture for the given problem definition. Thus,

the choice of the architecture design hyper-parameters is

mainly inspired from [68], where the authors used a similar

architecture for the target detection on sparse radar RD-maps.

Both encoder and decoder have a 3-layered convolution

layer with a rectified linear unit (ReLu) as the non-linearity

function. Considering the nature of the pre-processed input

data, additional concepts like, batch-normalization or leaky

ReLu, were not considered. While only the encoder part is

integrated inside the tracker, both encoder and decoder are

used during the network training.

C. VARIATIONAL AUTO-ENCODER (VAE)

The design of VAE architecture combines concept of auto-

encoder (AE) and variational inference. While the auto-

encoder (AE) is used for learning the identity mapping

function by reconstructing the input from its reduced rep-

resentation, variational part helps to provide regularity and

interpretability knowledge over latent space by learning cor-

responding mean and variance. This in return helps the

architecture to generate new data. The architectures contain

an encoder q(.) network and a decoder network f(.) pa-

rameterized by φ and θ, respectively. The encoder network

acts as a dimension-reduction by translating the higher input

dimension (x) into the feature latent space (z = qφ(x)).
Afterwards, it is reconstructed back to the input space by

the decoder (x′ = pθ (qφ(x))). In consequence, the perfor-

mance of the network depends on finding the optimal identity

function such that x
′ ∼ x, which relies on an extracted

feature in the latent space. Thus, network parameters (φ, θ)

are optimized using the cross-entropy loss (CE) instead of

the mean square error (MSE) to avoid the vanishing gradient

problem due to the non-linear sigmoid nature of the output

[74].

Often, identity mapping functions are prone to the prob-

lem of over-fitting, specially in case of a high-dimensional

input with a high redundancy (e.g. images). However, noisy

augmented data helps to avoid over-fitting, as noisy data

can be interpreted as a regularizer by randomly dropping

(corrupting) input data, which is similar to a dropout [75].

Additionally, VAE based architecture applies a constraint

(prior) over the latent space by mapping the latent to the

distribution instead of the fixed latent vector. The prior on

encoding vector also acts as a regularizer. To avoid intractable

integrals in the process of estimating the true posterior distri-

bution, a re-parameterization trick is used, which restricts the

encoded distribution to be normal distributed. Eq. 5 shows

the reparameterization, where ⊙ is an element-wise product.

z ∼ qφ
(

z | x(i)
)

= N
(

z;µ(i),σ2(i)I
)

,
z = µ+ σ ⊙ ǫ, where ǫ ∼ N (0, I) ,

(5)

As a result, the VAE architecture invokes an additional loss

function, i.e. the Kullback-Leibler (KL) divergence, which

brings continuity and completeness in the latent space. The

total loss function is summarized as a linear combination of

the CE and the KL, as depicted in Eq. 6.

Lvae =Lreconstruction + LKL

=− Eqφ(z|x)(log pθ(x | z))

+ KL(qφ(z | x)‖p(z)),

(6)

The network training is optimized in an iterative scheme

for 10 epochs. Adam is used as stochastic optimizer with

a learning rate of 0.0004 and keeping a default value for

other hyper-parameters. After the training and to evaluate

the classification accuracy, k-nearest neighbors (k-NN) al-

gorithm [76] is used on the learned latent feature embed-

ding. k-NN was chosen because of its non-parametric nature.

However, one could also use a linear classifier such as the

support vector machine (SVM). Due to constraints over the

latent dimension, VAE shows an average test accuracy of

56.9% in contrast to AE having 55.25% test accuracy. To

better understand the confusion between inter and intra-

class, feature embedding clusters are visualized in a 2D

plane using a t-distributed stochastic neighbor embedding

(t-SNE)8 tool. t-SNE helps to project the high dimensional

(original) data space into the desired dimension space (2D

or 3D) by projecting samples close to each other, if samples

were inherently related to each-other in original space. As

a) AE t-SNE

5

4

0

1

2

3

b) VAE t-SNE

FIGURE 9. Illustration of the strong correlation between the sub-class of
pedestrian (0, 1, 2) and cyclist (3, 4, 5) using a t-SNE plot for (a) AE and (b)
VAE over feature embedding.

shown in Fig. 9(a),(b), both AE and VAE architectures fail to

learn and extract distinct features for each target class. Fig.

8https://scikit-learn.org/stable/modules/generated/sklearn.manifold.
TSNE.html
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9 shows that the both AE and VAE networks were able to

cluster all sub-groups of cyclist (3, 4, 5) and sub-groups of

pedestrians (0, 1, 2) close to each other, but unable to learn

distinct features between each target sub-class like female,

male and neutral labeled as 0,1 and 2 respectively. As a result

and in contrast to the representation learning via CE, MSE

or KL-divergence loss, a loss function is defined for learning

of a similarity function, using a distance metric learning [77].

The details about different network architecture together with

loss function and training environment are described in the

next section.

V. DEEP METRIC LEARNING

Deep metric learning is well studied for images, speech and

language tasks and recently applied in the domain of radar

sensor data. Several deep metric learning models use Siamese

framework, where two or more weight shared sub-networks

respectively are trained to learn distance metrics during train-

ing. The input data is projected into the embedding space

via the learned model during inference. The idea is to use an

anchor example, which is fed into one of the neural network

and learn the pair-wise or tuple-wise relationship to other

examples that are fed to the other neural network during

training [35]. Some challenges of training such networks are

online data mining that ensures a representative dataset while

training to ensure loss decreases with progressing epochs.

Some of these issues are addressed through multi-class N-

pair loss, constellation loss, structured loss or magnet loss

in literature which not only learn relations to two or three

examples per class but rather all the classes together ensuring

a better representational space. In terms of distance metrics,

distances such as Euclidean, cosine and Kullback-Leibler

have been introduced in literature, which aim to learn the

non-linear relation among data in the representational space.

On the other hand, several modifications to the softmax

classifier have been proposed in literature to achieve discrim-

inative capabilities. Different techniques introduce a margin

between the classes, whereas in [78] the softmax is disen-

tangled into an individually optimizable inter- and intra-class

objective. Further, Dsoftmax loss shows improved results

compared to the margin based softmax approaches and center

loss [79] proposes to combine the softmax objective with the

Euclidean spread of the samples of a class.

In this paper, the authors combines the idea of variational

inference over latent embedding in combination with metric

and representational learning. This helps the network to learn

both the feature embedding and the variance over it. As a

result, the learnt input noise can be integrated inside a tracker,

which further helps during the data association. Details about

its usage and advantage are given in Section VI and VII,

respectively. The green numbered blobs, shown in Fig. 10,

indicate different layers, which are used to design a loss func-

tion specific for different training approaches. While blob ’1’

is responsible for the metric learning, blob ’4’ optimizes the

image reconstruction error. Both ’1’ and ’2’ blobs help the

network to have Bayesian inference. Further, to have a fair

comparison and similarity between the different approaches

for feature extraction, Fig. 10 is illustrated to summarize

different architectures. The encoder and decoder network

parameters are kept same throughout all the experiments, but

are trained with different loss function and additional hyper-

parameter optimizations. Additionally, the training environ-

ment, like the data preparation and performance metric used

for the evaluation of the network, is kept identical throughout

the training process. Details about the different optimization

functions corresponding to the chosen network architecture

are mentioned in the following subsections. Additionally,

code for model definition and loss function is made available

on Github respository9.

A. TRIPLET NEURAL NETWORK (TNN)

The concept of siamese neural network [80] is used to

design a training framework that consists of three identical

sub-networks. The architecture is optimized using a triplet

loss [35]. The encoder network from the AE framework is

considered as sub-networks, keeping the same configuration

as used in the AE. Prior to the network training using the

triplet loss, triplet pairs are selected. These pairs consist of

anchor sample (xa), i.e. any random sample, positive sample

(xp), which is from the same class as the anchor, and a

negative samples (xn), which is a sample from any different

class in comparison to the anchor class. The loss function is

computed over feature embedding, i.e. the latent space (z), as

shown in Eq. 7.

Ltriplet =max(‖qφ(xa)− qφ(xp)‖
2 − ‖qφ(xa)− qφ(xn)‖

2+

αmargin, 0),
(7)

The network is trained following a min-max distance learn-

ing between the triplet pairs. While the distance between

the anchor and negative samples is maximized by making

d(qφ(xa), qφ(xp)) + αmargin less than d(qφ(xa), qφ(xn)),
the distance between the anchor and positive samples is

minimized forcing d(qφ(xa), qφ(xp)) to 0. Here, αmargin is

a hyper-parameter which defines the boundary condition

between the similar and dissimilar pairs. For this process, a

Euclidean distance function is considered from the available

similarity metric function [77].

The choice of the input triplet pair plays an impor-

tant role in learning the feature embedding. Consider-

ing the spatial complexity and similarity between train-

ing examples, the mining of input triplet pairs is done

considering hard examples, i.e triplets, where the nega-

tive sample is closer to the anchor than to the positive

(d(qφ(xa), qφ(xn)) < d(qφ(xa), qφ(xp))) and semi-hard

triplets, where d(qφ(xa), qφ(xp)) < d(qφ(xa), qφ(xn)) <
d(qφ(xa), qφ(xp)) + αmargin. The triplet mining is done in

an online approach i.e. during the network training.

In Fig. 11(a-b) examples of semi-hard and hard triplet

pairs selected during network training are displayed. Similar

9https://github.com/ananddb90/IntegratedBayesTracking
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FIGURE 10. An overview of evaluated architectures and their relation to each other. While all architecture follows k-NN classifier over mean embedding for target
classification, the variational inference brings additional Bayesian knowledge over extracted mean using (b) TVAE architecture in contrast to (a) TNN. With
introduction of additional negative sample from similar class-group, (c) QVAE improves distinct feature learning. This is done by learning the distance between
feature embedding using MLP in contrast to usage of normal L2-Norm.

(a) Online semi-hard triplet mining

(b) Online hard triplet mining

anchor positive negative1

anchor positive negative1

FIGURE 11. Sample example of (a) semi-hard and (b) hard triplet pairs of
Doppler spectrum extracted during network optimization (online).

to the AE and the VAE, a k-NN classifier is used on the

feature embedding to measure the classification accuracy.

The network shows an improvement in feature learning by an

average test accuracy of 71.2%. The t-SNE plot for TNN over

feature embedding is summarized in Section VII similar to

the ones illustrated in IV-C. The similar approach is followed

for remaining experiments.

B. TRIPLET-BASED VARIATIONAL AUTO-ENCODER

(TVAE)

While deep metric learning is optimal for encoding the data

representation and for measuring data similarity, it cannot

enable probabilistic inference for the model. On the other

hand, the VAE performs an approximate Bayesian inference

efficiently by having continuous feature information, as dis-

cussed in subsection IV-C. In [81], the authors combined

both approaches and proposed a hybrid network architecture,

called TVAE, where the network is optimized by minimizing

the upper-bound on the expected negative log-likelihood of

the data together with the triplet loss (Ltriplet). Eq. 8 gives

a mathematical overview on the total loss which is a linear

combination of the CE loss, KL-divergence and the triplet

loss.

LTVAE = 0.7 ∗ Lreconstruction + 0.3 ∗ (LKL + Ltriplet), (8)

At the end of the network training, the classification accu-

racy is evaluated on the mean embedding vector using a k-

NN classifier. The average classification accuracy of 73.85%
shows the dominance of the training framework over the VAE

and the triplet standalone. Simultaneously, this leads to a

Bayesian inference by enabling mean and standard variance

over feature embedding.

C. QUADRUPLET VARIATIONAL AUTO-ENCODER

(QVAE)

Besides the increased classification accuracy in TVAE, triplet

loss, however, suffers from two major drawbacks. First, the

distance metric function for an anchor is optimized with

respect to the positive and negative samples. As a result, there

is no discriminator part in the triplet loss function which

can help to push target samples from an intra-class. This

problem is avoided by including another negative sample,
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belonging to the same group as the first negative sample.

This helps the network to have a better inter and intra-

class distance by adding an extra parameter optimization to

separate the negative class from each other. The resulting new

loss function is termed as Quadruplet loss (Lquadruplet) [82]

and can be summarized by Eq. 9. It includes another hyper-

parameter α2 which is kept to 0.5 during the training. While

sample si and sj belong to the same class and represent an

anchor and positive sample, sk and sl belong to two different

classes, which are also not an anchor class.

Lquadruplet =
N
∑

i,j,k

[

q (xi, xj)
2 − q (xi, xk)

2
+ α1

]

+

˙∑N

i,j,k,l

[

q (xi, xj)
2 − q (xl, xk)

2
+ α2

]

,

si = sj , sl 6= sk, si 6= sl, si 6= sk

(9)

Similar to the triplet pairs, quadruplet pairs consist of semi-

hard and hard examples, which are sampled during the train-

ing of the network. Additionally, the choice of both negative

samples plays an important role for network learning. As

a result, SSIM score between samples were calculated for

each epoch. The samples from different class than anchor

class with the highest SSIM score are considered for negative

samples. Fig. 12 shows a sample example of quadruplet pair

with two negatives.

(a) Online hard triplet mining

anchor positive negative1 negative2

anchor positive negative1 negative2

(b) Online semi-hard triplet mining

FIGURE 12. Sample example of (a) semi-hard and (b) hard quadruplet pairs
of Doppler spectrum extracted during network optimization (online).

The distance metric is computed with a L2 norm (eu-

clidean) which compares the feature embedding vectors ele-

ment wise with an uniform weighting to each values. Consid-

ering the nature of the training data, i.e micro-Doppler based

signatures from VRUs, small changes in Doppler frequency

from the intra-class lead to an unique identification of target.

At the same time, uniform weighting fails to find outliers

within a small difference of the feature embedding which

is usual the case for intra-class VRUs. Thus, the distance

function is learned during the network training. For this

purpose, a 3 layered multi-layer perceptron (MLP) based

architecture is designed and optimized using the principle of

siamese networks. The q(.) function in Eq. 9 is the latent

output from encoder. Further, the network’s classification

accuracy and confusion matrix are evaluated in the same way

as before, using a k-NN classifier over the mean embedding.

The network achieves an average accuracy of 85.04%.

It is also evident to note that the nature of clusters follows

the nature of classes and sub-classes. Where corresponding

data from the cyclist model follows the strong correlation

between each other, it makes it hard to push their cluster

apart from each other (3, 4, 5). Additionally, the Bayesian

approximation at the latent space makes learned embedding

continuous. This regularizes the metric loss function, relaxes

the distance learning and restricts the granularity between the

class clusters.

While L2 − norm based metric is used to calculate the

distance between the class-embedding for TNN and TVAE,

a pre-trained metric neural network is used for QVAE. Sec-

tion VI describes the details about the proposed integrated

framework for a continuous classification and tracking of the

target. To show the advantage and robustness of integrating

feature embedding as an appearance model, different learned

embeddings (TNN, TVAE, QVAE) are used. The results are

described in Section VII in detail. It is important to note that

the design and choice of the feature extraction could further

be improved using different architectures or optimization

functions. Additionally, instead of approximating Bayesian

inference from a point-estimate NN, a probabilistic NN can

be used. However, this paper demonstrates advantage of the

proposed integrated framework in terms of robustness of

target tracking and improved accuracy of target classification

over different feature extractor.

VI. PROPOSED INTEGRATED FRAMEWORK

Fig. 13 illustrates an overview of the proposed framework

for a continuous localization and classification of the de-

tected target. This is done by augmenting the state vector

Classification

Gating

Target

Detection

Zm(µ, σ)

Target

Association

Tracker

(UKF)

uDoppler

Signature

Detection

Gating

Tracked

Location

Zp(µ, σ)

Tracked

Embedding

Ep(µ, σ)

µ

σ

K-NN

Classifier

Encoder (qφ)

FIGURE 13. A detailed illustration of the inference phase of the proposed
framework having an integrated classification and tracking algorithm combined
with the Bayesian knowledge over learned mean and variance over feature
embedding.

of the tracker by a target’s feature embedding as appearance

model in combination with the target’s localization as motion

model, described in Section VI-A. In consequence, false

alarms are suppressed by using both detection and classi-

fication gating. In addition, the framework also enables a

complete Bayesian inference by using the mean and vari-
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ance over detection, as described in Section III and corre-

sponding target’s features, as mentioned in Section V. As a

result, the robustness of the framework is further improved

by leveraging the Bayesian information associated with the

input and predicted state vector and by performing data

association, as discussed in subsection VI-B. The framework

includes multiple processing blocks of which target detection

block provides measurement data on the target’s localization

(Zm(µ, σ)) to the tracker. The encoder block (q(φ)) extracts

appearance embedding (Em(µ, σ)) and augments the tracker

state vector with it for each frame. The tracker (an UKF in our

case), uses these information to estimate the new position of

the target and classifies the target into the defined category

using a k-NN classifier. The integration of the appearance

model together with the gating and data association are

described below.

A. STATE VECTOR AND FILTERING

Unlike a point estimate based encoder, the variational en-

coder maps the Doppler spectrogram as input to a distribution

over a plausible latent embedding (i.e a feature embedding).

Thus, it returns both mean (confidence Em
µ ) and variance

(uncertainty Em
σ ) over the feature embedding. The variance

over the embedding vector is used for updating the state

uncertainty corresponding to the appearance in the Kalman

filter, as explained in algorithm 1. The UKF assumes a

Gaussian random variable for the distribution of the state

vector. Thus, the integration of the classifier output into the

tracker facilitates the processing in obtaining not only the

value of the current state of the classification but also the

uncertainty associated with the state. Considering µi as the

mean embedding of class i with M as the total dimension of

the assumed embedding vector, the modified augmented state

vector (xa) of the tracker can be represented as Eq. 10.

xa =
[

Px Py v Az µ11 µ12 · · · µ1M

]T
,

g(xa) =
[

pPx pPy vP AzP µ11
P · · · µ1M

P
]T

,
(10)

Target’s localization parameter is represented by lateral (Px),

longitudinal position (Py), velocity (v) and azimuth angle

(Az). Even though Az can be estimated from Px and Py, Az
is choosen to be part of state vector [26]. This is due to fact

that the tracker estimate is not a point estimate but a Gaussian

distribution with mean and variance. As a result, to estimate

Az, the formulation need to use unscented transformation

(using sigma points) or Taylor expansion (as in EKF) from

the distribution of both Px and Py . The process model

accounts for the state transition or the prediction into the next

time step. The process model transformation for x is dictated

by the CV model and the augmented parameters are obtained

by applying the non-linear process model transformation

g(·).

B. TARGET ASSOCIATION

The problem of data association plays a critical role in the

suppression of false alarms by associating the uncertain mea-

surements to certain tracks. As a result, a gating operation

is defined before updating the prediction for the current

measurement. This involves a track creation, maintenance

and deletion for single or multiple targets. The accuracy of

data association relies on the choice of the distance met-

ric which can be grouped into Bayesian or non-Bayesian

based on the nature of the data. Both, measurement (y
(i)
k|k−1)

and sigma-point transformed prediction (x
(i)
k|k−1) follow a

Gaussian distribution, having a mean (ŷ, x̂) and a covariance

(P y
k|k−1, P

x
k|k−1), respectively in algorithm 1. Therefore, the

variance over posterior and observation is used for the data

association.

Additionally, due to the nature of the state vector (distribu-

tion than point), a Mahalanobis distance as the association

metric is used for the computing distance. This acts as a

multivariate Euclidean norm which is described in Eq. 11.

It shows that the Mahalanobis distance is a function of both

the mean and covariance of the predicted state vector.

d =
√

(x̂
(i)
k|k−1 − y

(i)
k|k−1)

TP yi

k|k−1

−1
(x̂

(i)
k|k−1 − y

(i)
k|k−1),

(11)

Here, x̂
(i)
k|k−1 is the current measurement and yk|k−1, P yi

k|k−1
are the mean and process covariance model of the predicted

state vector at a particular time step. The distance d is chi-

square distributed with nz degrees of freedom, where nz is

the dimension of the state vector which is 4 for localization

and 16 for feature embedding. The measurement is associated

with a particular track state only if the Mahalanobis distance

is lesser than a chosen threshold. The new augmented state

brings two different modalities (motion and appearance) into

consideration. Thus, different thresholds for each modality

are modelled which in return improves the gating operation.

Overall, a threshold of 0.75 for the localization and 2.5 for

the appearance model is considered. This helped to remove

noisy outliers for target’s localization and feature embedding

(used for classification) from being associated to the states of

the tracker.

VII. RESULTS AND DISCUSSION

Considering the accuracy and the ability to learn distinct

clusters for each class over the embedding space, the QVAE

based training framework gives a clear indication for the

choice of the feature extraction approach. Whereas, to get

a better understanding on the advantages of the proposed

framework over a conventional multi-target tracking (MTT)

framework, all the feature extractors (TNN, TVAE, QVAE)

are evaluated in an integrated framework. The extractors are

thereby optimized using the metric learning. Additionally,

a pre-trained feature extractor is evaluated on the micro-

Doppler signatures for a particular target over a distinctly

different non-linear trajectory, as described in Fig. 4(b).

Due to high variability in the nature of the training en-

vironment (architecture, data-sets, hyper-parameters), a di-
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rect comparison of the proposed framework with different

methods described in the literature is not feasible. As a

result, a direct bench-marking of the framework is evaluated

for inference phase using a NVIDIA Quadro P2000 GPU-

based system. While the encoder part of the network requires

4.7ms to extract the Gaussian latent feature embedding, the

integrated tracker takes 3.5ms for the estimation of new state

vector. The evaluation of the integrated framework is done

for three (homogeneous and heterogeneous) target classes,

containing either all pedestrian or cyclist or a mixed class.

During the simulation, the initial position of the targets is

adjusted in such a way that each target faces partial or

complete occlusion from either one of the targets, resulting

in miss-detections. This helped to analyze the robustness of

the integrated appearance model over the stand-alone motion

model. A constant velocity model for pedestrian and cyclist

classes are used through the experiments. The performance

of the tracker is evaluated in three folds: the classification ac-

curacy, localization precision and target association. Each of

them is evaluated and discussed in the following paragraphs.

Classification Accuracy

As mentioned in Section V, the target classification accuracy

is evaluated using a k-NN classifier. In addition to the feature

embedding over measurement Doppler spectra, target classi-

fication is also evaluated over the tracker’s estimated feature

(augmented) state vector.

As the first 20 frames are used for a feature initialization

buffer, the classification accuracy is evaluated from the 20th

frame using the principle of a sliding window over each

radar frame. For targets having a miss-detection, the Doppler

embedding is taken over from the last predicted value of

the tracker. A similar approach is also applied during the

localization estimation, as discussed in paragraph VII.

Together with the classification accuracy, both a visual and

quantitative analysis is done over the measurement and esti-

mated feature embedding. Fig. 14 gives a visual illustration

of the separation between the target classes using a t-SNE

over the feature embedding. While the left column of the

plot shows the 2D feature clusters from a pre-trained feature

extractor over a new trajectory, the right column shows esti-

mated features from the tracker, leading to an improvement in

the clustering. In consequence, also the target classification

is improved. The target classes within the pedestrian group

(female, male, neural) and cyclist (cyclist1, cyclist2, cyclist3)

are indicated by a color coding, using blue, purple, light

red and dark-red, dark-green and light-green, respectively.

These target classes are numbered as 0, 1, 2, 3, 4, 5,, see the

legend of Fig. 14. As mentioned before, the low variations in

between the clusters, i.e between pedestrian (0,1,2) or among

cyclist (3,4,5), show correlation between their appearance

model. Additionally, the cyclist clusters (3,4,5) show stronger

correlation in contrast to the pedestrian ones. This is due

to limitations on the dynamics of its physical model and

the contained reflection points out of the Matlab. Illustrating

the relative improvement on distinct clustering of feature
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b) TVAE

c) QVAE
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FIGURE 14. t-SNE plot over the feature embedding using (a) TNN, (b) TVAE
and (c) QVAE based feature extractor. The left column clusters refer to latent
appearance embedding from feature extractor and the right column shows an
improvement in the appearance embedding for corresponding extractor when
integrated inside the tracker.

embedding by tracker in comparison to feature extractor,

Fig. 14 helps to understand the generalization of the inte-

grated tracker performance for a given feature embedding.

Additionally, a quantitative analysis over the feature clus-

ters of Fig. 14 is evaluated. In this paper, silhouette and

Davies-Bouldin coefficients are used to measure the clus-

tering scores. The silhouette coefficient gives a similarity

measure between a sample and its own cluster (cohesion)

in comparison to other clusters (separation). The silhouette

coefficient lies in the range of −1 to 1. Higher values indicate

a better match of the sample to its own cluster. On the other

hand, the Davies-Bouldin coefficient indicates the distance

between clusters by estimating the distance of a sample

between with-in and the neighboring clusters. A typical value

for the Davies-Bouldin score lies in the range of 0 to 1, where

lower values indicate a better clustering.

Similar to the visual understanding, Table 5 shows a

quantitative improvement in target classification. Both, the

Davies-Bouldin and silhouette scores presented in Table 5 are

an average value over all target class for all the test samples.

The silhouette scores for estimated embedding (from tracker)

for Triplet is improved by ∼ 50% i.e. from 0.25 to 0.38.

Similarly, TVAE based tracker shows an improvement by

∼ 70% which is from 0.23 to 0.39. Further, following similar

behavior, QVAE also shows an improvement of ∼ 90% in
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TABLE 5. Detailed quantitative analysis on the quality of the clustering and
the feature embedding. It is estimated from the feature extractor and the
corresponding integrated tracker framework.

Clustering
Metric

Feature Triplet
(TNN)

TVAE QVAE

Silhouette
score

Embedding 0.25 0.23 0.37

Proposed

Tracker

0.38 0.39 0.71

Davies-
Bouldin
score

Embedding 1.56 1.47 1.07

Proposed

Tracker

0.99 0.94 0.38

silhouette score and leading to 0.71 from 0.37. In addition

to it, the Davies-Bouldin coefficients for Triplet and TVAE

are reduced by ∼ 35%. Similarly, the Davies-Bouldin co-

efficients for QVAE based estimated feature embedding is

reduced from 1.07 to 0.38 i.e. by ∼ 65%. This indicates a

better separability in the target features, resulting in improved

classification accuracy, as shown in Table 6.

TABLE 6. Detailed quantitative analysis on the accuracy of target
classification using feature embedding estimated from the feature extractor
and the corresponding integrated tracker framework.

Clustering
Metric

Feature Triplet
(TNN)

TVAE QVAE

Classification
Accuracy

Embedding 71.2% 73.85% 85.04%

Proposed

Tracker

79.2% 89.01% 99.22%

As seen from Fig. 14 and Table 5, the detailed evaluation

on the confusion matrix together with the localization and the

association error is done using QVAE as a feature extractor

in an integrated framework. Fig. 15(a) gives a deeper insight

on inter- and intra-class accuracy together with the false-

alarm over the feature calculated from the QVAE. In contrast,

Fig. 15(b) shows the improvement in accuracy by avoiding

miss-classification with-in the target classes.

Localization Accuracy

The tracker’s state vector brings both target features for

classification and target’s motion for localization. In order to

access and compare the localization accuracy of the proposed

framework for a multi-target tracking (MTT) scenario, the

similarity between the estimated and the ground truth (from

simulation environment) is evaluated by using an Euclidean

norm. Considering the pedestrian sub-group as a target class,

Fig. 16(a) displays the localization error between the ground

truth and the estimated target’s position. While the localiza-

tion error for male-pedestrian class gets higher between the

frames 25 – 35 and 110 – 120, whereas female and neutral-

pedestrian class shows higher localization error between

130 – 140 frames. This is due to the fact that measurement

(a) QVAE

(b) QVAE with Proposed Tracker

FIGURE 15. Confusion matrix to illustrate the improvement in the miss
classification from (a) QVAE based on feature extractor in comparison to (b)
proposed ;QVAE integrated framework.

data for estimated target was missing due to occlusion during

cross-over.

In contrast to this, the proposed framework with an inte-

grated augmented feature embedding does not fluctuate much

and therefore, helps the tracker to better associate with new

measurements. This can be seen in Fig. 16(b), where the

state vector (combined localization and embedding) error of

the frames between 25 – 35, 110 – 120, 130 – 140 remained

within a range of 0.1 – 0.2.

Association

The error for tracker depends, intuitively, on the target es-

timation besides the cost of missed or false target associ-

ations. The advantage of an integrated appearance model
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FIGURE 16. The error between the estimated and the ground truth state
vector for (a) the conventional tracker and (b) our proposed integrated tracker.

is to avoid such situations, especially in case of a cross-

over where a target is occluded or miss-detected. Fig. 17

illustrates a comparative analysis of the target association

with and without the augmented state vector. The ground

truth of the target trajectory is plotted using a circle (◦)

and the estimated trajectory is shown using a star (∗). The

targets female-male, male-pedestrian, and neutral-pedestrian

with their initial class-ID 0, 1, 2 are highlighted in orange,

purple and yellow color, respectively.

Although the tracker’s motion state vector is modeled in

polar coordinates, the trajectory is visualized on 2D Cartesian

coordinates. The x-axis represents the lateral position Px of

the target and the y-axis represents the longitudinal position

Py of the target. Fig. 17(a) shows the estimated trajectory

and target association for a conventional tracker having only

the motion model. As a result, during the cross-over, multiple

false associations occurred between male-pedestrian (purple)

- female-pedestrian (orange) and neutral-pedestrian (yellow)

- male-pedestrian (purple). In contrast to this, Fig. 17(b),

shows the estimated trajectory and its associated target using

our proposed integrated framework which helps to suppress

the false associations during the cross-over situation. Unlike

in conventional tracker where only localization state vector

is considered for association, the proposed framework uses

3-stage target association formulation. It considers localiza-

tion, embedding and combined augmented state vector for

calculation of Mahalanobis distance matrix. Later, all three

matrix are combined using OR operation. In case of multiple
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FIGURE 17. A comparative visual understanding on the data association from
the (a) conventional tracker with the motion model and the (b) proposed
integrated framework having the motion and appearance modality.

association, distance based ranking is used to reduce false

assignment. In consequence as illustrated before in fig. 17(b),

the proposed integrated framework can be seen as an efficient

and robust framework for a continuous target localization

and classification with an improved classification accuracy

compared to the conventional approaches.

Summary

The article proposes a novel framework to integrate both

motion and appearance modalities of the target into the

tracker. This is done by modifying state vector with feature

embedding together with localization (x-range, y-range, ve-

locity and angle) parameters. The target of interest consid-

ered throughout the experiment are pedestrian and cyclist

as they face lot of challenges in reliable detection (due

to smaller RCS) and classification (due to high correlation

between their signatures). As a result, in this article author

used the concept of distance metric learning applied over

a latent feature vector. This helped the network distinguish

and learn distinct features for each class. Moreover, the

concept of variational inference is applied together with

metric learning, making feature extraction fully Bayesian.

The Bayesian inference from the feature extractor helped

to integrate detection, classification and tracking into once

framework. The continuous estimation of the features from

the tracker helped to improve the classification accuracy by

temporal smoothing over embedding. Additionally, during
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cross-over situation having partial or complete occlusion of

target, framework helps to suppress false association between

detection and estimation.

The entire work is done in a simulation environment to

demonstrate the applicability of novel proposed framework.

The framework uses micro-Doppler signatures as raw input

data for the feature learning. As the estimation of Doppler

spectra suffers from a time-frequency resolution trade-off,

this approach gets challenging for scenarios with targets hav-

ing very high varying Doppler frequency components. Those

require either an adaptive sampling frequency or a wavelet

transform. On the other hand, the Doppler spectra directly

depend on the detection of micro-motions from the target,

which then inherently depends on the pose and the view angle

of the target w.r.t the radar. As a result, the diversity within

Doppler spectra for a particular target class becomes very

large and gets very challenging in reality. However, learning

the temporal information over Doppler spectra could help to

learn and model more optimized appearance model.
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