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Abstract—Early detection of anomalies in any system or 

component prevents impending failures and enhances 

performance and availability. The complex architecture of 

electronics, the interdependency of component functionalities, 

and the miniaturization of most electronic systems make it 

difficult to detect and analyze anomalous behaviors. A Hidden 

Markov Model-based classification technique determines 

unobservable hidden behaviors of complex and remotely 

inaccessible electronic systems using observable signals. This 

paper presents a data-driven approach for anomaly detection 

in electronic systems based on a Bayesian Hidden Markov 

Model classification technique. The posterior parameters of the 

Hidden Markov Models are estimated using the conjugate 

prior method. An application of the developed Bayesian 

Hidden Markov Model-based anomaly detection approach is 

presented for detecting anomalous behavior in Insulated Gate 

Bipolar Transistors using experimental data. The detection 

results illustrate that the developed anomaly detection 

approach can help detect anomalous behaviors in electronic 

systems, which can help prevent system downtime and 

catastrophic failures.  
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1. INTRODUCTION 

An anomaly in electronics can be defined as a deviation 
from normal behavior, and can be associated with 
parametric or non-parametric changes that evolve gradually 
over time. Early detection of anomalies in complex 
electronic systems prevents unexpected failures and 
enhances performance and availability [1]. The complex 
architecture of electronics, the interdependency of 
component functionalities, and the miniaturization of most 
electronic systems make it difficult to detect and analyze 
anomalous behaviors [2].  

A Hidden Markov Model (HMM) is a statistical Markov 
model in which the system being modeled is assumed to be 
a Markov process with unobserved (hidden) states. HMM-
based classification technique offers an opportunity to 
determine unobservable hidden behaviors of complex and 
remotely inaccessible electronic systems using observable 
signals [3]. Dynamic nature of a system can be modeled as a 
Markov state model, in which measures for anomaly 
detection and prognostics can be formulated [4]. The 
Markov model presents system behavior better than any 
regression fit, especially for electronic systems in which 
failure that is not due to wear out mechanisms.  

HMM-based health state monitoring techniques have been 
used for diagnostics and prognostics purpose in the past. For 
example, HMM-based health state monitoring techniques 
have been applied for health state detection of cutting tools 
in machining process [5][6][7][8], hydraulic pump [9][10] 
and gearbox of helicopter [3]. Chen et al. [11] developed a 
hybrid prognostic method of using high-order HMM and 
adaptive neuro-fuzzy system for carrier plate and bearing 
faults.  

Smyth [12] pointed out that the Markov model transition 
parameters can be estimated from prior knowledge of the 
long-term system behavior and gross failure statistics. 
Baruah and Chinnam [6] highlighted that a Bayesian 
approach can be used to update the parameters of HMM-
based prognostics model as new data becomes available. 
However, Bayesian HMM for anomaly detection has not yet 
been studied. 

This paper presents a data-driven approach for anomaly 
detection of electronic systems based on a Bayesian HMM 
classification technique. The developed anomaly detection 
approach has two distinct phases: training and detection. In 
the training phase, HMMs are formulated that best describe 
the healthy and anomalous behaviors of systems. In the 
detection phase, the unknown observation sequences are 
then categorized as healthy or anomalous using the trained 
HMMs. This research uses Bayesian inference for 
estimation of the posterior HMM hyperparameters that are 
used to calculate the HMM model parameters. An 
application of the developed Bayesian HMM-based 
anomaly detection approach is presented for detecting 
anomalous behavior in Insulated Gate Bipolar Transistors 
(IGBTs) using experimental data. In Section 2, the 
mathematical background of Bayesian HMMs will be 
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discussed. Section 3 will develop the Bayesian HMM 
classification-based anomaly detection approach, and 
Section 4 will present an example application of IGBT 
anomaly detection. Finally, the conclusions of this paper 
will be provided.   

2. BAYESIAN HIDDEN MARKOV MODEL 

HMM is a statistical model in which the system is assumed 
to be a Markov process with unobserved or hidden states. In 
an HMM, the state is not directly visible, but the output that 
is dependent on the state is observable. In defining HMMs, 
we will use similar notation as used by Rabiner [13]. We 
define a system at any time as one of a set of � hidden 
states, ��, ��, … , �� . Depending on the set of probabilities 
associated with a state (called transition probabilities), the 
system may undergo the change of state at a discrete time. 
The time instants associated with state changes are 
represented as � = 1,2, … , �, and we denote the state at time � as �. The hidden state sequence can be denoted as � = {��…�}. The state transition probability matrix can 

be represented as A={���}, where ��� = �(� = ��|��� =��); 1 ≤ �, � ≤ �; and ��� ≥ 0. The number of distinct 

observation symbols per state is  . Observation symbols 
correspond to the physical output of the system being 
modeled, which at any time can be one of a set of M 
observation symbols, {!�, !�, … , !"}. We denote the 
observation at time � as #�. The observation sequence can 
be denoted as # = {#�#�…#�}. The probability of the 
observation symbol !$ having been produced from state � 
is, % = &'�(!$)(, where '�(!$) = �)#� = 	!$+� = ��,, 1 ≤ � ≤ �, and 	1 ≤ - ≤  . The initial state distribution 
vector . = {.�}, where .� = �(� = ��),  1 ≤ � ≤ �. In 
compact form, the complete parameter set of the HMM can 
be represented as shown in Eq. (1):  

		/ = {0, %, .}																																									(1) 
The Bayesian HMM technique has been implemented in the 
past by some researchers. For example, MacKay [14] was 
the first researcher to apply variational methods to HMMs 
when the observations were discrete. Ji et al. [15] presented 
a Variational Bayes (VB) learning algorithm for continuous 
HMMs. McGrory and Titterington [16] applied variational 
methods in an HMM with Gaussian noise, which leads to an 
automatic choice of model complexity. Beal [17] applied the 
VB expectation maximization algorithm to HMMs and 
showed how model selection tasks, such as determining the 
dimensionality, cardinality, or number of variables, can be 
achieved by using VB approximations.  

To define our Bayesian HMM, we specify Dirichlet 
distributions for the parameters / = {0, %, .}, with set of 

hyperparameters 1 = &1(2), 1(3), 1(4)(. In Bayesian 

statistics, a Dirichlet distribution is considered as the 
conjugate prior of the categorical distribution. Conjugate 
prior distributions simplify the mathematical manipulations 
for performing Bayesian inference. Let us assume that in a 
model the data points follow a categorical distribution with 
unknown parameter vector / and � number of categories. 

We treat the model parameter as a random variable and give 
it a prior distribution defined using a Dirichlet distribution 

with hyperparameter 1 [17][18][19]: 

										�(/|1) ∝ 6�7(1) = 18(1)9/�:;��													�
�<� 	(2) 

 
where, � is the number of categories,  1 = ∑1� , 1� > 0,  8(1) = ∏ @(:;)A;BC@(:) , and Γ(1) is the gamma function. 

In probability theory and statistics, a categorical distribution 
is a probability distribution that describes the result of a 
random event that can take on one of � possible outcomes, 
with the probability of each outcome separately specified. In 
our case, the observation sequence is categorical in nature. 
Hence, the likelihood of data (observation sequence) can be 
defined as follows [18][19]:  

		�(#|/)~F��GHI7�J�K(/) =9/�L;�
�<� 																(3) 

 

where # = (#�, … , #�) the entire observation sequence and F� is the count of number of times a random event of ��N	category occurs in the observation sequence #. 

According to Bayes rule,  

																													�(/|#) 	∝ 	�(#|/)�(/|1)																									(4)                                                        
 

Using Eqs. (2) and (3), the posterior parameters can be 
estimated by Eq. (5): 

�(/|#) ∝ 		P9/�L;�
�<� Q	P9/�:;���

�<� Q 	
= P9/�L;R:;���

�<� Q																																				(5) 
 
Therefore, as per the conjugate prior method, if the prior is 
Dirichlet with parameter 1, then the posterior is Dirichlet 

with parameter (F + 1) [17][18][19]: 

�(/|#) ∝ 6�7(F + 1)																								(6)	
 

We set Dirichlet priors on our Bayesian HMM parameters 	0, %, and . with vector of hyperparameters 1(2), 1(3)�VW	1(4) as shown in Eqs. (7) - (9), where,  1�(2) = {1��(2)…1��(2)} is vector of hyperparameters for ��N 

row of parameter 0,	 and 	1�(3) = {1��(3)…1�"(3)}	is vector of 

hyperparameters for ��N row of parameter %.  
Y(0) = �)0+1(2), = ∏ 6�7)1�(2),																	(7)��<�               
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Y(%) = �)%+1(3), = ∏ 6�7)1�(3),��<� 																(8)  
Y(.) = 		�).+1(4), = 6�7)1(4),																									(9)

                   

The expected count of ��N row of parameter A is represented 

by vector F�(2) = {J��(2)…J��(2)}, where � is the number of 

hidden states in the system, and J��(2)is the expected count of 

transitions from ��N state (��)	to 	��N state (��)	given 

observation sequence #. The expected count of ��N row of 

parameter % is represented by vector F�(3) = {J��(3)…J�"(3)}, 
where    is the number of distinct observation symbols that 

the system can produce, and J�$(3) is the expected count of 

the observation symbol !$ produced by ��N state	given 

observation sequence #. The expected count of parameter . 

is represented by vector F(4) = {J�(4)…J�(4)}, where � is the 

number of hidden states and J�(4) is the expected count to be 

in ��N	state at time � = 1 given observation sequence #. 

Therefore, the posterior of our Bayesian HMM parameters 0, %, and . can be determined by the conjugate prior 
method as:  

			H(0) = �(0|#) = ∏ 6�7 ^F��(2) +1�(2)_									(10)��<�    

H(%) = 	�(%|#) = ∏ 6�7 ^F�$(3) +1�(3)_��<�        (11) 
H(.) = �(.|#) = 6�7)F(4) + 1(4),														(12) 

In order to estimate the posterior parameters, we need the 

vector of the expected counts F(2), F(3), and F(4), and 

vector of prior hyperparameters 1(2), 1(3), and 1(4). The 
expected counts can be estimated by the forward-backward 
algorithm, along with the likelihood of the observation 
sequence (data). The forward-backward algorithm takes as 
input the mean of the parameters, whose distributions are 
defined by Eqs. (10) - (12). The mean of the parameters can 
be estimated by the digamma function. The digamma 
function is the standard function for estimating the 
geometric mean of Dirichlet distributions. The geometric 
mean values of the elements of the matrices of transition 
probability, emission probability, and initial probability, can 
be estimated as shown by Eqs. (13) - (15) [17], which 
results in sub-normalized probabilities. 

���$`ab = GcY de ^J��(2) +1��(2)_
− egh(J��(2) +1��(2))�

�<� ij												(13) 
'�$$`ab = GcY ke)J�$(3) +1�-(3),

− e Ph(J�$(3) +1�-(3)"
$<� )Ql											(14) 

.�$`ab = GcY	ke)J�(4) +1�(4),
− e Ph(J�(4) +1�(4)�

�<� )Ql																			(15) 
 

where e(c) = mmn KVΓ(c) is the digamma function and Γ(c) 
is the gamma function [17][18]. 

Likelihood of the observation sequence 

The forward variable o�(�) and backward variable p�(�) of 
the forward–backward algorithm are defined to evaluate the 

likelihood and the expected counts, F(2), F(3), and F(4). The 
forward variable o�(�) is the probability of generating the 
partial observation sequence	#�#�…#�  at time � when 
system is in state ��. The forward variable at time � = 1, o�(�), is defined by Eq. (16) [13]:   

o�(�) = .�'�(#�),						1 ≤ � ≤ �																(16) 
 
The forward variable at time � + 1, o�R�(�), can be 

calculated by multiplying the emission probability '�(#�R�) 
with the product of the forward variable and the 
corresponding state transition probabilities for all � states at 

time �, as shown by Eq. (17) [13]. 

			o�R�(�) = '�(I�R�)ho�(�)	����
�<� 	,					1 ≤ � ≤ �,			1 ≤ �

≤ � − 1																																																				(17) 
 

The likelihood of the observation sequence,	�(#|/), is the 
sum of the terminal forward variables o�(�), as defined in 
Eq. (18) [13]. 

																�(#|/) =ho�(�)																												(18)�
�<�  

 

The backward variable p�(�) is the probability of generating 
partial observation sequence	#�R�#�R�…#�  at time � and in 
state �� , given the model. The backward variable at time �, p�(�),  is defined as shown by Eq. (19) [13]: 

																						p�(�) = 1,											1 ≤ � ≤ �																									(19) 
               
The backward variable at time �, p�(�), can be solved 
inductively as follows [13]: 

p�(�) = h 	���'�(#�R�)p�R�(�),�
�<� 									1 ≤ � ≤ �,
� = � − 1, � − 2,… ,1																												(20) 
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Expected counts in the observation sequence 

The posterior hyperparameters need to be re-estimated in 
each of the iterations of HMM training, since the Baum-
Welch algorithm is an iterative learning algorithm. In order 
to update the posterior hyperparameters, variables q�(�, �) 
and r�(�) need to be identified first. The variable q�(�, �) is 

the probability of being in state �� at time � and in state �� at 

time	� + 1, given the observation sequence		#�#�…#� 	and 
defined as follows [13]: 

q�(�, �) = �)� = �� , �R� = ��+#, /,							(21)	
                                           q�(�, �) can be estimated using forward and backward 
variables, as shown by Eq. (22): 

q�(�, �) = st(�)	a;uvu(wtxC)ytxC(�)∑ ∑ st(�)AuBC 	∙A;BC 	a;uvu(wtxC)ytxC(�)								(22)	
 

The variable r�(�) is the probability of being in state �� at 

time	�, given the observation sequence #�#�…#� and 

model /, defined as [13]: 

r�(�) = �(� = ��|#, /)																								(23)  
                              

The probability r�(�) can be expressed in terms of o�(�) and p�(�) as [13]:  

																																r�(�) = o�(�)p�(�)∑ o�(�)p�(�)��<� 																									(24)	
                            

The expected count of transitions from ��N state (��)	to 	��N 

state (��), denoted by	J��(2), can  be estimated by: 

J��(2) = hq�(�, �)																											(25)���
�<�  

 
The expected count of the observation symbol !$ produced 
by ��N state (��)	 given the observation sequence #, denoted 

as J�$(3), is defined as: 

J�$(3) = h r��
�<�	{.�	wt<|}

(�)																							(26) 
 
The expected count to be in state �� at time � = 1 is 

expressed as J�(4): 
J�(4) = r�(�)																																								(27) 

Once the counts have been estimated as above, distributions 
of the posterior parameters A, B, and .  can be defined as 
shown in Eqs. (10)-(12). 

 

Convergence criteria 

The VB procedure is a practical implementation of Bayesian 
learning for the true posterior probabilities of the model 
parameters. Instead of computing the true posterior 
probabilities of the model directly, the VB approximates the 
true posterior to a variational posterior by maximizing a 
negative free energy. Each of the iterations either increases 
the negative free energy or leaves it unchanged, until it 
converges to a local maximum [15]. The negative free 
energy, ~, is an important quantity to maximize the 
marginal likelihood and can be defined as shown in Eq. (28) 
[15][18][20]:  
 			~(/) = �H(/) log Y(#|/)W/ − ��[H(/)||Y(/)] 			(28) 
where, the first term is the average likelihood of the data, 
and the second term ��[H||Y] is the Kullback–Leibler (KL) 
divergence between the approximating posterior H and the 
prior Y, and given by Eq. (29) [18][20].  

��[H||Y] = �H(/) log H(/)Y(/) 	W/ 												(29) 
 
KL is a positive quantity. When KL is greater than zero, ~ 
provides a lower bound on the model log-likelihood. When 
KL is equal to zero, ~ becomes equal to the model log-
likelihood, and H(/) is equal to the true posterior Y(/), and 
convergence is achieved.  

3. ANOMALY DETECTION APPROACH BASED ON 

BAYESIAN HIDDEN MARKOV MODEL 

CLASSIFICATION 

This section develops the Bayesian HMM-based anomaly 
detection approach. The data pre-processing technique used 
to generate observation sequences, learning algorithm, and 
health state detection process are explained.  

Data pre-processing 

Data pre-processing in machine learning process helps to 
resolve issues such as noisy data, redundant data, and 
missing data values [21]. Data-preprocessing techniques 
such as instance selection and data discretization have been 
used in this approach. During the pre-processing phase, the 
first step is to average the data belonging to the same cycle 
to reduce the amount of data and the processing time. 
Averaging is one way to reduce the sheer size of a large data 
set, with very little loss of information [22]. Poritz and 
Richter [23] also used averaging to reduce the volume of 
computation. The next step in the pre-processing phase is 
data discretization. We discretized our data using the equal- 
width partitioning method that divides the range into M 
intervals of equal size. If X and Y are the lowest and highest 
values of the attribute, then the width of the intervals will be 
W = (Y - X)/M. 
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Bayesian HMM learning algorithm 

Bayesian HMM learning algorithm is illustrated in Figure 1. 
Bayesian HMMs are created for each health state of the 
system with the model parameters treated as random 
variables of a Dirichlet distribution. In the initialization step, 
we initialize the hyperparameters of the HMM models by 
equal probabilities (uniform prior). The symmetric Dirichlet 
distribution is often used as a Dirichlet prior [17], and all 
elements of the parameter vector have a fixed uniform 
value. For example, if there are � = 4 hidden states, prior 

hyperparameters for A can be defined as 1(2) =[0.25		0.25		0.25		0.25]. The hyperparameters defined as 
such will be used as priors in the training iterations. 
Similarly, prior hyperparameters are defined for % and .. 
Random values for the Bayesian HMM parameters 0, %, and 

. are generated from their respective Dirichlet distributions, 
as shown in Figure 1.  

The initial counts are estimated by the product of random 
values of the parameters and the total length of the 
observation sequence. Bayesian inference of the variational 
posterior hyperparameters is computed using the conjugate 
prior method. The posterior hyperparameters are then used 
in the digamma function to estimate the mean of the 
Dirichlet distributions for the model parameters, i.e., the 
transition probability, emission probability, and initial 
probability. The mean of the Dirichlet distributions for the 
model parameters are then used in the forward-backward 
algorithm to estimate the expected counts and the log-
likelihood of the observation sequence.  

 

Figure 1- Flow chart of the Bayesian HMM training algorithm
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The expected counts are used to estimate the posterior 
hyperparameters in the ith iteration using the conjugate prior 
method (Eqs. (10) - (12)). The posterior hyperparameters 
and the log-likelihood of the data are used to estimate the 
negative free energy to determine whether the convergence 
criteria have been met. If the convergence criteria have not 
been met, then the next iteration is started, or else the 
training is stopped. The output of the training process is the 
posterior parameters of the Bayesian HMM.  

The difference between Bayesian and regular HMM is that 
in regular HMM, the model parameters are estimated using 
the Baum-Welch algorithm, whereas in our Bayesian 
approach, the model parameters are treated as random 
variables of a Dirichlet distribution, and the posterior 
hyperparameters are estimated using a modified Baum-
Welch algorithm. Further, regular HMM converges when 
the change in the likelihood for 2 consecutive iterations is 

less than the convergence coefficient, whereas in our 
Bayesian HMM approach, the convergence is established 
when the change in the negative free energy is negligibly 
small. The developed Bayesian HMM is based on VB, 
which approximates the true posterior to a variational 
posterior by maximizing a negative free energy.  

Detection phase 

In the detection phase, the discretization process used on the 
training data is also used for test data. The procedure for 
detecting the health state of an unknown observation 
sequence is illustrated in Figure 2. The likelihoods for 
healthy and anomalous HMMs are computed by the 
forward-backward algorithm with optimal posterior 
hyperparameters. The model with the highest likelihood is 
considered to be the model that represents the health 
condition of the unknown observation sequence.  

 

 
 

Figure 2- Flow chart of health state detection using Bayesian HMM 
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An application of the developed Bayesian HMM-based 
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representing abnormal behavior, were monitored by our 
approach. Two HMMs representing the healthy and 
anomalous states needed to be trained. Table 1 presents the 
training samples used to train the Bayesian HMMs. The 

training samples have been obtained from three different 
operating conditions (1 kHz switching, 50% duty cycle, 
100C swing; 5 kHz switching, 50% duty cycle, 100C swing; 
and 5 kHz, 60% Duty Cycle, 50C swing). 

 

Table 1: Training samples 

Training samples Operating conditions Size of training sequence 

Training sample 1 (8953x1) 
Number of cycle: 646 

1 kHz switching, 50% duty cycle, 100C swing Healthy (475x1) Anomalous (171x1) 

Training sample 2 (8187x1)    
Number of cycle: 482 

5 kHz switching, 50% duty cycle, 100C swing Healthy (121x1) Anomalous (361x1) 

Training sample 3 (15130x1)                           
Number of cycle: 1178 

5 kHz switching, 50% duty cycle, 100C swing Healthy (103x1) Anomalous (1075x1) 

Training sample 4 (32867x1)   
Number of cycle: 4425 

5 kHz, 60% Duty Cycle, 50C swing Healthy (859x1) Anomalous (3566x1) 

  

The data pre-processing technique described in Section 3 
was used to generate the training observation sequence. 
First, we averaged the data belonging to the same cycle to 
reduce the amount of data and the processing time. Then, 
equal-width partitioning was used to construct labeling 
schemes to supervise the training data for the healthy and 
anomalous models. Both the healthy and anomalous models 
need to have the same number of labels,  , in the 
observation sequence. The range of each observation 
sequence was divided into   intervals (partitions) of equal 
size. The number of labels   considered in the observation 
sequence is 7 based on the complexity and size of the 
available data. 

Choosing the number of hidden states is an important 
problem for HMMs. Number of states within the HMM 
affects generalization of the model [6]. Too many hidden 
states can lead to over fitted model and poor performance. 
The hidden states can be chosen based on the knowledge of 
the system failure mechanisms [6]. However, the knowledge 
of failure mechanisms for complex and remotely 

inaccessible electronics such as IGBTs are often absent. The 
number of hidden states can also be chosen based on the 
knowledge of the observation sequences, i.e., the different 
types of observation sequences resulting from different 
combinations of available symbols/labels [17]. In this paper, 
we chose the number of hidden states � for the HMMs to be 
18 based on the different observation sequences available. 
Further, we considered the same number of states for both 
the healthy and anomalous HMMs, since comparison of 

their likelihood is the basis of classification.  

The Figure 3 presents the Hinton diagrams for the transition 
and emission matrices for the healthy and anomalous 
models. A Hinton diagram provides a qualitative display of 
the values in a data matrix (normally a weight matrix). From 
Figure 3a, it can be concluded that hidden states 8 and 14 
are relatively inactive and have very low porbability of 
being transitioned into by other active states. Also, 
observation symbol 1 is mostly generated by the hidden 
state 3. Similar conclusions regarding the active states and 
observation symbols can be made from Figure 3b. 

 

 

Figure 3-Hinton diagram for posterior parameters A<18x18> and B<18x7> for 

a) healthy model (left), and b) anomalous model (right) 
 

Figure 4 presents the learning curves used in the training 
process for optimizing the posterior parameters for both 
healthy and anomalous models. As is evident from Figure 
4a, the negative free energy F value for the healthy HMM 

stabilize after around 50 iterations, whereas for anomalous 
model the negative free energy F value for the healthy 
HMM stabilize after around 25 iterations (Figure 4b). 

(b) (a) 
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.  
 

Figure 4a) Negative free energy for healthy model (left), and 4b) Negative free energy for anomalous model 

(right) 

In the detection phase, 9 test sequences were used for health 
state detection using the healthy and anomalous models 
built in the training phase, as shown in Table 2. The test 
data 1 to 7 have been obtained from same operating 
conditions as training samples. Test data 8 and 9 have been 
obtained from different operating condition (1 kHz 
switching, 50% duty cycle, 50C swing), which has not been 
used for training. The model with highest likelihood is 
considered to be the model which represents the health 

condition of the test sequence. The detection accuracy of the 
Bayesian HMMs can be measured from Table 2 by 
comparing the last two columns, i.e., detected and real 
health state, which match for all but one of the data sets. As 
shown in Table 2, there is 88.9 % accuracy using the 
developed Bayesian approach. Further research is needed to 
improve the detection accuracy of the developed Bayesian 
HMM by using better priors for parameters and better health 
monitoring data. 

Table 2: IGBT health state detection results using the developed Bayesian approach 

Test cases  Operating conditions 
Models to score test 

data 

Log-

Likelihood 

Detected 

health state 

Real health 

state 

Test data 1 with 
724 data points 

1 kHz switching, 50% duty 
cycle, 100C swing 

Healthy-BHMM -297.2707 
Healthy Healthy 

Anomalous-BHMM -495.5026 

Test data 2 with 
166 data points 

1 kHz switching, 50% duty 
cycle, 100C swing 

Healthy-BHMM -703.4825 
Anomalous Anomalous 

Anomalous-BHMM -87.5229 

Test data 3 with 
1101 data points 

5 kHz switching, 
50% duty cycle, 100C 

swing 

Healthy-BHMM -205.4411 
Healthy Healthy 

Anomalous-BHMM -462.9955 

Test data 4 with 
1758 data points 

5 kHz switching, 
50% duty cycle, 100C 

swing 

Healthy-BHMM -802.2153 
Healthy Healthy 

Anomalous-BHMM -1306.7748 

Test data 5 with 73 
data points 

5 kHz switching, 
50% duty cycle, 100C 

swing 

Healthy-BHMM -618.0505 
Anomalous Anomalous 

Anomalous-BHMM -43.2043 

Test data 6 with 
1727 data points 

5 kHz switching, 60% duty 
cycle, 50C swing 

Healthy-BHMM -1799.4304 
Anomalous Healthy 

Anomalous-BHMM -1380.8795 

Test data 7 with 
3994 data points 

5 kHz switching, 60% duty 
cycle, 50C swing 

Healthy-BHMM -106207.1074 
Anomalous Anomalous 

Anomalous-BHMM -231.0027 

Test data 8 with 
6972 data points 

1 kHz switching, 50% duty 
cycle, 50C swing 

Healthy-BHMM -290.6502 
Healthy Healthy 

Anomalous-BHMM -297.3739 

Test data 9 with 
1277 data points 

1 kHz switching, 50% duty 
cycle, 50C swing 

Healthy-BHMM -3485.4529 
Anomalous Anomalous 

Anomalous-BHMM -256.6022 

 

5. CONCLUSIONS 

In this paper, we present a data-driven approach for 
anomaly detection in electronic systems based on Bayesian 
HMM classification technique. The developed anomaly 
detection approach has two distinct phases: training and 
detection. In the training phase, Bayesian HMMs are 

formulated that best describes the healthy and anomalous 
behaviors of systems. The Bayesian HMM parameters are 
treated as random variables of Dirichlet distribution, the 
posterior hyperparameters of which are inferred using the 
conjugate prior method. The training process of the 
Bayesian HMMs is based on VB method, in which the true 
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posterior is approximated to variational posterior by 
maximizing a negative free energy. In the detection phase, 
the likelihoods for healthy and anomalous Bayesian HMMs 
are computed by the forward-backward algorithm using the 
optimal posterior hyperparameters of the trained Bayesian 
HMMs. The model with highest likelihood is considered to 
be the model that represents the health state of the system 
corresponding to the unknown observation sequence.  

An application of the developed Bayesian HMM-based 
anomaly detection approach was demonstrated using 
experimental data for IGBTs. Four data sets representing 
different operating conditions were used to train the healthy 
and anomalous models, while nine test observation 
sequences were used to test against the models. The 
detection result showed that the developed approach can 
help detect anomalous behaviors in electronic systems with 
88.9% accuracy. Further research is needed to improve the 
detection accuracy of the developed Bayesian HMM by 
using better priors for parameters and better health 
monitoring data from field. The developed Bayesian 
approach also provides a framework for updating 
parameters when new data become available. 
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