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Abstract

A common misconception is that precautionary motives in public
policy cannot be justified within the Bayesian rational-choice frame-
work, and that decision criteria that appeal to ambiguity and pes-
simism are needed. This paper critically evaluates these claims, argu-
ing that a rational policy process must be Bayesian in order to avoid
paradoxical, even absurd, recommendations, such as policies that de-
pend on sunk cost or that suppress costless information. The paper
also argues that the distinction between measurable risk and funda-
mental, or Knightian, uncertainty can be made within the standard
framework of Bayesian rationality. Finally, a simple model is proposed
to highlight situations where precautionary action may be normatively
justified.
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1 Introduction

Debates in public policy often invoke precaution as a guiding principle when
the nature and magnitude of risk is unknown. In legal and regulatory con-
texts, this view is expressed as a Precautionary Principle:

“When an activity raises threats of harm to human health or the envi-
ronment, precautionary measures should be taken even if some cause-
and-e↵ect relationships are not fully established scientifically.”1

The principle has been endorsed in a broad set of conventions, laws, and
treaties, including the United Nations Framework Convention on Climate
Change, the 1992 Rio Declaration, the Treaty Establishing the European
Community, the U.S. National Environmental Policy Act, the U.S. Clean
Water Act, among others.2

Precautionary decision criteria are frequently criticized as irrational.
Sunstein (2003, 2007), for example, argues that the Precautionary Principle
is simply incoherent, “a crude and sometimes perverse way of promoting
[public policy] goals, which can be obtained through other, better routes.”
This dissatisfaction has parallels in critiques of appeals to pessimism and
ambiguity in macroeconomic, finance, and decision theoretic models.3

The special status given to a normative criterion like the Precaution-
ary Principle is puzzling. A conservative attitude towards risky outcomes is
neither theoretically novel nor uncommon in practice. The distaste for un-
predictability can be expressed in terms of risk aversion within the standard
expected utility framework. No new normative principles seem necessary to
advise individuals on choosing the right level of life insurance coverage, or
businesses on the right level of fire protection. What, then, justifies giving
uncertainties, like those arising from inconclusive scientific evidence about
climate change, conflicting intelligence reports about a terrorist threat, or
incomplete understanding of the risks associated with a new medical treat-

1

“Wingspread Statement on the Precautionary Principle,” Ashford et al. (1998).
2 Other examples include the Energy Charter Treaty, the Cartagena Protocol on

Biosafety, the International Joint Commission created by the U.S.-Canada Great Lakes
Water Quality Agreement, the Occupational Safety and Health Act, and the Federal Food,
Drug, and Cosmetic Act. See Sunstein (2003) and Barrieu and Sinclair-Desgagné (2010)
for references and additional examples.

3 See, for instance, Sims’s (2001) critique of the maximin approach to model uncertainty
in macroeconomics, and the critique by Al-Najjar and Weinstein (2009) of ambiguity
aversion.
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ment, a unique status that warrants special pessimistic or precautionary
treatment?

The case for precaution often appeals to Knight’s (1921) distinction be-
tween “measurable risks,” where the odds are known, and “unmeasurable
uncertainties,” where no objective probability can be assigned. In a well-
known passage, Keynes (1937) o↵ered his own characterization of what be-
came known as Knightian uncertainty:4

“The sense in which I am using the term [uncertainty] is that in which
the prospect of a European war is uncertain, or the price of copper and
the rate of interest twenty years hence, or the obsolescence of a new
invention, or the position of private wealth-owners in the social system
in 1970. About these matters there is no scientific basis on which to
form any calculable probability whatever. We simply do not know.”

Intuitively, fundamental or scientific uncertainties like these seem profoundly
di↵erent from objectively quantifiable actuarial risks.5 Criteria like the Pre-
cautionary Principle draw their appeal from the feeling that conventional
theories of decision making under risk imply inadequate levels of precau-
tion in such contexts, and that alternative frameworks, like the pessimistic
criteria proposed by Schmeidler (1989), Gilboa and Schmeidler (1989), and
Bewley (1986), may be unavoidable.

This paper argues that the Bayesian rational-choice framework, based
on Savage (1954), can serve as a foundation for precaution in public policy.
The argument has three parts:

1. Section 2 shows that deviating from Bayesian rationality leads to para-
doxical, even absurd, recommendations, such as policies that depend
on sunk cost or that suppress costless information. These fallacies are
a by-product of mis-interpreting Savage’s framework as having a sub-
stantive ontological content, well beyond its limited aim of providing
a logically consistent calculus for uncertain propositions.

4 Authors use the terms “unmeasurable,” “fundamental,” “scientific,” “deep,” and
“Knightian” uncertainty to refer to the idea of risks that cannot be objectively quantified.
I uses these terms interchangeably in this paper.

5 In the same paragraph, Keynes gives examples of phenomena not subject to un-
certainty: “By ‘uncertain’ knowledge [...] I do not mean merely to distinguish what is
known for certain from what is only probable. The game of roulette is not subject, in
this sense, to uncertainty; nor is the prospect of a Victory bond being drawn. Or, again,
the expectation of life is only slightly uncertain. Even the weather is only moderately
uncertain.”
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2. Section 3 argues that Knightian uncertainty should not be confounded
with pessimism. I propose a distinction between Knightian uncertainty
and measurable risk within the standard Bayesian framework. Risk
is objective, testable, and not subject to disagreement; uncertainty is
just the opposite.

3. Section 4 argues that using probabilities to express subjective uncer-
tainty is consistent with Knightian uncertainty provided that com-
monly used, and often implicit, assumptions about the separability of
payo↵s are removed. I present a simple model illustrating this point.

The literature on precaution and the Precautionary Principle is too vast
to attempt a survey here. See Sunstein (2003, 2007), and Barrieu and
Sinclair-Desgagné (2010) for surveys and critical assessments. Currie and
MacLeod (2014) provide an insightful exposition of a Bayesian theory of
precaution in legal contexts. Among the omissions of the present paper is
a discussion of the role of irreversibility and option values, following Arrow
and Fisher (1974) and recent work by Gollier and Treich (2003) and others.
I hope to cover the interaction of irreversibility and Knightian uncertainty
in future work.

2 Paradoxes of Non-Bayesian Decision Criteria

While the abstract nature of Savage’s framework makes it universally ap-
plicable, it also make it di�cult for nonspecialists to translate into concrete
settings or to evaluate the plethora of new exotic axiomatizations that pur-
port to redefine rational choice.

This section aims to provide the nonspecialist with an accessible account
of how policy choice problems can be mapped into Savage-style decision
problems. I present a version of Savage’s rationality principles that follows
Ghirardato (2002). This version gives an identical representation to Savage’s
but has the advantage of explicitly modeling dynamic choice. The exposition
aims to convey the main ideas with minimal formalism.6

6 See the Appendix for the formal statements underlying this informal exposition.
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2.1 Policy Choice as a Decision Problem

My description will follow Savage’s original work. I refer the interested
reader to Fishburn (1970), Kreps (1988), or Gilboa (2009) for textbook
accounts.7

The ingredients of Savage’s framework are states of the world and con-
sequences. Savage’s original exposition is hard to improve on: A state is
“a description of the world, leaving no relevant aspect undescribed.” On
the other hand, “[c]onsequences might appropriately be called states of the
person” and “might in general involve money, life, state of health, approval
of friends, well-being of others, the will of God, or anything at all about
which the person could possibly be concerned.”

Consider a policy-making problem, such as that of approving a new
medical treatment. A state in this case is a description that would include,
for instance, the health impact of the treatment (e.g. the time needed to
achieve results and how benefits vary by age group and medical history),
side e↵ects (e.g. their nature, intensity, and dependence on patient charac-
teristics), and the interaction with other treatments. The description of the
state needs to be as extensive as necessary so as not to leave any “relevant
aspect undescribed.”

Consequences should also be extensively defined. In a climate-change
context, a consequence should describe not only monetary measures of well-
being, such as GDP growth, but also non-monetary aspects such as public
health consequences or the destruction of a natural habitat.

A policy is, formally, an act that indicates which consequence obtains
at each state of the world. The adoption of a medical treatment, in this
language, is an act f that yields consequence f(s) when the state happens
to be s. Approving an alternative treatment (or do nothing and maintain
the status quo) corresponds to the selection of another act g.

A policy maker is assumed to have a ranking over consequences. Recall
that consequences describe the entire societal impact of the treatment. Do
the lives saved by the new treatment outweigh the potential hazard to the
lives of others? Is the value of information about a potential terror plot
su�cient to o↵set the risk to the lives of intelligence personnel? Answers to
questions like these capture the policy maker’s system of values, including

7 For a concise account of the theory, Al-Najjar and De Castro (2011) may also be
useful.
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his appetite for risk taking, and is summarized by a utility function.

Policy makers are assumed to have a ranking, or preference, on policies,
and will choose the policy they rank highest among feasible alternatives. If
the true state s were known, then choice is easy: simply select the policy
(act) that yields the most preferred consequence in that state. The problem
of choice under uncertainty is how to choose between policies when the true
state is unknown.

So far, this is just a neutral language to express any decision problems,
from choosing statistical procedures to anti-terrorism policies, and anything
in between. Savage’s theory adds formal principles of rationality to help
make consistent decisions by disentangling the roles of tastes, beliefs, and
information.

2.2 Bayesian Rationality

Savage’s goal was to propose normative principles, or postulates, “to dis-
tinguish between coherent behavior and blunder, or demonstrable incoher-
ence, in the face of uncertainty,” (Savage (1967)). This framework continues
to provide the decision-theoretic foundation for most models in economics,
game theory, and finance.

First, the concept of an event needs to be introduced. An event E is
a set of states and should be thought of as the piece of information: “the
true state belongs to E.” With a judicious choice of the state space, any
piece of information can be represented as an event. New intelligence about
the whereabouts of a terror suspect, or scientific findings that a medical
treatment causes undesirable side e↵ects, are examples of events.8

The policy maker starts with an (initial) ranking that incorporates his
system of values and the likelihoods assigned to various events given avail-
able information. In addition to this initial ranking, for every event E, the
policy maker is assumed to have a conditional ranking given that event. This
conditional ranking reflects the new information that event E actually oc-
curred and captures the intuition that policy evaluation changes in response
to new evidence. For example, while restricted electronic surveillance may
initially be preferred to a more intrusive one, this preference is likely to be
revised after a major terrorist attack.

8 All events considered below are non-null. This roughly means that the decision maker
views these events as having a chance of occurring.
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To introduce the next two normative principles, we need to consider con-
tingent policies and options. Suppose that g is the default, or status quo,
policy and an alternative policy f is proposed. For concreteness, think of
g is the current treatment of an illness and f is the proposed alternative.
To make the problem interesting, assume that the new treatment is su�-
ciently more expensive to produce and administer that if one must choose
between f and g based on the information available today, then the status
quo treatment g will be chosen. Suppose that a soon to be released clinical
study will reveal that either:

• f is a miracle treatment that yields superior results that justify the
additional costs (Event E occurs); or

• f and g have identical health consequences (E does not occur).9

In addition to treatments f and g, the policy maker also has the option to
make the treatment contingent on E: “implement treatment f if you learn
that E occurred, otherwise implement treatment g.” This more flexible
policy option defines a new act, which we denote by fEg.

With the above notation, {g} represents a situation where the only avail-
able policy is the status quo treatment g, while {fEg, g} represents the
option to choose between g or “implement f if E occurs, otherwise g.” In-
di↵erence between {g} and {fEg, g} indicates a policy maker who does not
believe that making policy choice contingent on E has value, presumably
because this information is irrelevant.

The initial ranking and all conditional rankings are required to satisfy a
number of noncontroversial rationality postulates and technical conditions.
For instance, all rankings must be transitive (avoid circularity) and rank
higher policies with uniformly better consequences (monotonicity).

The first substantive normative principle is:

Complete Conditional Rankings: The policy maker has a
ranking over all policies conditional on any event E.10

Having a conditional ranking for each event E may appear excessive.
However, the fact remains that policy makers do not know in advance what

9 The assumption that the clinical study provides a clear cut indication of the e↵ec-
tiveness of f is used here only to make the example easier to follow, but is not important.

10 This assumption is implicit in the way Ghirardato (2002) sets up his framework. I
single it out here in light of the discussion in Section 2.3.3.
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new information will become available in the future that they will be asked
to act upon. In the case of medical treatments, the set of all conceivable
future laboratory discoveries, statistical findings, or clinical data is vast.
The principle states that whatever the future information state may be, a
policy maker cannot refuse to make a decision. Not making a decision is
itself a decision, namely sticking with the status quo.

The next principle is obvious:

Information is Valuable: For any event E and acts f, g, if
the policy maker prefers f to g when E actually occurs, then he
must also prefer fEg to g.

Violating this principle means that the policy maker views the information
that E occurred as valuable (it makes him choose f instead of g), yet he is
willing to pay money not to make his policy contingent on this information.
This is related to the idea discussed below that a non-Bayesian may be
willing to suppress costless information.

The final normative principle says that if the policy maker is willing
to pay to make his policy contingent on a piece of information, then he
must view this information as valuable. In our example, if the clinical study
confirms that f is indeed a miracle treatment, then the policy maker must
choose it.

Consistent Policy Implementation: For any event E and
acts f, g, if the policy maker prefers fEg to g, then he must
prefer f to g when E actually occurs.11

Violating this principle means that the policy maker is willing to pay money
to acquire the option to follow policy f if E occurs, but when this event
actually occurs, he foregoes f in favor of the status quo policy g.

Using Savage’s celebrated theorem, Ghirardato (2002) shows that the
above normative principles (and the technical and noncontroversial postu-
lates mentioned earlier) imply that the policy maker has a system of values,
represented by a utility function, and beliefs, represented by a probability
distribution, and ranks policies based on their expected utility. That is, the
policy maker must be Bayesian.

11 The principles of “value of information” and “consistency of implementation,” col-
lectively referred to as dynamic consistency in Ghirardato (2002).
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2.3 The Non-Bayesian’s Predicament

Non-Bayesian policies must necessarily violate one or more of the normative
rationality principles outlined above. The non-Bayesian has to decide which
principle(s) to compromise on, and to what extent. Considerable e↵orts
went to finding ways out of this conundrum, giving rise to a large literature
with a bewildering variety of fixes, compromises, and work-arounds. Here
I highlight some of the disturbing, even absurd, policy implications that
follow from abandoning the rationality principles.

2.3.1 Fact-Free Policies

The rationality principles introduced above imply that policy making should
be based on facts only:

Fact-based Policy Making: For every event E and pair of
policies f, g that yield identical consequences on E, the policy
maker is indi↵erent between f and g given E.

This is a formal statement of the principle that decision making should be
consequentialist.12 Violating this principle leads to fundamental paradoxes,
the most disturbing of which is the endorsement of policies that depend on
sunk cost. As an example, suppose that society has spent a considerable sum
of money to develop a medical treatment f , only to learn that f is no better
or worse than the status quo treatment g. The amount spent on developing
f is sunk: no current or future decision can recover it fully or partially.
Should a rational policy maker be willing to spend additional resources to
implement f , or to forgo the cheaper alternative g? Rationality requires that
once it is known that f and g have identical health consequences, the policy
maker should ignore the sunk development cost of f ; bygones-are-bygones.

Yet a non-Bayesian may take sunk cost into account. Al-Najjar and
Weinstein (2009) provide simple examples where certain ambiguity-aversion
decision maker may strictly prefer to make di↵erent choices in two decision
problems that are identical in every respect except in the amount of sunk
cost incurred at a prior stage.13

12 see Machina (1989). Ghirardato (2002) states this as Axiom 7, but it is, in fact,
implied by his other postulates; see the Appendix for details.

13 Machina (1989) argues that making non-consequentialist choices may make sense for
a decision makers who violate Bayesian rationality. From the perspective of this paper,
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Although the sunk cost fallacy is common in practice, it seems absurd to
recommend it as a basis for policy.14 Rational policies ought to be based on
facts and not on hangovers from past choices, however memorable or vivid
they may be.

2.3.2 Information Aversion

A well-known fact in the decision-theoretic literature is that violating Sav-
age’s rationality principles may lead to aversion to information.15 Willing-
ness to pay money to suppress information is especially disturbing in situ-
ations of fundamental uncertainty. Assessing the impact of climate change,
a new medical treatment, or an emerging terror threat are examples of sit-
uations where information ought to be, if anything, even more valuable
compared to situations of measurable risk. A non-Bayesian will have to
explain why shutting down information sources is good for policy. Should
the publication of medical trial results and climate data be suppressed? Or
should one recommend that intelligence gathered about new terror threats
be kept away from political and military leaders?16

2.3.3 The No-Cop-Out Principle

Savage’s framework assumes that the decision maker can rank all pairs of
policies. This assumption was dropped in Bewley (1986).17 Bewley’s frame-

to recommend deviating from fact-based policy making to correct for violating Bayesian
rationality amounts to using one flawed decision principle to o↵set the flaw in another.

14 Sunk cost may play a strategic role against an opponent. The discussion here concerns
nonstrategic decision problems.

15 See Wakker (1988) paper, titled “Nonexpected Utility as Aversion of Information,” for
a detailed discussion. In their paper “Dynamically Consistent Beliefs Must be Bayesian,”
Epstein and Le Breton (1993) similarly observe that a consequence of violating the ratio-
nality principles is that “information will be rejected, even if it is costless.” They then
“highlight the counterintuitive nature of this implication” in a statistical setting in which
a “decision maker would strictly prefer to have no information available to guide the later
choice.”

16 In the climate change context, Lange (2003) finds that the maximin criterion can lead
to a situation where learning has a negative value. He notes that “although a decision
criterion that gives more weight to the worst case can be motivated in several ways, there
are problems with applying it to a dynamic framework at least for normative reasons. A
criterion [...] where information may have a negative value and thus even costless learning
is disregarded, can have merits as a descriptive model but should not serve as a tool for
policy advice.”

17 Bewley’s paper was eventually published as Bewley (2002).

9



work is standard except for removing the requirement that decision makers
have a complete ranking. Bewley interprets an incomplete ranking as fol-
lows: a decision maker who “volunteers” to rank policy f as superior to g

is e↵ectively indicating confidence that f is better than g, while abstaining
from ranking f and g expresses uncertainty about the underlying probabil-
ities.

Bewley’s framework is not irrational. Rather, the problem is that it
is silent about what to do in situations of fundamental uncertainty where
lacking confidence in one’s probability assessment is the norm. Savage’s
requirement of a complete ranking is a “no-cop-out principle.” It captures
the idea that real-world decision makers do not have the luxury of abstaining
from making hard choices; that not making an active choice is itself a choice,
namely the status quo. Bewley’s theory is about decisions that policy makers
are comfortable making, and thus does not apply to situations, like climate
change, medical treatments, and terrorism, where all of the available options
may be ambiguous.18

A related problem arises in connection with dropping the assumption of
complete conditional rankings. This assumption requires that the no-cop-
out principle also hold conditionally, denying the policy maker the conve-
nience of saying “I do not know what to do if E happens.”19

2.3.4 Incomplete State Spaces, Small Worlds, and Pessimism

The Bayesian framework imposes a substantial burden by requiring decision
makers to specify a state space and a consequence space that leave out no
relevant aspect of the decision problem. Savage recognized that working

18 The U.S. raid on Osama Bin Laden’s compound in May 2011 is a vivid illustration
of the no-cop-out principle in a decision with high stakes and incalculable risks. Bob
Woodward reports on the debate among the President’s advisers: “Several assessments
concluded there was a 60 to 80 percent chance that bin Laden was in the compound.
Michael Leiter, the head of the National Counterterrorism Center, was much more con-
servative. During one White House meeting, he put the probability at about 40 percent.
When a participant suggested that was a low chance of success, Leiter said, ‘Yes, but
what we’ve got is 38 percent better than we have ever had before.’ ” (The Washington

Post, May 6, 2011). Despite these ambiguities, a decision had to be made. The president
approved the raid at 8:20 a.m., Friday, April 29, 2011.

19 One approach that gained some popularity recently is the so-called “recursive models”
of (non-Bayesian) dynamic choice. Under this approach, one admits only events where
updating does not result in paradoxes. Events that lead to inconsistencies are simply not
considered. See Al-Najjar and Weinstein (2009) for discussion and references.
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with this “grand state space” is practically and cognitively impossible. Any
decision problem we will ever work with in practice is necessarily formu-
lated as a “small-world” model that reduces complex real-world problems to
manageable sizes. Savage was careful to point out, however, that a proper
small-world model must also be one in which his normative postulates hold.20

In light of this, I interpret Savage’s framework to mean:

1. The world is too complex to study directly.

2. This complexity must be reduced by using coarse “small-world” mod-
els.

3. A minimal consistency criterion to require of these models is that
choice obeys the normative rationality principles.

Under this interpretation, Savage’s principles of rationality are not onto-
logical statements subject to confirmation or refutation by empirical data.
The fact that most experimental subjects violate expected utility (e.g., by
displaying Ellsberg choices) is no more a refutation of Savage’s theory than
the fact that most people fail to apply modus tollens is a refutation of propo-
sitional calculus.

Quiggin (2005) proposes an incompleteness meta-hypothesis as a justi-
fication of the Precautionary Principle. The meta-hypothesis states: “Es-
timates of project outcomes derived from formal models of choice under
uncertainty are inherently incomplete. Incomplete estimates will generally
be over-optimistic. The errors will be greater, the less well-understood is
the problem in question.” Precautionary behavior is then justified as an
antidote to the inexorable tendency toward over-optimism.

There are two parts to Quiggin’s argument: (1) modelers and policy mak-
ers are forced to work with coarse models that overlook important parts of
the problem; and (2) incomplete models will tend to be over-optimistic. The
first part echoes Savage’s small-worlds. The second part is more question-
able because it refers to over-optimism as if there is an objective reference
point to judge what constitutes unbiased probabilities. What was, on April
29, 2011, the unbiased estimate that Bin Laden was in the Abbottabad com-
pound? Or that average global temperature will rise by 4 degrees by 2100?

20 Kopylov (2007) provides a remarkable extension of Savage’s theory to the case where
the events, acts, and choices are restricted.
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The absence of an objective reference point is one of the defining features
of fundamental uncertainty, so arguments justifying caution based on pes-
simism are, at best, incomplete. And even if an objective reference point
existed, one may just as reasonably expect that some decision makers will
be over-pessimistic, leading to the reverse conclusion that a more aggressive
attitude toward scientific uncertainty is warranted. Finally, this justification
of caution does not tell us what to do if policy makers find themselves in
violation of the rationality principles above.21

In summary, the Bayesian view recognizes that we have no choice but
to use “small world” models that are coarse and incomplete. But instead of
arbitrarily injecting pessimism into the analysis, Savage’s rationality prin-
ciples provide a tool for checking the consistency and completeness of our
models.

2.4 Normative vs. Positive Interpretations of Rationality

Nowhere is human fallibility and limited cognitive abilities more vividly
manifested than in the context of decision making under uncertainty. A
large body of literature in psychology, too large to cite here, shows the many
ways in which temptations, distractions, guilt, regret, disappointments, and
elation can impact decisions.

The standing of Bayesian rationality principles as a foundation for public
policy seems unassailable. That human actors “get it wrong” so often is an
indication of just how hard it is to make consistent choices, and is a powerful
vindication of the value of the rationality principles as a guide for action.
In the words of the statistician D. Lindley, to let flawed decision practices
shape the principles of rational choice would be like “asking people’s opinion
of 2+2, obtaining an average of 4.31 and announcing this to be the sum. It
would be better to teach them arithmetic.”22

For the policy maker, Savage’s framework provides a calculus for un-

21 Vermeule (2012) argues that our coarse understanding of the world leads not to
arbitrary pessimistic decision criteria but to an irreducible diversity of opinions. Since
agents may hold di↵erent beliefs based on the same common set of evidence, it is not
sensible for courts to require parties to deliver further justification for their probability
judgement in situations of fundamental uncertainty. The best that courts could do is
to monitor these agents to verify whether their decisions (e.g. regarding information
gathering) are consistent.

22 Preface to de Finetti (1974).
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certain propositions to help spot “demonstrable incoherence.” The frame-
work forces us to come clean about our system of values, assessment of the
odds, and interpretation of information. An example is provided by Sun-
stein (2007) who contrasts American policy toward the risks of terrorism
vs. climate change. According to Sunstein, American policy makers take
highly precautionary attitudes toward terrorism risk, as exemplified by for-
mer Vice President Cheney’s “one percent doctrine.” On the other hand,
some policy makers seem to require an exceptionally high standard of sci-
entific certainty about the causal relationship between human activity and
climate change. The Savage framework requires policy makers and societies
to make explicit the system of values underlying these decisions: “which is
a worse consequence, a 9/11-style attack or the destruction of an American
city by a Katrina-like hurricane?” Answers to such questions help rational-
ize the policy making priorities and reduce the risk of confounding values
and beliefs.

Much of the dissatisfaction with the Bayesian framework originates in a
well-intentioned, but naive, expectation that a framework of decision making
should tell us what decisions to make. “Where do beliefs come from?”
is the all-too-common critique of Bayesian framework. What this critique
misses is the limited aim of this framework, namely that of providing logical
consistency checks for reasoning about uncertainty. The Bayesian framework
does not purport to tell us what our judgement of the odds or what our values
should be (which is a worse consequence, the destruction of the towers in
New York or the flooding of New Orleans?).

An analogy with propositional calculus may be helpful. The rules of logic
are powerful in auditing our reasoning to check for “demonstrable incoher-
ence.” Their power comes, in part, from their applicability to any deductive
reasoning, in any field, time period, or context. On the other hand, the
rules of logic do not help in deciding which premises make sense or which
theorems are interesting. Similarly, it is not the goal of Savage’s framework
to help us make substantive judgement calls, but to “search for incoherence
among potential decisions [...] The theory itself does not say which way
back to coherence is to be chosen, and presumably should not be expected
to” (Savage (1967)). Expecting an answer to the question “What beliefs
should I hold?” is just as unreasonable a burden to place on the Bayesian
framework as expecting propositional calculus to tell us what premises are
true.
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3 Knightian Uncertainty: A Bayesian Reformula-
tion

“[T]he existence of a problem of knowledge depends on the future being di↵erent from the past,

while the possibility of the solution of the problem depends on the future being like the past.”

Frank Knight (1921)

The term “Knightian uncertainty” is often associated with pessimistic
choices and behavioral anomalies, like those presented in Ellsberg (1961).23

In this section, I argue that this association bears little connection with
Knight’s conception of risk and uncertainty. Here, I propose a distinction
between the two concepts that is consistent with rationality and in the spirit
of Knight (1921).

3.1 Knight on Knightian Uncertainty

The misconception that the Bayesian framework precludes Knightian un-
certainty is understandable. Knight wrote his book a century ago, decades
before the development of modern expected utility theory.24 Lacking a for-
mal framework to express his views, Knight’s ideas can be di�cult to follow
for the modern reader. He was clear, however, that in one-shot situations,
such as Ellsberg’s thought experiments, there can be no distinction between
risk and uncertainty: “[W]hen an individual instance only is at issue, there
is no di↵erence for conduct between a measurable risk and an unmeasur-
able uncertainty. The individual [...] throws his estimate of the value of an
opinion into the probability form of ‘a successes in b trials’ [...] and ‘feels’
toward it as toward any other probability situation.”

23 There are too many examples to cite here. Bewley (1986) and Epstein and Wang
(1994), for example, make the connection to Knight clear in the titles of their papers.
Hansen and Sargent (2001) write that “Knight (1921) distinguished risky events, which
could be described by a probability distribution, from a worse type of ignorance that he
called uncertainty and that could not be described by a probability distribution.” Another
example is Routledge and Zin’s (2009) paper on liquidity in the financial crisis where they
argue that, in Savage’s framework, “ ‘model uncertainty’ is indistinguishable from the risk
inherent in the asset’s stochastic process. The Savage independence postulate implies that
one can simply collapse the probability weighting across possible models (‘uncertainty’)
with the probabilities for payo↵s (‘risk’) to represent behavior with a single probability
measure for states.”

24 Knight’s “Risk, Uncertainty, and Profit” began as his Ph.D. thesis. It was eventually
published in 1921.
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In their study of Knight’s work, LeRoy and Singell (1987) conclude that
“Knight shared the modern view that agents can be assumed always to
act as if they have subjective probabilities.” Whatever motivates people to
display Ellsberg choices (whether it be paranoia, fear that the experiment
is rigged, or whatever) is not Knightian uncertainty—at least not as far as
Frank Knight is concerned.

The necessity of a Bayesian point of view is also evident in Keynes
(1937). More than a decade before modern subjective expected utility the-
ory, Keynes wrote that even in situations of uncertainty, “the necessity for
action and for decision compels us [...] to behave exactly as we should if we
had [...] a series of prospective advantages and disadvantages, each multi-
plied by its appropriate probability, waiting to be summed.”

All this suggests that the distinction between “measurable risk and an
unmeasurable uncertainty” is not in conflict with the rationality postulates.
Knight, in fact, equated the risk-uncertainty distinction with the distinction
between objective and subjective probability.25 Risk corresponds to situa-
tions in which the odds are known/measurable/objective; uncertainty is the
opposite. He writes, for example, that “the bursting of bottles does not in-
troduce an uncertainty or hazard into the business of producing champagne;
since in the operation of any producer a practically constant and known pro-
portion of the bottles burst.” Although the outcome for any single bottle is
unpredictable, the odds are objectively measurable through repetition. Here
I propose an abstract approach to capture these ideas. Section 4 suggests a
concrete application to policy making.26

3.2 Measurable Risk

What does it mean to say that a probability distribution P represents a
“measurable risk?” Intuitively, saying that an entity is “measurable” means
that there is an objective device to measure it. An analogy may be useful:
we think of heat and electric current as measurable physical phenomena
because we have devices (the thermometer and ammeter) to objectively
measure their levels.

25 “We can also employ the terms ‘objective’ and ‘subjective’ probability to designate
the risk and uncertainty respectively.” (Knight (1921))

26 See also Al-Najjar and Weinstein (2015) who focus on the role of uncertainty in a
model of precautionary saving.
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It is essential that the measurement is objective, that it is not open to
subjective interpretations and disagreement. The truth or falsehood of the
statement: “the objective probability of an event is p%” should be no more
open to subjective opinions than the statement: “the temperature of the
room where you are reading this paper is 78 degrees.”27

A natural language to express this idea is that of statistical tests. We
imagine a world consisting of “experiments,” each representing a case or
instance of a problem of interest. For example, a medical case corresponds
to a patient’s history, symptoms, health consequences of the treatment, and
any other relevant aspect of the case.

There is no hope of measuring probability in a single experiment. If you
roll a die once, you can measure whether an event like “the die turned 5”
occurred. But from a single roll, it is not possible to measure the probability
that the die turns 5. As Knight clearly understood, when “an individual
instance only is at issue, there is no di↵erence [..] between a measurable risk
and an unmeasurable uncertainty.” The objective measurement of probabil-
ity requires placing individual experiments in the context of the repetition
of similar experiments.

To make this formal, consider an idealized experiment where outcomes
are represented by a finite set S. In the medical treatment example, S is the
outcome of one patient to whom the treatment is applied. We imagine an
environment where the experiment is repeated many times, infinitely often,
in fact. Medical treatments are applied to many patients; anti-terrorism
policies are implemented in a large number of instances of security threats.
Infinite repetition simplifies the exposition, but the ideas can be translated
to a context of large but finite repetitions. The state space in this case is
the set S = S

1 ⇥ S

2 ⇥ · · · of all sequences (s1, s2, . . .), where s

1 denotes the
outcome of the first experiment, s2 the outcome of the second, and so on.

Let P be a set of probability distributions on S. A distribution P 2 P
may be viewed as a theory of how outcomes are produced. In the medical
treatment example, the “true” e↵ectiveness of a treatment is a distribu-
tion that describes, probabilistically and for each patient, how health conse-
quences vary with individual characteristics. In the medical context, P is a

27 In the words of Schmeidler (1989), “[t]he concept of objective probability is considered
here as a physical concept like acceleration, momentum, or temperature; to construct a
lottery with given objective probabilities [..] is a technical problem conceptually not
di↵erent from building a thermometer.”
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set of theories of a treatment’s e↵ectiveness. Our objective is to distinguish
between those elements of P that represent measurable risk and those that
represent unmeasurable uncertainty.

Let the subset ⇥ ⇢ P represent our candidate for a set of measurable
risks. A statistical test for ⇥ is a collection of events T = {T✓}✓2⇥ with
the interpretation that T✓ consists of all sequences of outcomes (s1, s2, . . .)
that confirm ✓. That is, the test defines what observations are consistent
with ✓ being the true distribution generating the data. The next definition
proposes a formal notion of measurement for probability:

Definition 1 (Measurement Mechanism) A measurement mechanism
for a set of probability distributions ⇥ is a statistical test {T✓}✓2⇥ satisfying
the properties:

1. If ✓ 2 ⇥ is the true distribution, then the observed sequence of out-
comes (s1, s2, . . .) confirms ✓ with probability 1; that is,

✓(T✓) = 1.

2. If a sequence of outcomes (s1, s2, . . .) confirms ✓, then the same se-
quence cannot confirm some other ✓

0 6= ✓; that is,

T✓ \ T✓0 is empty for all ✓0 6= ✓.

We say that ⇥ is (objectively) measurable if there is a measurement mech-
anism for ⇥.

The definition builds on familiar statistical concepts. Requirement 1 says
that the test has zero Type I error: if ✓ is indeed the true distribution, then
this fact can be measured by observing what actually happens. Require-
ment 2 is an identification condition: if an observation confirms that ✓ is
the true distribution, then this observation cannot also confirm some other
distribution ✓

0. Idealized long sequences of observations should be su�cient
to resolve any uncertainty as to which ✓ is the true one.

The definition formalizes the idea that statistical tests can provide an
objective measurement mechanism for probability that is independent of
subjective judgement or personal values. Thesis definition does not define
risk or how it di↵ers from uncertainty; for that, we need more structure.
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3.3 Exchangeability

The distinction between risk and uncertainty makes sense only if we believe
there are invariant mechanisms that connect past experiences with future
outcomes. If the di↵erent cases or instances of a problem were completely
disconnected from each other, then, as Knight’s quote above suggests, it
makes little sense to separate the two.

A central idea, associated with Bruno de Finetti, for connecting di↵erent
experiments is that of exchangeability.28 Suppose that a medical treatment
with uncertain consequences is to be applied in a set of cases. A theory
about the e↵ectiveness of this medical treatment is a belief P about how
the outcomes are generated. Exchangeability is the idea that this theory
is not a↵ected by how the cases are labeled. If we initially label the cases
1, 2, . . . then change our mind and switch the labels of cases 3 and 10, say,
then the distribution P remains unchanged. The formal definition is that P
is exchangeable if it is invariant to permutations of labels.

Exchangeability provides a mathematically precise way to express the
idea that the cases considered are similar. The fact that the labels do not
matter means that there is nothing special or remarkable distinguishing
one case from all the other cases it is exchangeable with. Therefore, the
regularities that govern the outcome of one case must be the same as those
governing all others.

In addition to its important and deep consequences in statistics, ex-
changeability also provides a powerful way to separate risk and uncertainty.
If we are willing to assume that the experiments are exchangeable, then a
good candidate for measurable risks is the class ⇥ of distributions under
which outcomes are independent and identically distributed (i.i.d.). It is
clear that any i.i.d. ✓ 2 ⇥ is exchangeable. The following properties of ⇥
can also be established:

1. ⇥ is objectively measurable, in the sense of Definition 1.

2. Every exchangeable P can be uniquely expressed as a subjective un-
certainty about a true but unknown ✓.

28 The classic reference is de Finetti (1937), for which English translations are available.
Exchangeability is a vast topic in probability and statistics and is covered in any advanced
textbook on these subjects. For an introduction with a decision-theoretic interpretation,
Chapter 11 in Kreps (1988) is unsurpassed.
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3. If ⇥0 is any other set of exchangeable distributions satisfying 2, then
⇥0 = ⇥.

The formal statements and proofs of the above assertions are technical.
Items 2 and 3 are an informal statement of a fundamental theorem by de
Finetti. See Al-Najjar and Shmaya (2015, 2013) for discussion and proofs
in a more general context.

In an exchangeable context, the ✓’s correspond to objective, measurable
risks. Imperfect knowledge of ✓ corresponds to uncertainty. This distinction
equates risk with confidence in one’s knowledge of the odds: if one is pre-
pared to proclaim a distribution for an experiment’s outcome independently
of how other similar experiments turn out, then it is reasonable to describe
this situation as one where “the odds are known.” The requirement that
outcomes are independent under risk captures this intuition: given ✓, the
outcome of one experiment is uninformative about the outcome of another.
To say that we are dealing with known probabilities means that we know all
there is to be known about how outcomes are generated. Knightian uncer-
tainty, on the other hand, refers to situations where the odds are unknown.
Under exchangeability, this is represented by a subjective uncertainty about
the true ✓.

The proposed distinction between risk and uncertainty is not axiomatic.
There is no claim, similar to the one made for the Savage postulate, that this
distinction rests on self-evident principles that would be absurd to violate or
contradict. Rather, the distinction builds on plausible assumptions about
the world, assumptions that reasonable people may question, amend, or
disagree on (is the number of experiments large enough? is exchangeability
a sensible assumption?). On the other hand, not everything needs to be
axiomatic and, given the high standards we set for “axiomaticness,” few
things are or should be.

4 Rational Precautionary Policies

This sections examines the common misconception that a Bayesian frame-
work cannot be used to justify precautionary action.
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4.1 Rational Knightian Uncertainty: A Simple Example

4.1.1 A Repeated-Urn Problem

I start with an example based on Halevy and Feltkamp (2005). An urn
contains 100 balls, each colored either white or red. Let ✓ 2 {0, 1, . . . , 100}
denote the number of white balls. A decision maker samples the urn twice,
with replacement. Let x1 denote the outcome of the first draw and x2 the
outcome of the second.

A bet on white means that the decision maker receives 10 (dollars) each
time a white ball is drawn and 0 (dollars) if red. Betting on red is interpreted
similarly. The set of consequences in this problem consists of all pairs (x1, x2)
so (10,0), for example, means receiving 10 in the first draw and 0 in the
second.

There are two types of urn:

The Risky Urn is known to contain 50 white and 50 red balls (✓ = 50).

The Uncertain Urn has unknown composition (i.e., ✓ is unknown).

The urn example appears in Knight (1921) and was subsequently pop-
ularized by Ellsberg (1961). The only di↵erence here is that the urn is
sampled twice instead of once.

A Bayesian decision maker chooses a color and an urn to bet on. To
make this choice, he needs to specify a system of values in the form of a
utility function U(x1, x2) and to quantify his uncertainty in the form of a
probability distribution P . We start with the probabilities. For the risky
urn, the joint distribution, denoted P

(r), is fully specified and is given in
Table 1.

x2 = 10 x2 = 0
x1 = 10 0.25 0.25
x1 = 0 0.25 0.25

Table 1 – Joint Distribution P

(r) of the Risky Urn

For the uncertain urn, a Bayesian decision maker views ✓ as a random
variable with a subjective distribution µ. To make an apples-to-apples com-
parison, assume that our Bayesian decision maker believes the 101 possible
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values of ✓ to be equally likely. The joint distribution, denoted P

(u), appears
in Table 2.

x2 = 10 x2 = 0
x1 = 10 0.335 0.165
x1 = 0 0.165 0.335

Table 2 – Joint Distribution P

(u) of the Uncertain Urn

Although P

(u) and P

(r) are obviously di↵erent, it is still the case that
the marginal probability of drawing a white ball from either urn is the same:

P

(u)(xi = 10) = P

(r)(xi = 10) = 0.50, for i = 1, 2. (1)

4.1.2 Aggregative Utility

Halevy and Feltkamp (2005) consider the above setting and assume:

Aggregative Utility: The decision maker values payo↵s according to:

Uaggregative(x1, x2) = u(x1 + x2),

where u is strictly concave.

Since utility is a function of the sum x1 + x2, the decision maker will
display uncertainty aversion, in the sense of a strict preference to bet on
the risky urn, and hedging, in the sense of strict preference to randomize
the choice of color. To understand the intuition, label the three relevant
outcomes as:

Outcome 0: two red balls.

Outcome 10: one white ball and one red ball, in any order.

Outcome 20: two white balls.

For the risky urn, the intermediate outcome 10 has a probability of 0.50,
while the extreme outcomes, 0 and 20, have a probability of 0.25 each.
For the uncertain urn, the three outcomes have a probability about a third
each. Since this represents a mean-preserving spread relative to the risky
urn, a risk-averse decision maker will choose the risky urn instead. Halevy
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and Feltkamp (2005) also show that a decision maker will display a strict
preference for randomizing his choice.

The intuition behind these findings is that uncertainty introduces a sub-
jective correlation between outcomes. This increases the weight assigned to
extreme outcomes, making the uncertain urn less desirable to a risk averse
decision maker. Aggregative utility implies the decision maker cares about
these extremes.

4.1.3 Separability

The above example delivers uncertainty aversion almost too easily. The
point is so intuitive that it is easy to miss an important subtlety. To see
this, replace the aggregative utility by:

Separable Utility: The decision maker utility is given by:

Useparable(x1, x2) = v(x1) + v(x2), (⇤)

where v is a strictly concave utility function.

Separability is by far the more common assumption in economic, finance,
and game theory models.29

Under separability, expected utility is additive in the two draws:

EP Useparable(x1, x2) = EP u(x1) + EP u(x2).

This expression depends only on the marginal distributions of P ; any in-
formation about correlation between the two draws is irrelevant. In our
example, the probability of white in any given draw is 0.50 under both the
risky and the uncertain urns. The decision maker will be indi↵erent between
the two since both generate an expected utility of:

[0.50u(10) + 0.50u(0)]| {z }
Expected utility

from the first draw

+ [0.50u(10) + 0.50u(0)]| {z }
Expected utility

from the second draw

.

Separability causes uncertainty aversion to disappear!

This example may explain the widespread confusion that a Bayesian
framework cannot account for aversion to uncertainty. In the example, the

29 Dynamic models usually assume separability, except that future payo↵s are dis-
counted. Introducing discounting would not a↵ect the point being made here.
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risky and uncertain urns correspond to di↵erent distributions, Whether the
decision maker cares about this di↵erence will depend on his utility. A
Bayesian decision maker with a separable utility will not care about the
di↵erence because separability implies that only the marginal distributions
matter.30

A formal analysis of aggregative utility may be found in Al-Najjar and
Pomatto (2015). Using their model, one can think of uncertainty aversion
and hedging as an expression of risk aversion when utility is not separable,
rather than as a novel phenomenon that lives outside Savage’s framework.

4.2 Bayesian Precautionary Policies

The above example suggests a rational-choice justification for precautionary
action. Here I introduce a simple example, leaving further analysis for future
work.

4.2.1 Cost and E↵ectiveness of Precautionary Action

Consider n instances of a policy problem, numbered 1, . . . , n. In each in-
stance, a binary outcome occurs, either 1 (good outcome) or 0 (bad out-
come). Let si denote the 0-1 outcome of instance i.31 In the case of a
medical treatment of unknown e↵ectiveness, n is the number of patients to
whom the treatment is applied, outcome 1 indicates a successful treatment,
while 0 indicates failure.

The true e↵ectiveness of the treatment is parametrized by a number
✓ 2 [0, 1] that indicates the probability of the good outcome in any given
instance. Thus ✓ = 0.70 means that in any given instance there is 70%
chance the outcome will be good and 30% chance it will be bad. Outcomes
are independent given ✓.

In addition, there is a costly precautionary action ai 2 [0,1) that can be
taken to improve the odds of a good outcome. Specifically, if precaution ai is
taken and the true e↵ectiveness is ✓, then the probability of a good outcome

30 Separability means that the agent views the problem as a sequence of isolated cases.
Knight (1921) clearly recognized that this eliminates the role of uncertainty: “[w]e can
only say that ‘in so far as’ one confronts a situation involving uncertainty and deals with
it on its merits as an isolated case, it is a matter of practical indi↵erence whether the
uncertainty is measurable or not.”

31 The assumption that outcomes are binary is convenient for the example but not
essential to the main point.
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in instance i increases from ✓ to #(✓, ai), where the function # models the
e↵ectiveness of precautionary action. Finally, the cost of taking precaution
level ai is a strictly convex function c(ai).

4.2.2 Aggregative Policy Maker’s Utility

Consider a planner who maximizes the following social welfare function:

U(a1, . . . , an; s1, . . . , sn) = u

 
1

n

nX

i=1

(si � c(ai))

!
, (2)

with a strictly concave u. For example, if ai denotes a precautionary measure
to prevent harmful environmental gas emissions at plant i, then welfare is
a concave function of the sum, reflecting the policy maker’s aversion to
aggregate variability. The division by n is convenient to ensure that the
utility scale does not vary with n.

The (non-separable) welfare criterion U above ignores important con-
siderations such as distributional concerns. For example, if instances were
patients and outcomes measured their well-being, then the policy maker
would care only about the average health outcomes, not how they vary
across individuals. Incorporating distributional concerns is orthogonal to
the risk-uncertainty distinction that is our main focus. All that is needed
here is a welfare function that is sensitive to uncertainty about e↵ectiveness
of the treatment.

4.3 A Numerical Example

I solve a parameterized version of the model described above (the numerical
calculations below are available from the author). First, since the problem
is symmetric, I restrict attention to solutions with a common level of pre-
cautionary action ai = a for all i. Second, assume that n is large (in fact, a
continuum) so that the law of large numbers holds. This makes it possible
to replace random outcomes by their expectations. With these assumptions,
the problem becomes:

max
a

Z

⇥
u

⇣
#(✓, a)� c(a)

⌘
dµ(✓). (3)

To complete the description of the model, assume:
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1. Quadratic cost function c(a) = �a

2
,� > 0.

2. The function # takes the form:

#(✓, ai) = ✓(1� ai�) + ai�, (4)

so a level of precaution ai proportionally shrinks the interval of possible
✓’s from [0,1] to [ai�, 1].

3. CARA utility function u with risk-tolerance parameter R.32

We begin with the case of pure risk, defined as an environment where
✓ is known. Intuitively, the optimal level of precautionary action should
increase as ✓ decreases since precaution is more e↵ective in bad realizations
of ✓ while there is less to gain when ✓ is already high. More concretely,
assume:

• � = 0.7, R = 0.2, � = 0.5.

With these values, the level of precautionary action depends on the value
of ✓, and ranges from 0 for ✓ = 1 to 0.363 for ✓ = 0. Figure 1 shows this
dependence as a downward sloping line with vertical intercept 0.363.

Fundamental uncertainty refers to environments where the true impact
of various policies is unknown. In the case of a new medical treatment, the
policy maker is uncertain about the treatment e↵ectiveness, side e↵ects, etc.
A Bayesian policy maker represents this uncertainty by a belief µ about ✓.
Assume:

• The policy maker’s belief about ✓ is the uniform distribution µ on [0,1].

The optimal value of precaution under uncertainty is a = 0.29, shown
as the horizontal line in Figure 1. It is instructive to consider the following
thought experiment: What value of ✓ would, if known, justify a level of
precaution a = 0.29? The answer is ✓ = 0.2, shown in Figure 1 as the
intersection between the two lines expressing the optimal levels of precaution
under risk and uncertainty.

32 That is, u is a constant absolute risk aversion utility and can therefore be expressed

as u(x) = 1 � e

�x

R . The risk tolerance parameter R is the inverse of the coe�cient of
absolute risk aversion. High values of R approximate risk neutrality.
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INSERT FIGURE 1 ABOUT HERE.

It is easy to imagine how an outside observer might mistakenly believe
that a precaution level of a = 0.29 is the result of pessimism rather than
an expected utility calculation. The marginal distribution on any instance
is ✓ = 0.5 regardless of whether we are in a risky or uncertain environment,
and ✓ = 0.5 justifies a = 0.363

2 = 0.181, not a = 0.29.

Understanding how the high level of precaution a = 0.29 can follow from
expected utility maximization requires subtle reasoning. First, it requires
modeling uncertainty about the parameter ✓ as a belief about probability
distributions (the ✓’s). Second, the social welfare function cannot be sepa-
rable. If the policy maker’s utility were separable, then, again appealing to
symmetry, the optimal precautionary action would solve:

max
a

Z

⇥

h
#(✓, a)v(1� c(a)) + (1� #(✓, a)) v(0� c(a))

i
dµ(✓).

Separability implies that only the marginal distributions on instances matter
and the policy maker would be insensitive to correlation. In our parametric
example, the optimal level of precaution under separability is only about
0.075 ! See Figure 1.

In summary, to the outside observer a precaution level of a = 0.29 may
appear as the result of a contortion of probabilities that puts greater weight
on bad outcomes. In fact, increased precaution is a consequence of a non-
separable welfare criterion in an otherwise standard expected utility frame-
work.

5 Concluding Observations

A Bayesian’s life is hard work: he must specify a system of values and
quantify his uncertainty about all the unknowns in his environment.33 It
should therefore not be surprising that common-sense intuitions fail and

33 Christopher Sims quotes Don Berry as having said: “Bayesian inference is hard, in
the sense that thinking is hard.” This is a little unfair to non-Bayesians. Full Bayesian
analysis in high-dimensional problems can place so high a burden that both modelers and
lab subject will understandably resort to non-Bayesian shortcuts. The problem is not with
the use of convenient shortcuts per se, but with confusing shortcuts for normatively valid
principles.
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errors in judgement are the norm when trying to apply the rational-choice
paradigm in reasoning about uncertainty.

Human probabilistic intuition fails in settings much simpler than those
encountered in public policy.34 Criteria such as the Precautionary Principle
gain currency as well-intentioned shortcuts aimed at correcting human and
societal biases. The analysis of this paper leads to conclusions similar to
Sunstein’s (2003): “those who endorse the precautionary principle are re-
sponding to salutary political or moral motivations that the principle might
be thought to embody. [...] The problem is that the precautionary principle,
as applied, is a crude and sometimes perverse way to promote these various
goals.”

34 Halevy’s (2007) experimental results show that pessimistic or cautious choices are
highly correlated with subjects’ inability to apply simple rules of probability calculus.
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A Appendix

For the convenience of the reader, I reproduce, in a condensed form, Ghi-
rardato’s (2002) framework and postulates. I also report on Hubmer and
Ostrizek (2013) who show that Ghirardato’s A7 is unnecessary.

The primitives are a state space S and consequence space X. Both
are arbitrary sets. Acts are finite-valued functions f, g : S ! X. The
decision maker is assumed to have a preference relation %E for every event
E representing the decision maker’s ranking over acts if he is told event E
occurred. The initial or unconditional preference is %=%S . An event E is
null if the decision maker is indi↵erent between any pair of acts f, g that
di↵er only on states in E. This is the preference counterpart of sets of zero
probability.

A list of Ghirardato’s (2002) postulates appears below. The last three
postulates are identical to Savage’s. They are not controversial and not
reproduced here:

A1 For every event E, %E is reflexive, transitive and complete.

A2 For any non-null event E and pair of acts f, g

(a) f %E g implies fEg % g;

(b) fEg % g implies f %E g;

A3 For any two consequences x, x0 and non-null event E, x % x

0 if and only
if x %E x

0.

A4 Savage’s P4.

A5 Savage’s P5.

A6 Savage’s P6.

The completeness part of A1 is referred to in the text as complete con-
ditional rankings. A2 (a) corresponds to the assumption that information is
valuable, while (b) corresponds to consistent implementation. A3 says that
taste over consequences is not a↵ected by information. Ghirardato (2002)
also imposes a form of consequentialism:

A7 For any non-null event E and pair of acts f, g, f(s) = g(s) for every
s 2 E implies that f ⇠E g.
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Hubmer and Ostrizek (2013) show that this postulate is redundant, being
implied by 1 and 2.

In the body of the paper I interpreted A2 in terms of options and their
value. For that interpretation, a strict-preference version of A2 is more
natural. Such version is equivalent to A2 as stated. In one direction, assume
that A2 holds. Observe that g = gEg, so A2 implies:

g % fEg () g %E f.

If f �E g but g % fEg, then by the earlier observation g %E f ; a contra-
diction. Similarly, suppose that fEg � g but g %E f , then g % fEg and
we also have a contradiction. In the other direction, suppose that the strict
version holds. To prove A2, suppose that f %E g but g = gEg � fEg.
But then g �E f ; a contradiction. Finally, if fEg % g but g �E f then
g = gEg � fEg; also a contradiction.
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Figure 1 – Optimal Precautionary Action Under Risk and Uncertainty
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