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Abstract. This paper presents a Bayesian framework for multi-cue 3D
object tracking of deformable objects. The proposed spatio-temporal ob-
ject representation involves a set of distinct linear subspace models or
Dynamic Point Distribution Models (DPDMs), which can deal with both
continuous and discontinuous appearance changes; the representation is
learned fully automatically from training data. The representation is en-
riched with texture information by means of intensity histograms, which
are compared using the Bhattacharyya coefficient. Direct 3D measure-
ment is furthermore provided by a stereo system.
State propagation is achieved by a particle filter which combines the three
cues shape, texture and depth, in its observation density function. The
tracking framework integrates an independently operating object detec-
tion system by means of importance sampling. We illustrate the benefit of
our integrated multi-cue tracking approach on pedestrian tracking from
a moving vehicle.

1 Introduction

Object tracking is a central theme in computer vision with applications ranging
from surveillance to intelligent vehicles. We are interested in tracking complex,
deformable objects through cluttered environments, for those cases when simple
segmentation techniques, such as background subtraction, are not applicable.

This paper presents a probabilistic framework for integrated detection and
tracking of non-rigid objects. Detections from an independent source of informa-
tion are modeled as “mixture” of Gaussians and are integrated by two means:
They control initialization and termination by a set of rules and serve as addi-
tional source of information for the active tracks.

To increase robustness three independent visual cues are considered. Object
shape is used, since it is (quite) independent of the complex illumination con-
ditions found in real world applications and efficient matching techniques exist
to compare shape templates with images [6]. Texture distributions are modeled
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as histograms [14,15], which are particularly suitable for tracking since they are
independent of object shape, invariant to rotation, scale, and translation, and
easy to compute. Finally stereo measurements are integrated into the system.

In this work, tracking proceeds directly in 3D-space, which allows a more
natural incorporation of real-world knowledge (e.g. kinematical properties of
objects) and simplifies reasoning about occlusion and data association.

The outline of the paper is as follows: Section 2 reviews previous work. Our
proposed multi-cue object representation is described in Section 3. It consists of
two parts; the first deals with the spatio-temporal shape representation and the
second relates to the texture model. The proposed particle filtering approach
for multi-cue 3D object tracking is presented in Section 4. It integrates an in-
dependently operating external detection system. We illustrate our approach in
Section 5 on the challenging topic of pedestrian tracking from a moving vehicle.
Finally, we conclude Section 6.

2 Previous Work

Bayesian techniques are frequently used for visual tracking. They provide a sound
mathematical foundation for the derivation of (posterior) probability density
functions (pdf) in dynamical systems. The evolution of the pdf can in principle
be calculated recursively by optimal Bayesian filtering. Each iteration involves
a prediction step based on a dynamical model and a correction step based on a
measurement model. Analytical solutions for the optimal Bayesian filtering prob-
lem are known only for certain special cases (e.g. Kalman filtering). For others,
approximate techniques have been developed, such as extended Kalman [1], par-
ticle [2,4], and “unscented” filters [13]. In particular particle filters have become
widespread, because of their great ease and flexibility in approximating com-
plex pdfs, and dealing with a wide range of dynamical and measurement models
Their multi-modal nature makes them particularly suited for object tracking in
cluttered environments, where uni-modal techniques might get stuck and loose
track.

Several extensions have been proposed to the early particle filter techniques,
e.g. dealing with discrete/continuous state spaces [9,11], multiple target tracking
[12,15,21], or multiple sources of information [10,17]. The latter has involved
techniques such as importance sampling [10] or democratic integration [17,19],
and have been used to combine visual cues such as edge and texture in a particle
filter framework. Particle filters have furthermore been applied in combination
with low-level [14,15], high-level [9], exemplar-based [18], or mixed-level [11]
object representations.

In terms of representation, compact low-dimensional object parameteriza-
tions can be obtained by linear subspace techniques, e.g. using shape (PDMs)
[3,9], or texture [20]. However, these methods have some limitations concern-
ing the global linearity assumption: nonlinear object deformations have to be
approximated by linear combinations of the modes of variation. They are not
the most compact representations for objects undergoing complex (non-linear)



A Bayesian Framework for Multi-cue 3D Object Tracking 243

deformations, nor do they tend to be very specific, since implausible shapes can
be generated, when invalid combinations of the global modes are used.

Fig. 1. Feature spaces: Linear and locally-linear feature spaces

Our approach, discussed in the next sections, builds upon the locally linear
shape representation of [9] (see Figure 1). We extend this by a spatio-temporal
shape representation, which does not utilize a common object parameterization
for all possible shapes. Instead, a set of unconnected local parameterizations
is used, which correspond to clusters of similar shapes. This allows our spatio-
temporal shape representation to be fully automatically learned from training
sequences of closed contours, without requiring prior feature correspondence.

We model texture by means of histograms similar to [14,15]. However, we
do not rely on circular/rectangular region primitives, but take advantage of the
detailed shape information to derive appropriate object masks for texture ex-
traction. Furthermore, unlike previous work, we derive a 3D tracking framework
also incorporating stereo measurements for added robustness.

Finally, our tracking framework integrates an independently operating object
detection system by means of importance sampling.

3 Multi-cue Object Representation

3.1 Spatio-temporal Shape Representation

Dynamic point distribution models capture object appearance by a set of lin-
ear subspace models with temporal transition probabilities between them. This
spatio-temporal shape representation can be learned automatically from example
sequences of closed contours. See Figure 2. Three successive steps are involved.

Integrated registration and clustering: At first an integrated registra-
tion and clustering approach [8] is performed. The idea of integration is mo-
tivated by the fact, that general automatic registration methods are not able
to find the physically correct point correspondences, if the variance in object
appearance is too high. This is in particular the case for self occluding objects,
when not all object parts are visible for all time. Our proposed approach there-
fore does not try to register all shapes into a common feature space prior to
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Fig. 2. Learning Dynamic Point Distribution Models

clustering. Instead the clustering is based on a similarity measure derived from
the registration procedure. To be specific, the average distance between corre-
sponding points after alignment. Only if this distance is lower than a user defined
threshold, the shapes fall into the same cluster and the registration is assumed
valid. For details, the reader is referred to [8].

Linear subspace decomposition: A principal component analysis is ap-
plied in each cluster of registered shapes to obtain compact shape parameteri-
zations known as “Point Distribution Models” (PDMs) [3]. From the N c shape
vectors of cluster c given by their u- and v-coordinates
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variation vectors

sc = s̄c + Ecb. (2)

To ensure that the generated shapes remain similar to the training set, the
weight vector b is constrained to lie in a hyperellipsoid about the subspace
origin. Therefore b is scaled so that the weighted distance from the origin is less
than a user-supplied threshold Mmax
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Markov transition matrix: To capture the temporal sequence of PDMs
a discrete Markov model stores the transition probabilities Ti,j from cluster i
to j. They are automatically derived from the transition frequencies found in
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the training sequences. An extension for covering more complex temporal events
(e.g. [5]) is conceivable and straightforward.

3.2 Modeling Texture Distributions

The texture distribution over a region R = (u1, v1, u2, v2, ..., unR
, vnR

), given by
its nR u- and v-coordinates, is represented by a histogram θR = {θr}r=1,...,m,
which is divided into m bins. It is calculated as follows

θr
R =

1
nR

nR∑

i=1

δ(h(ui, vi) − r), (4)

whereas h(ui, vi) assigns one of the m bins for the grey value at location ui, vi

and δ is the Kronecker delta function.
To measure the similarity of two distributions θ1 = {θr

1}r=1,...,m and θ2 =
{θr

2}r=1,...,m we selected (among various possibilities [16]) the Bhattacharyya
coefficient, which proved to be of value in combination with tracking [14,15]

ρ(θ1, θ2) =
m∑

r=1

√
θr
1θ

r
2. (5)

ρ(θ1, θ2) ranges from 0 to 1, with 1 indicating a perfect match. The Bhat-
tacharyya distance d(θ1, θ2) =

√
1 − ρ(θ1, θ2) can easily be calculated from the

coefficient.
For tracking, a reference distribution θ is calculated at track initialization,

which is updated over time to compensate for small texture changes. As in [14]
the update is done with the mean histogram θ̄ observed under the shape of all
particles

θr
t+1 = αθ̄r

t + (1 − α)θr
t . (6)

The user specified parameter α controls the contribution of the previous reference
and the observed mean histograms.

4 Bayesian Tracking

In this work particle filtering is applied to approximate optimal Bayesian tracking
[2,4] for a single target. The state vector x = (Π, Σ) of a particle comprises the
position and velocity Π = (x, y, z, vx, vy, vz) in three dimensional space (a fixed
object size is assumed), and the shape parameters Σ = (c,b) introduced in
Section 3.1. For tracking, the dynamics p(xk+1|xk = si

k) and the conditional
density p(zk|xk = si

k) have to be specified, whereas si
k is the ith sample at time

k.

4.1 Dynamics

Object dynamics is assumed independent for the two components Π and Σ of
our state vector and is defined separately as follows.



246 J. Giebel, D.M. Gavrila, and C. Schnörr

During each sampling period Tk the position and velocity vector Π is assumed
to evolve according to the following dynamic equation

Πk+1 =





1 0 0 Tk 0 0
0 1 0 0 Tk 0
0 0 1 0 0 Tk

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




Πk + Γkνk, (7)

whereas νk is the user defined process noise, which has to be chosen to account for
velocity changes during each sampling interval Tk, and Γk is the time dependent
noise gain [1,2].

The shape component Σ = (c,b) is composed of a discrete parameter ck

modeling the cluster membership and the continuous valued weight vector b. To
deal with this “mixed” state the dynamics is decomposed as follows

p(Σk+1|Σk) = p(bk+1|ck+1, Σk)p(ck+1|Σk). (8)

Assuming that the transition probabilities Ti,j of our discrete Markov model are
independent of the previous weight vector bk, the second part of Equation 8
reduces to

p(ck+1 = j|ck = i,bk) = Ti,j(bk) = Ti,j . (9)

For the continuous parameters we now have to consider two cases: In case of
i = j, when no PDM transition occurs, we assume

p(bk+1|ck+1 = j, ck = i,bk) = pi,j(bk+1|bk) (10)

to be a Gaussian random walk. For i �= j the cluster is switched from i to j and
the parameters b are assumed to be normally distributed about the mean shape
of PDM j.

4.2 Multi-cue Observation

Three cues are integrated in this work, which contribute to the particle weights:
shape, texture, and stereo. Their distributions are assumed conditionally inde-
pendent so that

p(zk|xk = si
k) = pshape(zk|xk = si

k) ptexture(zk|xk = si
k) pstereo(zk|xk = si

k).
(11)

Since the shape and texture similarity measures between the prediction and
observation are defined in the image plane, the shape of each particle is generated
using Equation 2. Its centroid coordinates u, v and the scale factor s are derived
using a simple pinhole camera model with known (intrinsic/extrinsic) parameters
from the 3D-coordinates x, y, z and the specified 3D object dimensions.

Shape: A method based on multi-feature distance transforms [6] is applied
to measure the similarity between the predicted shapes and the observed image
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edges. It takes into account the position and direction of edge elements. Formally,
if the image I is observed at time k and S is the shape of particle si

k we define

pshape(zk|xk = si
k) ∝ exp(−αshape

( 1
|S|

∑

s∈S

DI(s)
)2), (12)

whereas |S| denotes the number of features s in S, DI(s) is the distance of the
closest feature in I to s, and αshape is a user specified weight.

Texture: For texture, ptexture(zk|xk = si
k) is defined as

ptexture(zk|xk = si
k) ∝ exp(−αtextured

2(ω, θ)), (13)

whereas d(ω, θ) is the Bhattacharyya distance described in Section 3.2 between
the reference distribution θ and the observed texture distribution ω under the
shape of particle si

k. Like above, αtexture is a user defined weighting factor.
Stereo: A stereo vision module generates a depth image Idepth, which con-

tains the distance to certain feature points. To measure the depth dstereo of par-
ticle si

k the distance of the feature points under its shape are averaged. Given
the predicted distance z of si

k and the measurement dstereo, we define

pstereo(zk|xk = si
k) ∝ exp(−αstereo(dstereo − z)2), (14)

whereas αstereo is a weighting factor.

4.3 Integrated Detection and Tracking

A set of particle filters is used to track multiple objects in this work. Each is in
one of the states active or inactive. An active track is either visible or hidden.

A detection system provides possible object locations, which are modeled as
“mixture” of Gaussians, whereas one component corresponds to one detection.
The mixture is exploited in two ways: As importance function for the particle
filters and for the initialization and termination of tracks.

The following rules, which depend on the actual detections, observations, and
geometric constraints control the evolution of tracks.

A track is initialized, if no mean state of an active track is in the 3σ-bound
of a detection. To suppress spurious measurements it starts hidden. Initializa-
tion involves drawing the 3D position and velocity of the particles according to
the Gaussian of the detection. Since no shape information is provided by the
detection system, the cluster membership and the continuous parameters are
randomly assigned. After the first particle weighting the reference texture dis-
tribution is initialized with the mean histogram observed under the shape of all
particles.

A track is visible, if it has at least t1 associated detections, if the last associ-
ated detection is at most t2 time steps old, and if the actual match values were
better than user defined thresholds for the last t3 times. Otherwise the track is
hidden.

A track becomes inactive, if the prediction falls outside the detection area or
image, if the actual match values were worse than user specified thresholds for
t4 successive times, or if a second track is tracking the same object.
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4.4 Sampling

For particle filtering an algorithm based on icondensation [10] is applied. It inte-
grates the standard factored sampling technique of condensation [2], importance
sampling, and sampling from a “reinitialization” prior probability density.

This allows us to integrate the mixture of Gaussians from the detection sys-
tem as an importance function into the tracking framework. Like in [10], it is also
used as a reinitialization prior, which gives us the possibility to draw samples
independently of the past history using the Gaussian of the nearest detection.

Like in [9,11] a two step sampling approach is followed for the decomposed
dynamics of the mixed discrete/continuous shape space. At first the cluster of our
shape model is determined using the transition probabilities Ti,j and afterwards
the weight vector b is predicted according to the Gaussian assumptions described
in Section 4.1.

5 Experiments

To evaluate our framework we performed experiments on pedestrian tracking
from a moving vehicle. The dynamic shape model, outlined in Section 3.1, was
trained from approximately 2500 pedestrian shapes of our training set. The
resulting cluster prototypes and the temporal transition probabilities between
the associated PDMs are illustrated in Figure 3. As expected (and desired), the

Fig. 3. Cluster transition matrix: The squares represent the transition probabilities
from a PDM of column j to row i.

diagonal elements of the transition matrix contain high values, so that there is
always a high probability of staying in the same cluster during tracking. Figure
4 shows three random trajectories generated with the proposed dynamic shape
model assuming that a camera is moving at 5m/s towards the object in 3D-
space, which is moving laterally at 1m/s. Each greyscale change corresponds to
a PDM transition.

Pedestrian detection is performed by the ChamferSystem in the experiments.
It localizes objects according to their shape in a coarse to fine approach over a
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Fig. 4. Predicting shape changes using Dynamic Point Distribution Models: Three ran-
dom trajectories assuming that the camera is moving at 5m/s towards the object, which
is moving laterally at 1m/s. Each greyscale change corresponds to a PDM transition.

template hierarchy by correlating with distance transformed images. For details
the reader is referred to [7]. The 3D position is derived by backprojecting the
2D shape with our camera model, assuming that the object is standing on the
ground.

The tracking system was tested on a 2.4GHz standard workstation and needs
about 300ms/frame for an active track and an image resolution of 256 × 196.
The number of particles is set to 500 in the experiments.

During tracking, the a-priori and a-posteriori probability of each PDM can
be observed online, as shown in Figure 5. The size of the dark and light grey
boxes indicate the a-priori and a-posteriori probability respectively. The more
similar they are, the better the prediction.

Fig. 5. Tracking results: The dark box indicates the a-priori and the light the a-
posteriori confidence of each cluster. The larger the box the higher the probability.
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Fig. 6. Tracking results: In the left images the best sample is shown for each track.
In addition the detections are illustrated as boxes. The shapes of all particles, which
approximate the posterior pdf, are drawn in the middle. Finally a top view of the scene
can be viewed on the right.
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Table 1. Average distances of the true and estimated pedestrian locations for a se-
quence of 34 images.

cues distance lateral error error in depth
edge 1.37m 0.085m 1.34m

edge + texture 1.28m 0.14m 1.25m
edge + texture + stereo 1.05m 0.11m 1.03m

Results of the overall system are given in Figure 6 for urban, rural, and
synthetic environments. In the original images (left column) the best sample
of each active track is shown. Whenever detections are observed, they are also
represented there as grey boxes. The shapes of all particles, which approximate
the posterior pdf, are drawn in the middle column. Finally, a top view of the
scene can be viewed on the right. The past trajectories are represented by small
circles while the current position estimate is marked by big circles. The text
contains the actual distance and velocity estimates.

To substantiate the visually observable improvement due to the integration of
shape, texture, and stereo information, the position estimates of the system were
compared against ground truth. Table 1 shows the results for the first sequence
of Figure 6, which consists of 34 images. As expected, the average error in depth
is higher than the lateral and an improved performance due to the integration
of multiple cues can be observed.

6 Conclusions

This paper presented a general Bayesian framework for multi-cue 3D deformable
object tracking. A method for learning spatio-temporal shape representations
from examples was outlined, which can deal with both continuous and discon-
tinuous appearance changes. Texture histograms and direct 3D measurements
were integrated, to improve the robustness and versatility of the framework. It
was presented how measurements from an independently operating detection
system can be integrated into the tracking approach by means of importance
sampling. Experiments show, that the proposed framework is suitable for track-
ing pedestrians from a moving vehicle and that the integration of multiple cues
can improve the tracking performance.
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