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When a latent shoeprint is discovered at a crime scene, forensic analysts
inspect it for distinctive patterns of wear such as scratches and holes (known
as accidentals) on the source shoe’s sole. If its accidentals correspond to those
of a suspect’s shoe, the print can be used as forensic evidence to place the sus-
pect at the crime scene. The strength of this evidence depends on the random
match probability—the chance that a shoe chosen at random would match
the crime scene print’s accidentals. Evaluating random match probabilities
requires an accurate model for the spatial distribution of accidentals on shoe
soles. A recent report by the President’s Council of Advisors in Science and
Technology criticized existing models in the literature, calling for new em-
pirically validated techniques. We respond to this request with a new spatial
point process model (code and synthetic data is available as Supplementary
Material) for accidental locations, developed within a hierarchical Bayesian
framework. We treat the tread pattern of each shoe as a covariate, allowing
us to pool information across large heterogeneous databases of shoes. Exist-
ing models ignore this information; our results show that including it leads to
significantly better model fit. We demonstrate this by fitting our model to one
such database.

1. Introduction. Forensic footwear analysis encompasses a suite of techniques used to
analyze latent shoeprints as part of forensic investigations. A principal goal of these inves-
tigations is to link a suspect’s shoe to a crime scene print, providing evidence to place the
suspect at the scene of the crime. Figure 1(a) provides an example of a latent crime scene
shoeprint.

As described by Bodziak (2017), the procedure for determining the source of a latent print
typically consists of two stages. First, the examiner inspects the tread of the latent print to
identify class characteristics (brand, model and size) of the source shoe. This identification
can be carried out manually, or automated using tread matching algorithms (e.g., Kong, Ra-
manan and Fowlkes (2017), Richetelli et al. (2017a), Srihari and Tang (2014)).

Manufacturers routinely produce thousands of shoes of the same make and model, mean-
ing that class characteristics alone are often insufficient for determining a print’s source. For
this reason examiners regularly turn to a second stage of analysis, the inspection of acciden-
tals. Accidentals, also known as randomly acquired characteristics, are the postmanufactur-
ing cuts, scrapes, holes and debris that accumulate on a shoe sole. Examiners are trained to
identify accidentals on a shoe by inspecting both the shoe’s sole and test impressions—high
quality prints created using the shoe in a controlled laboratory setting. Figure 1(b), Figure 1(c)
and Figure 1(d) depict a shoe sole, test impression, and accidentals locations, respectively.
These images all correspond to the same shoe obtained from the JESA database (Yekutieli
et al. (2012)) (we describe the JESA database in Section 2.2).
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FIG. 1. (a)–(d) represent objects pertaining to the same shoe from the JESA database: (a) is a photograph of
a latent crime scene print, (b) a photo of the shoe’s sole, (c) is a raw image of a test impression and (d) is the
contact surface obtained from standardizing the test impression. The superimposed blue points in (d) correspond
to accidental locations.

In theory, if both the class characteristics and the accidentals of a suspect’s shoe coin-
cide exactly with those detected from the crime scene print, then the suspect’s shoe is almost
certainly the source of the print. In practice, the comparison is less clear-cut. Latent crime
scene prints are typically of low quality, making it difficult to pick out all of the individual
accidentals. Furthermore, accidental locations are known to vary slightly from test print to
test print due to variability in the impression-taking process (Shor et al. (2018)), so there is
some uncertainty on their exact locations on the source shoe. As a result, accidental com-
parisons typically involve comparing a subset of approximate accidental locations on the test
impression to those detected on the crime scene print. This uncertainty leaves the possibility
of a false positive due to chance, especially for partial prints and tread patterns on which
accidentals are very likely to occur in certain regions.

To account for the possibility of a false positive, shoeprint analysts are encouraged to
provide a measure of the uncertainty of the match when testifying in court (Edwards and
Gotsonis (2009)). One popular summary for communicating this uncertainty is the random
match probability (RMP) (Thompson and Newman (2015)). The RMP is the probability that
a randomly sampled shoe would produce a print matching the observed features at the crime
scene. For instance, if 15 out of 10,000 relevant shoes were consistent with the crime scene
print, the RMP would be 0.0015.

The standard approach for evaluating RMPs decomposes into three terms: the evidence
given by the class characteristics, the evidence based on general wear and accidental-based
evidence (Evett, Lambert and Buckleton (1998), Skerrett, Neumann and Mateos-Garcia
(2011)). In this work we focus on accidental-based evidence, inspired by the recent report
on forensic science by The President’s Council for Advisors on Science (PCAST (2016))
that criticized existing work in the area.

We address the concerns of PCAST (2016) by developing and estimating the parameters of
a model for the distribution of accidental configurations on a shoe. Specifically, we model the
spatial distribution of accidentals on a shoe sole as a point process, treating the sole’s tread
pattern as a covariate. We fit and evaluate our model using the JESA database (Yekutieli et al.
(2012)), a ground truth dataset of 386 accidental-annotated shoeprints compiled by the Israeli
Police Department’s Division of Forensic Science. The JESA database is one of the largest
existing databases of its kind (Speir et al. (2016)), consisting of shoes with a variety of tread
patterns.
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We define our model within a hierarchical Bayesian framework, pooling information
across JESA to infer general trends spanning a broad variety of shoes. Our model is a fi-
nite resolution version of the normalized compound random measure framework of Griffin
and Leisen (2017), modified to incorporate spatial covariates and dependency of the intensity
across space. We develop the computational tools to fit our model, evaluate it and demonstrate
that it outperforms existing approaches by a wide margin.

The remainder of this paper is organized as follows. In Section 2 we review the literature
related to random match probabilities, formalize the link between evaluating random match
probabilities and modeling spatial distributions of accidentals, describe the JESA database
of annotated shoeprints collected by Yekutieli et al. (2012) and review the relevant literature
pertaining to vectors of dependent probability measures. In Section 3 we provide the details
of our hierarchical Bayesian model for spatial configurations of accidentals. In Section 4 we
propose a Markov chain Monte Carlo algorithm for inferring the parameters of the model
and an importance sampling algorithm for evaluating marginal likelihoods. In Section 5 we
showcase the results of fitting our model to the JESA dataset and compare its performance to
other candidate models. Section 6 contains some concluding remarks.

2. Preliminaries.

2.1. Random match probabilities. A theory to evaluate RMPs for footwear evidence was
laid out in Evett, Lambert and Buckleton (1998) in the context of evaluating likelihood ratios.
The framework is equally applicable to evaluating raw RMPs. Let y denote a crime scene
print and A denote the relevant population of plausible sources of the crime scene print. For
instance, A could be all shoes belonging to residents of a particular city or town. As per Evett,
Lambert and Buckleton (1998), the random match probability for footwear evidence is given
by

RMP = p(y ≡ s | s ∼ A),(2.1)

where y ≡ s indicates that shoe s exhibits features consistent with those of the print y, and
s ∼ A is shorthand for s being chosen uniformly at random from all shoes in the set A. Further
discussion of random match probabilities with examples from forensic science is available in
Srihari and Su (2011).

Following the classical two-step process of forensic footwear analysis, Evett, Lambert
and Buckleton (1998) suggested that the RMP be calculated using the factorization RMP =
rmpM rmpU . Here, rmpM denotes the probability that a randomly chosen shoe in A has class
characteristics matching the latent crime scene print, and rmpU denotes the probability that
the shoe is also consistent with the wear patterns and accidentals, given that it matches on the
class characteristics. Skerrett, Neumann and Mateos-Garcia (2011) refined this representation
by further decomposing rmpU into rmpW and rmpV , corresponding to separate conditional
probabilities of matching on general wear and accidentals, respectively.

Let yM , yW and yV denote the class characteristics, general wear and accidentals observed
on the latent print y with sM , sW , sV denoting the same features as observed on a shoe s ∈ A.
The factorization proposed by Skerrett, Neumann and Mateos-Garcia (2011) can be formally
expressed as:

RMP = rmpM · rmpW · rmpV ,(2.2)

rmpM = p(yM ≡ sM | s ∼ A),(2.3)

rmpW = p
(
yW ≡ sW | s ∼ {

s′ ∈ A : yM ≡ s′
M

})
,(2.4)

rmpV = p
(
yV ≡ sV | s ∼ {

s′ ∈ A : yM ≡ s′
M,yW ≡ s′

W

})
,(2.5)
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where yM ≡ sM denotes the class characteristics of s being consistent with those of y, and
yW ≡ sW and yV ≡ sV defined similarly. Implicit in this decomposition is the assumption
that y ≡ s is characterized by yM ≡ sM , yW ≡ sW and yV ≡ sV , a reasonable choice given
that these features form the basis of forensic footwear analysis (Bodziak (2017)). Strate-
gies for evaluating rmpM and rmpW based on relevant databases (e.g., Evett, Lambert and
Buckleton (1998), Champod, Evett and Jackson (2004) for rmpM and Fruchtenicht, Herzig
and Blackledge (2002), Facey, Hannah and Rosen (1992), Bodziak et al. (2012) for rmpW )
were discussed in Skerrett, Neumann and Mateos-Garcia (2011). However, evaluating the
accidental-based component rmpV was left as a subject for future work. In this work we
focus on the remaining accidental-based component. We begin by making two simplifying
assumptions.

First, we follow Petraco et al. (2010) in assuming that the evidence present in a con-
figuration of accidentals on a crime scene print yV is characterized by the locations (e.g.,
the blue points shown in Figure 1(d)). We omit secondary characteristics, such as shape
or size of the accidental, as they are difficult to reliably glean from latent prints. We use
xs to denote the accidental locations on shoe s and xy to denote the locations detected
on print y. Employing a standardized coordinate system (details provided in Section 2.2),
we have xs ∈ ([0,100] × [0,200])Ns , xy ∈ ([0,100] × [0,200])Ny , where Ns denotes the
number of accidentals on shoe s and Ny denotes the number detectable on print y. We use
xs
n = (xs

n,1, x
s
n,2) to denote the nth row of xs .

Because examiners are adept at recovering yM and yW from a shoeprint y, our second
assumption is that a shoe’s class characteristics and wear are characterized by its contact sur-
face. A shoe’s contact surface refers to the portion of its sole that typically touches the ground
when worn—the part responsible for leaving prints. An example contact surface is provided
in Figure 1(d). We provide a more detailed definition of contact surface in Section 2.2.1. Let-
ting Cs denote the contact surface of shoe s, this assumption can be formalized as s, s′ ∈ A,
Cs = Cs′

if and only if sM ≡ s′
M and sW ≡ s′

W .
After characterizing yV using accidental locations and yW ,wM using the contact surface,

we can now reexpress the accidental-based random match probability in (2.5) in a form that is
more tractable for statistical inference. The relation yV ≡ sV reduces to a comparison of the
point clouds xy and xs (denoted xy ≡ xs ). The set {s′ ∈ A : yM ≡ s′

M,yW ≡ s′
W } reduces to

the set of relevant shoes with the given contact surface (i.e., ACy = {s′ ∈ A : Cs′ = Cy}, where
Cy denotes the contact surface as determined from y). Thus, the accidental-based random
match probability given in (2.5) reduces to

rmpV = p
(
xy ≡ xs | s ∼ACy

)
.(2.6)

In theory, computing rmpV using (2.6) is straightforward. One would simply inspect all shoes
in A with contact surface Cy to determine the ratio that also have accidentals consistent with
xy . Even if A were not completely accessible, a large random sample would suffice to provide
a sufficiently accurate approximation. Figure 2 illustrates this strategy for a small example.

In practice, the computation of rmpV is complicated by two issues:

1. In many cases, no shoes in ACy (other than the suspect’s shoe) are accessible by the
examiner. Examiners are left to rely on previous experience and limited data (e.g., a small
convenience sample from A or a related database) to make inferences regarding the condi-
tional distribution of xs | s ∼ ACy . Historically, these inferences have been based on heuristics
that lack empirical support (PCAST (2016)).

2. Determining if xy ≡ xs is complicated by three phenomena: (i) a shoe’s detected acci-
dental locations are known to vary slightly each time it is printed (Shor et al. (2018)), meaning
that the locations in xy may only approximate those in xs , (ii) some accidentals do not reli-
ably show up on crime scene prints (Richetelli et al. (2017b)), meaning that the accidentals in
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FIG. 2. (a) depicts the accidental locations (blue) and contact surface (orange) for eight synthetic draws from
the population ACy corresponding to the crime scene print y shown in Figure 1(a). (b) depicts the contact surface
Cy (orange) and accidental locations xy (blue). (c) illustrates the close correspondence between xy (blue) and
xs (red) given by the accidental locations from the rectangle enclosed shoe in (a).

xy could be a thinned version of xs and (iii) test impressions may not be obtained until long
after the crime was committed, leaving the opportunity for new accidentals to arise (Wyatt,
Duncan and Trimpe (2005)) or existing accidentals to change (Sheets et al. (2013)) in the
meantime.

We concentrate on issue 1 in this paper, developing a more principled approach to inferring
the distribution xs | s ∼ ACy using the JESA database. Issue 2 is beyond the scope of this
paper, as determining an appropriate definition of xy ≡ xs would require much richer data
than is currently available in the literature. However, given a definition of xy ≡ xs , our model
can compute the RMP via Monte Carlo. Figure 2 demonstrates this process with Figure 2(a)
depicting the samples drawn from the distribution xs | s ∼ACy .

2.2. JESA. The Jerusalem Shoeprint Accidentals Database (JESA) is one of a series of
datasets created by the Israel Police Department’s Division of Forensic Science. It pertains to
386 men’s shoes collected as evidence through casework. A full description of the database
is available in Yekutieli et al. (2012). For each shoe there are two data structures relevant to
our work—the standardized shoeprint image (contact surface) and the accidentals.

2.2.1. Standardized shoeprint image. Test impressions for each shoe were obtained by
applying orange powder to their soles, pressing them onto clear films, then digitally pho-
tographing the residual orange impressions on the films. An example impression image is
shown as Figure 1(c).

For consistency across shoes, each image was standardized onto a 200 by 100 grid. Stan-
dardization involved translating, aligning and scaling the images so the prints were centered,
pointed upward and of the same length. The axes for the alignment were designated through
point-and-click software by trained examiners. All left shoes were mirrored to appear as right
shoes. Alignment of the images facilitates the pooling of information across shoes, even if
they differ in size or chirality (i.e., left shoe or right shoe).
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FIG. 3. (a), (b), (c) are standardized test impressions from the JESA database; (d) is the mean test impression
across the entire JESA database.

After standardization, the images were smoothed and denoised to isolate the contact sur-
face—the areas of the shoe sole that typically touch the ground. The smoothing was per-
formed to preserve the shoe’s tread pattern and general wear while filtering out small breaks
due to accidentals or imperfections in the impression. These contact surfaces take the form
of 200 by 100 binary arrays, with each bit defining contact or noncontact of a region of the
shoe. Figure 1(d) illustrates the positive values of contact surface for the shoe in Figure 1(b).
The superimposed points are the locations of accidentals.

Additional example contact surfaces are shown in Figures 3(a), 3(b) and 3(c), demon-
strating the variety of tread patterns in the JESA database. No two contact surfaces in the
JESA database are exactly alike, although those that correspond to the same brand of shoe
are similar (differences in wear patterns as well as variation in test impressions, account for
the differences).

Figure 3(d) depicts the average contact surface across the entire database. It shows that
it is far more common for regions of the shoe corresponding to the heel and toes to be part
of the contact surface than regions corresponding to the shoe arch. This discrepancy drives
home the importance of conditioning on contact surface when evaluating accidental-based
RMPs; shoes with arches that do make contact with the ground (the minority) would likely
have different accidental distributions than those that do not. We use C = {0,1}100×200 to
denote the space of values that a contact surface can take and Cs ∈ C to denote the contact
surface of shoe s.

2.2.2. Accidentals. For each shoe, examiners identified accidentals by inspecting the
shoeprint image and the shoe sole itself. The locations of the centroids of the accidentals
were recorded using a computerized system. These locations were stored as real numbers
in [0,100] × [0,200] corresponding to the standardized space of the contact surface. The
region [0,1] × [0,1] corresponds to the bottom left-hand corner of the standardized grid,
and [99,100] × [199,200] corresponds to the top right. Figure 1(d) gives an example of the
locations accidentals as points on the shoeprint image.

The number of accidentals and their locations varies from shoe to shoe. Figure 4(a) pro-
vides a histogram of the number of accidentals on each shoe. The distribution is heavily
skewed to the right—the median number of accidentals is 20, whereas the mean is 33 and the
maximum is 268.

Figure 4(b) aggregates the coordinates of all accidentals recorded in the JESA database. Its
similarity to that of Figure 3(d) is consistent with the intuition that accidentals should appear
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FIG. 4. (a) is a histogram summarizing the number of accidentals on each shoe in JESA. (b) illustrates the
locations of these accidentals with points.

more frequently in areas of the shoe which are part of the contact surface. However, not all
accidental locations fall on the sole with contact surface. Of the accidentals in JESA, about
12 percent of them occur in grid points without contact. Therefore, a robust model should be
able to assign probability to situations in which accidentals do not occur directly on the con-
tact surface. Examples of shoes in JESA for which accidentals occur away from the contact
surface are available as Figure 4 of the Supplementary Material (Spencer and Murray (2020)).
Following Damary et al. (2018), we exclude rift-type accidentals from our analysis because
they occur only on specific type of shoe tread, making their spatial distribution markedly
different than the more frequently occurring types of accidentals (e.g., hole or scratch).

2.3. Existing models for the distribution of accidentals. Going forward, we use the short-
hand xs | Cs to refer the distribution of accidental locations xs on a shoe s with contact sur-
face Cs , with Cs = Cy referring to the distribution required to compute the RMP (2.6). For
easy comparison of existing models in the literature with the approach we develop, we use a
unified notation.

We begin by treating each xs | Cs as a draw from a two-dimensional spatial point process
(Daley and Vere-Jones (2008)) over the standardized space [0,100]×[0,200]. For our model
we make three additional assumptions regarding the structure of these point processes: (1)
the individual accidentals (xs

n)n=1,...,Ns are exchangeable, (2) the marginal distribution of
each xs

n is independent of the total number of accidentals Ns and (3) the distribution of xs

depends on s only through the contact surface Cs . The first two assumptions are common in
the literature, whereas the third is unique to our model because we are first to incorporate the
contact surface.

Following assumptions (1) and (2), (xs
n)n=1,...,Ns can be treated as independent draws from

a random probability measure �s on [0,100]× [0,200]. The literature has mostly focused on
universal models for �s , assuming a fixed � that is common to all shoes s ∈A. Stone (2006)
proposed a uniform model for �, that is, � ∝ 1. This assumption has been criticized for its
lack of empirical support, as noted by PCAST (2016). Yekutieli et al. (2012) instead inferred
� using a kernel density estimator on the accidentals in JESA (Section 2.2). Speir et al. (2016)
applied a similar histogram estimator to a different database, yielding comparable results.

Because estimating a single � does not allow for conditioning on class characteristics
or wear, these approaches implicitly assume that a shoe’s accidental locations are indepen-
dent of its contact surface. Evidence against this assumption was provided by Damary et al.
(2018); their analysis of multiple replicates of three different tread patterns appearing in the
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JESA database revealed that different tread patterns tend to yield different accidental distri-
butions. Therefore, having distinct �s that depend on Cs seems more appropriate, serving as
the motivation for our assumption (3) above.

We encode assumption (3) in our model by explicitly treating each �s as a draw from
a distribution GCs . As the notation suggests, GCs = GCs′ if Cs = Cs′

, but the distributions
of �s and �s′ can differ otherwise. Other works have followed a similar line of thought by
restricting analysis to a single type of shoe at a time (Adair et al. (2007), Petraco et al. (2010),
Wilson (2012)). In each of those studies, several replicates of the exact same pair of shoes
were worn independently for a period of time, after which their accidental locations were
annotated, analyzed and compared. This allowed for the identification of common trends
for one specific type of shoe. Though such data is ideal for modeling GCs , the approach
cannot be practically scaled to all types of shoes. Collecting multiple annotated observations
for all given tread patterns is prohibitively expensive. In addition, the project would have to
continue in perpetuity, continually updating the database to account for the ever-growing list
of footwear styles and brands.

For this reason we propose a more general and scalable approach in our modeling of �s .
Instead of developing independent models GCs for each unique contact surface, we propose
a Bayesian hierarchical model to pool information across many contact surfaces at once. Let
C denote the space of possible contact surfaces. Our goal is to infer the entire family of dis-
tributions G = (GC)C∈C as a single model, treating a shoe’s contact surface C as a covariate.
This joint modeling approach helps to leverage the information available in heterogeneous
databases—in our case the JESA database—to identify the relationship between the contact
surface and accidental locations and to capture commonalities that span across many shoe
types.

Let J denote a set of available shoes (e.g., JESA) used to infer G. Then, (�s)s∈J is a vec-
tor of dependent random probability measures, with the dependence between them induced
by a hierarchical model on G. We now review existing approaches for modeling vectors of
dependent probability measures, limiting our discussion to that which is most relevant to our
model. We defer discussion of additional related work to Section 2 of the Supplementary
Material (Spencer and Murray (2020)).

2.4. Random vectors of dependent probability measures. Over the years, there has been
a broad interest in modeling dependent probability measures, especially via nonparametric
Bayes (Hjort et al. (2010), Foti and Williamson (2015)). The approach we use to model
(�s)s∈J in this paper is not fully nonparametric, but it is a finite-resolution approximation of
one. Thus, it is natural to frame our review within the nonparametric Bayesian literature.

The canonical Bayesian nonparametric approach to modeling a measure μ on a space �

is to treat it as a random draw from some subclass of measures on �. Completely random
measures (Kingman (1967)) are an especially tractable subclass of random measures that
are composed of a (possibly countably infinite) collection of weighted atoms in �. We use
(θi)i=1,...,∞ ∈ �∞ to denote the locations of the atoms of the completely random measure μ

and (wi)i=1,...,∞ ∈ R∞+ to denote the corresponding (nonnegative) atom weights. The defin-
ing feature of a completely random measure is that, for any disjoint subsets �1,�2 ⊂ �,
μ(�1) is independent of μ(�2) (complete randomness). An accessible review of completely
random measures as they pertain to statistical modeling is available in Chen et al. (2010).

For our purposes we are interested in atomic measures that do not necessarily satisfy the
complete randomness assumption. In particular, we are interested in atomic random prob-
ability measures—random measures μ consisting of atoms such that μ(�) = 1. Any finite
atomic random measure can be converted to a probability measure via normalization. For
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instance, a normalized completely random measure takes the form

μ̄(·) =
∑∞

i=1 wiδθi
(·)∑∞

i=1 wi

,(2.7)

where wi, θi are defined analogously to above. The strength of atomic probability measures
is that they can be convolved with probability kernels to define mixture models for densi-
ties (e.g., Escobar and West (1995), Rasmussen (2000)). Each atom acts as its own mixture
component, providing a framework that is flexible and computationally tractable.

Rather than a single normalized random measure, we are concerned with a vector of depen-
dent random probability measures (�s)s∈J that can capture commonalities across all shoes
in JESA. Particularly relevant to our work is the recently proposed normalized compound
random measure framework (NCoRM) of Griffin and Leisen (2017), which formulates the
vector of random probability measures μ1, . . . ,μK on � as

μk(·) =
∑∞

i=1 mk
i wiδθi

(·)∑∞
i=1 mk

i wi

,(2.8)

where (θi,wi)i=1,...,∞ are drawn as in a single completely random measure and (mk
i )i=1,...,∞

are i.i.d. random “score” variables for k = 1, . . . ,K , following a distribution ρ, that up-weight
or down-weight the shared set of atoms defined by the (θi,wi) for each of the μk’s. The
distribution of the scores controls the strength of the dependence, with much of the exposi-
tion in Griffin and Leisen (2017) devoted to gamma distributions due to their computational
tractability. We use the idea of scoring in normalized atomic random measures to develop our
model. However, modifications must be made.

The NCoRM approach, as described in Griffin and Leisen (2017), was developed for
exchangeable vectors of random probability measures. However, exchangeability does not
hold when each measure has an associated covariate (as we have in the contact surfaces
Cs ). For this reason we generalize the idea of “scoring” from NCoRMs to the nonexchange-
able setting, allowing us to incorporate covariate information. It is worth noting that Griffin
and Leisen (2018) also generalizes the NCoRM framework to a nonexchangeable regression
framework but differently than we do here.

3. Model. Recall that for a given shoe s ∈ J, we have assumed each accidental location
xs
n is drawn independently from a probability measure �s on [0,100] × [0,200] where �s

itself is randomly drawn from a distribution GCs that depends on the contact surface Cs ∈ C.
Because it is impractical to independently model GC for all possible C ∈ C, we develop a
hierarchical model to jointly infer all entries of G, treating each C ∈ C as a high-dimensional
spatial covariate.

Before specifying how we model the family of distributions G, it is useful to first address
the limited precision of the data. As per Section 2.2, the contact surface variables C ∈ C are
defined on a discrete 200 by 100 equally-spaced grid over [0,100] × [0,200]. We use A to
denote the set of entries in this grid,

A = {
(a1, a2) : a1 ∈ {1, . . . ,100}, a2 ∈ {1, . . . ,200}},(3.1)

with gridpoint (a1, a2) ∈ A corresponding to the area (a1 − 1, a1]× (a2 − 1, a2] in [0,100]×
[0,200]. We restrict our model for �s to have the same resolution as A by discretizing �s to
be a piecewise constant over each gridpoint in A. This reduced resolution provides computa-
tional advantages, simplifies interpretation and guards against overfitting. Further discussion
of the discretization is available in Section 1 of the Supplementary Material (Spencer and
Murray (2020)).
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After discretization, each �s can be characterized by the values it takes at the grid points in
A, and each GC ∈ G can be characterized by the multivariate distribution it assigns to those
grid points. This provides a natural representation for parametrizing our model. We view G as
a family of distributions over the 20,000-dimensional simplex indexed by C, with each GCs

characterized by the joint distribution it defines over the vector of values in the probability
measure �s | Cs . It is most straightforward to describe G in terms of the generative process
it assigns to a generic �s | Cs , as we do below.

3.1. Parameterization of �s . We model each measure �s ∼ GCs as the convolution of a
normalized random atomic measure μs with a two dimensional piecewise constant probabil-
ity kernel k. We define μs to consist of 20,000 atoms at fixed locations, one for each gridpoint
in A. To model the weights of each of these atoms, we generalize the NCoRM scoring tech-
nique of Griffin and Leisen (2017) to incorporate the covariate information in Cs and to allow
for spatial dependence between atom weights.

For each a ∈A, we define the distribution of μs | Cs as

μs(a) = wam
s
a∑

b∈A wbm
s
b

= waε
s
aφ

s
a∑

b∈A wbε
s
bφb

.(3.2)

Here, (wa)a∈A are parameters common to all G, and (ms
a)a∈A are random shoe-specific

location-specific scores applied to the weights of the atoms. The scores further decompose
into two components: ms

a = εs
aφ

s
a , with εa representing “traditional” scores as in NCoRM

(assumed to be independent for all shoes and all locations), and φs
a representing contact-

dependent score—variables that depend on the nearby configuration of Cs . We model the tra-
ditional scores as independent draws from ρq = Gamma(q,1). The contact-dependent scores
φs

b are treated as parameters, defined as follows.
Let φ ∈ [0,1]32. For all a ∈ A, s ∈ J define

φs
a = φrs

a
where(3.3)

rs
a = 1 +

1∑
i=−1

1∑
j=−1

23+i+2jCs
a+(i,j)I

(∥∥(i, j)
∥∥2 ≤ 1

)
.(3.4)

By this formulation, φs
a takes one of 25 = 32 values depending on the value of the contact

surface at the gridpoints surrounding a. For instance, if a is completely surrounded by contact
surface, that is,

Ca+(−1,0) = Ca+(0,−1) = Ca = Ca+(1,0) = Ca+(0,1) = 1,(3.5)

then φs
a = φ32. Similarly, if a is in an area devoid of contact surface, that is,

Ca+(−1,0) = Ca+(0,−1) = Ca = Ca+(1,0) = Ca+(0,1) = 0,(3.6)

then φs
a = φ1. A demonstration of the possible configurations is provided in Figure 5(a) along

with an depiction of rs
a for two a ∈ A in Figure 5(b).

Before specifying the functional form for the kernel k (which smooths the atom weights),
let us first interpret of the various components that define the atoms weights for μs in the
context of the shoe sole and accidentals.

The weights are the normalized product of three components:

1. φ, which specifies the impact of a gridpoint’s surrounding contact surface on the relative
likelihood of accidental occurrence,

2. w, which specifies the impact of the position of a gridpoint’s spatial coordinates on the
relative likelihood of accidental occurrence, and
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FIG. 5. (a) provides a list of the possible shapes the contact surface can take around an atom, accompanied
by the index in φ ∈ [0,1]32 to which it corresponds. (b) zooms in on an example shoe’s contact surface (zoomed
region outlined in black) to demonstrate the φs

a value of two example locations.

3. ρq (parameterized by q), which specifies the variability across shoes of each gridpoint’s
relative probability of accidental occurrence, controlling for position and contact surface.

Essentially, the parameters φ and w control the mean of μs , whereas its variance depends on
the εs

a scores, distributed according to ρq . These choices are in-line with a common belief
in forensic footwear analysis—that the locations of accidentals tend to follow a spatially
inhomogeneous distribution across the shoe sole (captured by w) and that some areas are
more likely to be affected than others, depending on their contact with the ground (captured
by φ). We model each of φ, w and q as global parameters, assuming they take the same value
for all shoes JESA.

The random shoe-specific errors εs capture deviations from this common trend. The coef-
ficient of variation of ρq , given by q−1/2, indicates the strength of the deviations. The smaller
the value of q , the larger the variation of μs around its mean.

Finally, we convolve all atoms in all μs with a kernel k to obtain �s . The kernel is parame-
terized to smooth the weights across nearby atoms. Recognizing that the smoothing should be
local, we define the kernel k to have finite support, symmetrically redistributing the mass over
a window extending three grid points from a in all four axis-aligned directions. Figure 6(a)
illustrates the shape of the probability kernel. We refer to this parameterization as the tiered
cake representation, due to the resultant kernel resembling a tiered cake, with pα controlling
the size of each tier.

We parameterize k as a function k : {−3, . . . ,3}2 → [0,1] such that

k(i, j) = κh
1+|i|κv

1+|j |.(3.7)

Here, κh, κv ∈ [0,1]4 define independent symmetric kernels in the horizontal and vertical
directions, and k is their composition. To ensure that κh and κv are unimodal probability
kernels, we further reparameterize them as

κα
i =

∑4
j=i exp(pα

j )/(2j − 1)∑4
j=1 exp(pα

j )
(3.8)



1460 N. A. SPENCER AND J. S. MURRAY

FIG. 6. (a) illustrates the tiered cake parametrization of κh. Each uniquely colored tier is proportional to the
corresponding expph

i , with the dotted lines depicting how the cake is sliced that form each κh
i . (b) demon-

strates the posterior fit of κh and κv using symmetrically arranged boxplots. (c) depicts the posterior mean of
k(i, j) = κh

i κv
j centered (0,0). The decay in the h direction controlled by κh and the decay in the vertical direction

(v) controlled by κv , with the hue changing according to a logarithmic scale.

for i = 1, . . . ,4, α = v,h and each pα ∈ R4. Note that our fitted results (Figure 6(b)) in-
dicate that extending the window for three grid points appears to be excessive, but param-
eterizing three allowed for such a discovery. Going forward, we will often suppress the pα

parameterization to make the presentation more concise, instead relying on the κα represen-
tation.

3.2. Model summary and prior. Having parametrized G, we now formulate the full hier-
archical Bayesian model. Let � denote the concatenation of the global parameters φ, w, q ,
ph and pv . Our prior distribution on � is the composition of independent priors on its entries.
Letting MVN(0,4I4) denote four-dimensional isotropic Gaussian distribution with variance
4 and MVLN(0,�), denote a multivariate log normal distribution with mean parameter 0 and
precision matrix �; the following provides a bird’s eye view of the model via the generative
process of the JESA data given (Cs,Ns)s∈J:

Step 1: Generate global parameters:

q ∼ Gamma(2,2), wE ∼ MVLN(0,�),

φ ∼ unif
([0,1]32)

, ph,pv ∼ MVN(0,4I4).
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Step 2: Generate the densities �s ∼ GCs for s ∈ J:

For a ∈ A:
εj
a ∼ Gamma(q,1),

�s(a) = ∑
−3≤i,j≤3

κh
1+|i|κv

1+|j |
wa+(i,j)ε

s
a+(i,j)φ

s
a+(i,j)∑

a′∈A′ wa′εs
a′φs

a′
.

Step 3: Generate the accidental Locations xs for s ∈ J.

For n = 1, . . . ,Ns : generate xs
n ∼ �s.

Our prior on w in Step 1 uses a coarsened representation, the details of which are provided
in Section 3 of the Supplementary Material (Spencer and Murray (2020)). The vector wE

denotes the subvector of unique values after the coarsening. The scales for all of the priors
were chosen based on the range of possible behaviors we expected in the model. For example,
the variances of 4 for ph and pv were chosen to strike a balance: too small of a variance
concentrates the kernel around its geometric decaying mean, and too large of a variance
places most of the prior density kernels that are essentially step functions. For φ ∈ [0,1]32,
the upper bound on the uniforms is arbitrary; the likelihood in (4.2) is invariant to scalings of
φ due to the normalization of μs . The rate of ρq is fixed at 1 for the same reason.

4. Computation. There are two key computational challenges associated with our
model:

1. How do we efficiently compute the posterior of �?
2. How do we efficiently compute the density of an observed set of accidentals xs given

Cs?

Task 1 (addressed in Section 4.1) arises when fitting our model to the JESA data, and task 2
(addressed in Section 4.2) arises when evaluating models. Before describing our strategies
for addressing these tasks, we develop a trick to compute the likelihood of xs ∈ ([0,100] ×
[0,200])Ns given Cs for a given �.

The raw likelihood takes the form

p
(
xs | Cs;�) =

∫ Ns∏
n=1

�
(
xs
n

)
GCs (d�)(4.1)

=
∫ Ns∏

n=1

∑
−3≤i,j≤3

κh
1+|i|κv

1+|j |
wxs

n+(i,j)ε
s
xs
n+(i,j)φ

s
xs
n+(i,j)∑

a∈A waεs
aφ

s
a

dρ
(
εs).(4.2)

In a slight abuse of notation, we have overloaded xs
n to also denote the atom a ∈ A to which

the real-valued xs
n ∈ [0,100] × [0,200] is associated. At first glance the |A|-dimensional

integral over the εs variable in (4.2) appears to be computationally intractable. It has no
closed form and is too high dimensional to efficiently compute using quadrature or generic
Monte Carlo algorithms. To overcome this problem, we introduce auxiliary variables.

For each accidental location xs
n on shoe s ∈ J, we define Zs

n by

P
(
Zs

n = xs
n + (i, j) | κh, κv) = k(i, j) = κh

1+|i|κv
1+|j |,(4.3)

with κv, κh being the kernel parameters as defined in (3.7) and each xs
n ∈ A. We use the

shorthand Zs to refer to the collection (Zs
n)1≤n≤Ns and use Cs

a to denote the number of times
each a ∈ A occurs in Zs . We also introduce the auxiliary variables

us ∼ Gamma
(
Ns,

∑
a∈A

waε
s
aφ

s
a

)
,(4.4)
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with Gamma(α,β) denoting a gamma distribution with shape α and rate β . We can now
analytically marginalize the εs variables to obtain

p
(
xs | Cs;�) =

∫ ∞
0

uNs−1

�(Ns)
E

(
1

�(q)|A|
∏
a∈A

�(q + Cs
a)(waφ

s
a)

Ca

(uswaφs
a + 1)q+Cs

a

)
dus,(4.5)

where �(·) denotes the gamma function and E denotes an expectation taken with respect
to the distribution of Zs as given in (4.3). By swapping (4.2) for (4.5), we have exchanged
an |A|-dimensional integral over εs for a more tractable one-dimensional integral. The full
derivation of moving from (4.2) to (4.5) is provided in Section 3 of the Supplementary Mate-
rial (Spencer and Murray (2020)).

This new expression for the marginal likelihood (4.5) enables us to address challenges
(1) and (2) using Monte Carlo algorithms, relying on Markov chain Monte Carlo (MCMC)
and importance sampling, respectively. For background information regarding MCMC and
importance sampling, we refer the reader to Brooks et al. (2011) and Tokdar and Kass (2010).

4.1. Computing the posterior for �. We consider an augmented version of the posterior
that instantiates the auxiliary variables Z = (Zs)s∈J and U = (us)s∈J. We use L(�,Z,U) to
denote the augmented likelihood

L(�,Z,U) = 1

�(q)|J||A|
∏
s∈J

uNs−1

�(Ns)

∏
a∈A

�(q + Cs
a)(waφ

s
a)

Cs
a

(uswaφs
a + 1)q+Cs

a

Ns∏
n=1

k
(
�s

n

)
,(4.6)

where �s
n and Cs

a are defined as in (4.5). Our target is the posterior distribution �, U , Z,
with density p(�,U,Z | (xs,Cs)s∈J) satisfying

p
(
�,U,Z | (

xs,Cs)
s∈J

) ∝ L(�,Z,U)p(�).(4.7)

Our MCMC algorithm consists of sequential updates of the parameters, akin to Metropolis
within Gibbs, with most of the components being updated according to slice sampling (Neal
(2003), Murray, Adams and MacKay (2010)). The updates are repeatedly performed in the
following sequence:

• Each auxiliary variable (us)s∈J is updated one-by-one using slice sampling. These up-
dates can be performed in parallel.

• The entire vector w is updated jointly using elliptical slice sampling.
• Each entry in (ψi)i=1,...,32 is updated one-by-one using slice sampling.
• The parameter q is updated using a slice sampler.
• Each entry in ph then pv is updated one-by-one using slice sampling.
• Each auxiliary variable (zs

n) is updated one-by-one by Gibbs sampling.

The details and conditional distributions for these updates are available in the Section 4
of the Supplementary Material (Spencer and Murray (2020)). This algorithm provides a se-
quence of draws of � from its posterior that can be used to approximate posterior expec-
tations. Notably, we can use these to approximate the posterior marginal probability of a
configuration of accidentals (Task 2), as we now detail in Section 4.2.

4.2. Computing marginal densities via importance sampling. A natural metric for as-
sessing the performance of our model is to split J into a training set T and test set T ′, then
evaluate the held-out density of the accidental locations on each shoe in T ′ (given T ). Doing
this requires computing

p
(
xτ | Cτ , T

) = E�

(
p

(
xτ | Cτ ,�

) | (
xs,Cs)

s∈T

)
(4.8)
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for each τ ∈ T ′, where p(· | Cτ , T ) denotes the posterior density. Here, E�(· | (xs,Cs)s∈T )

denotes the expected value under the posterior of � given the contact surfaces and accidentals
in T . Note that the nested integrals in the expression in (4.8) can be separated into an outer
integral and an inner integral. The outer integral is the posterior expectation over the global
parameters � and can be approximated using MCMC draws, as described above. The inner
integral, computed for each posterior draw, is over the local auxiliary variables uτ and Zτ , as
shown in (4.5).

We approximate this integral using importance sampling. Specifically, given a draw of �,
we define an importance distribution given by

u | �,Ns,Cτ ∼ Gamma
(
Ns, q

∑
a∈A

waφ
τ
a

)
,(4.9)

P
(
Zn = xτ

n + a | �,xτ
n

) = wa+xτ
n
φτ

a+xτ
n
k(a)∑

b∈B wb+xτ
n
φτ

b+xτ
n
k(b)

,(4.10)

where B = {−3, . . . ,3}2 and a ∈ B for all n ∈ {1, . . . ,Ns}. After drawing M > 0 importance
samples u1, . . . , uM ∈ R+ by (4.9) and Z1, . . . ,ZM ∈ ANτ by (4.10), the inner integral can
be approximated as

p
(
xτ | Cτ ,�

) =
∏Nτ

n=1(
∑

b∈B wb+xτ
n
φτ

b+xτ
n
k(b))

�(q)|A|(q ∑
a∈A waφτ

a )Nτ

M∑
m=1

exp (umq
∑

a∈A waφ
τ
a )

∏
a∈A

(umwaφτ
a +1)q+Cm

a

�(Cm
a +q)

,

where CM
a denotes the number of times a ∈ A occurs as an entry in ZM .

Thus, using one importance sample (M = 1) for each MCMC draw �� = (φ�,w�, q�,

(ph)�, (pv)�) yields the approximation

p
(
xτ | Cτ , T

) ≈
L∑

�=1

∏Nτ

n=1(
∑

b∈B wb+xτ
n
(φ�)τb+xτ

n
k�(b))

L�(q�)|A|(q�
∑

a∈A wa(φ�)τa)Nτ

exp (u�q� ∑
a∈A w�

a(φ
�)τa)∏

a∈A
(u�w�

a(φ�)τa+1)q
�+C�

a

�(C�
a+q�)

,

(4.11)

where L is the total number of MCMC draws and the (u�,Z�)1≤�≤L are each drawn accord-
ing to the respective importance distribution for ��. Detailed derivations and discussion of
this strategy are available the Section 5 of the Supplementary Material (Spencer and Murray
(2020)).

5. Comparisons to competitors and summary of fit.

5.1. Comparison to competitors. To demonstrate that efficacy of our model, we compare
its performance to three competitor models. The first two models we consider—the uniform
model of Stone (2006) and the kernel density estimator of Yekutieli et al. (2012)—rely on
fitting a single fixed density � for all shoes. Recall from Section 2.3 that the kernel density
estimator does not make use of contact surface information when estimating � and that the
uniform model does not rely on any data at all.

For this reason we introduce a third competitor called the contact model. In the contact
model each GCs is defined as a point mass at �Cs with

�Cs (a) ∝ exp(αrs
a
).(5.1)

Here, α ∈R32 are shared amongst all of G, similar to φ with rs
a following the same set-up as

defined as in (3.4). The parameters α are straightforward to infer using maximum likelihood
(fixing α1 = 1 to obtain identifiability).
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FIG. 7. Comparison of the performance of four models: the contact model (red) the kernel density estimate
(green), our model (blue) and the uniform model (purple) on 50 held out shoes across four data splits. The solid
lines depict the metric given in (5.2) for each of 50 shoes (sorted by our model’s performance). The dotted lines
depict the mean for each model.

We fit our model and the three competitor models to four test/train splits of the JESA data,
with each training set consisting of 336 randomly selected shoes. The remaining 50 serve
as the test set. For our model the posterior was computed by running the MCMC algorithm
outlined in Section 4.1 for 30,000 full sweeps and discarding the first 10,000 iterations as
warm-up.

Let T denote a training set and T ′ denote the test set. As a metric of performance, we used
our importance sampling technique to evaluate the held-out density of the accidental locations
xτ on each shoe τ ∈ T ′ given T . Figure 7 depicts the held-out likelihood per accidental on
each held-out shoe for each of the four models fit to each of the four splits. Specifically,

20,000 × p
(
xτ | Cτ , T

)1/Nτ(5.2)

is reported for each τ ∈ T ′. The scaling by 20,000 is performed for readability of the y-axis
(it is equivalent to transforming A to the unit square), and the Nτ th root is taken to facilitate
comparison of average performance on shoes with different numbers of accidentals. This
metric is equivalent to comparing the per-accidental average log loss of each shoe. The held-
out shoes were sorted according to our model’s performance for each of the four splits. Note
that, for the uniform model, only those atoms in A were given positive density, hence the
constant density of 1.743 rather than 1.

It is evident from Figure 7 that the two models that account for contact surface (our model
and the simple contact surface model (5.1)) vastly outperform the two that do not. Notably,
the kernel density estimator assigns 0 density to a shoe in splits 3 and 4, showing an alarming
lack of robustness. The performance of our model and the contact model tend to track together
across shoes, suggesting that the incorporation of the contact surface is the major driver of
both models’ success.

We also checked whether the other components of the model (w, κ and ε) contribute
positively to the model’s performance. We fit an additional five variants of our model to the
training data and summarized their results in Table 1, along with the performance of the four
original competitors. The variant models are defined as follows. “Without scores” refers to



BAYESIAN FOOTWEAR ANALYSIS 1465

TABLE 1
The mean predictive performance (measured by (5.3)) of our model, five variants on our model and three

competitor models. The best performing result is bolded for each split

Method Split 1 Split 2 Split 3 Split 4

Existing models Uniform (Stone (2006)) 1.743 1.743 1.743 1.743
KDE (Yekutieli et al. (2012)) 2.266 2.182 0.000 0.000

Other models Contact 3.954 3.823 4.106 3.995

Our model and variants Full 4.060 3.832 4.272 4.144
Without scores 4.052 3.831 4.260 4.131
Without kernel 4.041 3.794 4.244 4.081
Without scores and kernel 4.039 3.791 4.238 4.072
Without w 3.981 3.860 4.131 4.070
Without φ 2.217 2.124 2.187 2.144

our model with all εs
a variables are fixed at one, “without kernel” refers to our model but

without k smoothing, “without scores and kernel” excludes both εs
a and k, “without w” fixes

wE = 1 and “without φ” fixes all φ at 1. Posterior computation for all variant models were
performed using appropriate analogs of the MCMC algorithm given in Section 4.1.

For each model and test set T ′, Table 1 reports the geometric mean of (5.2) across all
held-out shoes, that is,

20,000 ×
( ∏

τ∈T ′
p

(
xτ | Cτ , T

)1/Nτ

)1/|T ′|
.(5.3)

This metric is equivalent to the mean per-accidental log loss across shoes.
Table 1 demonstrates that our full model outperforms all competitors, with variants on

Splits 1, 3 and 4, being edged out only by “without w” on Split 2. Nearly all variants perform
close to comparably to the full model; the notable exception is “without φ.” It performs far
worse, highlighting the importance of the contact surface. The persisting decrease in perfor-
mance of the other variants across splits indicates that each component provides a small gain
and is worth keeping in the model.

Note that the superior performance of “without w” in Split 2 is explained by the presence
of an atypical shoe in the test set. It possesses only two accidentals, both of which are located
at the left side of the heel. As illustrated in Figure 9(w), w is small toward the heel, especially
on the left-hand side. Consequently, including w leads to far lower predictive posterior prob-
ability for this particular shoe. Excluding this shoe from test set 2 results in the full model
regaining its spot as the top performer.

5.2. Summary of inferred model parameters. To investigate our fitted model, we consider
the posterior of � from Split 1 in Section 5.1. Components of the posterior distribution are
summarized in Figures 6, 8 and 9.

Figure 6 summarizes the posterior fit for the kernel k. Figure 6(a) uses boxplots to demon-
strate the posterior distribution of both κh and κv , arranged symmetrically to facilitate visual-
ization of the kernel. For both h and v, the kernel’s mass is mostly concentrated on its mode
and immediate neighbours. The smoothing is also more diffuse in the horizontal direction
than the vertical direction, suggesting that the accidental distributions are smoother in the
horizontal direction than vertical direction. Figure 6(c) demonstrates the composition of the
vertical and horizontal kernel into the bivariate kernel.

Figure 8 displays the marginal posterior distributions of each φ1, . . . , φ32 using boxplots.
Here, the larger the associated posterior value, the more likely an accidental is to occur nearby
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FIG. 8. Posterior distribution boxplots of the parameters of the 32 possible shapes (listed in Figure 5). Boxplot
color indicate the amount of contact surface present in each, with vertical lines partitioning the levels.

contact surface taking on the shape. There is a stark difference in accidental proclivity be-
tween gridpoints surrounded mostly by contact surface (shapes 32, 31, 30, 28, 24, 16 as
depicted in Figure 5(a)) and those with little contact surface present (shapes 1, 2, 3, 5, 9, 17).
This difference supports the intuition among shoeprint examiners that regions which rarely
make contact with the ground are typically less likely to accumulate accidentals. Also notable
is the discrepancy between different shapes containing the same amount of contact surface.
For example, accidentals appear to be nearly to twice as likely to be associated with grid-
points exhibiting shape 31 than those exhibiting shape 24, even though both shapes consist
of four of five possible contact components. This inference suggests the shape of the contact
surface—and not just the amount of contact surface—also plays a role in a region’s like-
lihood of being marked with an accidental. However, we caution against over-interpreting
such differences due to φ being just one component of the larger model.

Figure 9 illustrates the posterior predictive distribution of an accidental for four sepa-
rate contact surfaces. The first panel is synthetic, consisting entirely of contact surface to
demonstrate w. The inward facing side of the toe tends to exhibit more accidentals than the
in-outward facing portion, and the front of the heel tends to exhibit more accidentals than the
rear of the heel. A depiction of the fit and uncertainty of the raw w parameter is available as
Figure 1(b) in the Supplementary Material (Spencer and Murray (2020)).

The second through fourth panels of Figure 9 (Shoe A, Shoe B, Shoe C) demonstrate
the posterior mean of �s for three example contact surfaces in JESA. The difference in the
magnitude of the density between Shoe B and Shoe C demonstrates that the density associated
with a particular location is heavily contingent on the total amount of contact surface present
for the shoe; because Shoe C demonstrates relatively little contact surface, the density is much
higher in locations where contact surface is present.

6. Discussion. In this work we made progress on a problem put forth by the President’s
Council of Advisors in Science and Technology (PCAST (2016)). Namely, we formalized
the problem of modeling accidental distributions for random match probabilities, developed
a modeling framework for the spatial distribution of accidentals on shoe soles, fit our hierar-
chical Bayesian model to real data within a Bayesian nonparametric setting to pool informa-
tion across a variety of shoes and demonstrated that our model vastly outperforms existing
models in the literature on a held-out data task.

A key takeaway from this endeavor was the importance of explicitly incorporating the
contact surface when modeling accidental distributions. We were the first to do so, and it
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FIG. 9. Panels w, Shoe A, Shoe B and Shoe C demonstrate the posterior predictive distribution of accidental
locations for four contact surfaces. Panel w is synthetic (entirely contact surface). Shoe A corresponds to the shoe
shown in Figure 1. Shoes B and C are other contact surfaces from JESA.

resulted in a major improvement over the traditional models. We took care to develop our
model hierarchically, allowing for the pooling of information across shoes of different types
to capture commonalities in how the contact surface influences accidental distributions. As
data sources grow and new data collection efforts are undertaken (CSAFE (2019)), we antici-
pate the opportunity for more sophisticated models to better capture the relationship between
contact surface and accidentals.

Along these lines, a natural extension of our model would be to allow the w, φ, and q

parameters to differ across shoes according to a nonparametric mixture model. Another pos-
sibility would be to extend the model to a spatiotemporal setting, using the temporal data
being collected by CSAFE (2019) to model how accidentals accumulate over time.

A possible limitation of our model stems from treating the contact surface parameter φ and
spatial location parameter w separately. It is plausible that a shoe’s intensity would involve
dependence between the contact surface and the spatial location. For instance, accidentals
could be more likely to occur in high-contact areas when on the toe, but more likely to occur
in low-contact areas when on the heel. In such instances a model including an interaction
effect would outperform our current model.

Another issue we briefly touched on without addressing was the open problem of formally
defining when two impressions “match” (xs ≡ xy). Given a similarity metric defining when
xs ≡ xy , our model is tailored to computing the RMP. Draws from the posterior distribution
of xs | Cs can serve as a surrogate for sampling from ACy in (2.6), providing a straight-
forward Monte Carlo strategy for evaluating the RMP. It is worth noting that, although our
exposition focused on RMPs, our approach is equally applicable to calculating other related
summaries of uncertainty, such as likelihood ratios or Bayes factors (Evett, Lambert and
Buckleton (1998)).
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Finally, we would like to highlight uses of our model outside of direct evaluation of
random match probabilities. Recently, the National Institute for Standards in Technology
has started development of a multipurpose software tool for forensic footwear examiners
(Herman (2016)). One of the tools in development is ShoeGuli, a program for developing
synthetic footwear impressions complete with accidentals. As our framework results in an
accurate generative model, it is a natural choice for simulating accidental patterns.
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