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Abstract. This paper reports the estimation of the unknown boundary heat flux from a fin using the Bayesian

inference method. The setup consists of a rectangular mild steel fin of dimensions 250915096 mm3 and an

aluminium base plate of dimensions 250915098 mm3. The fin is subjected to constant heat flux at the base and

the fin setup is modelled using ANSYS14.5. The problem considered is a conjugate heat transfer from the fin,

and the Navier–Stokes equation is solved to obtain the flow parameters. Grid independence study is carried out

to fix the number of grids for the study considered. To reduce the computational cost, computational fluid

dynamics (CFD) is replaced with artificial neural network (ANN) as the forward model. The Markov Chain

Monte Carlo (MCMC) powered by Metropolis–Hastings sampling algorithm along with the Bayesian framework

is used to explore the estimation space. The sensitivity analysis of the estimated temperature with respect to the

unknown parameter is discussed to know the dependency of the temperature with the parameter. This paper

signifies the effect of a prior model on the execution of the inverse algorithm at different noise levels. The

unknown heat flux is estimated for the surrogated temperature and the estimates are reported as mean, Maximum

a Posteriori (MAP) and standard deviation. The effect of a-priori information on the estimated parameter is also

addressed. The standard deviation in the estimation process is referred to as the uncertainty associated with the

estimated parameters.
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1. Introduction

Majority of the heat transfer problems are direct. The effort

is to find the temperature distribution with thermophysical

properties and boundary conditions being known. These

problems are classified as well-posed problems for which a

solution exists; it is unique and also stable for small

changes in input. In many thermal engineering applications,

the temperature distribution is known, thermophysical

properties and boundary heat flux causing the temperature

distribution are not known; such an approach is called

parameter estimation. These problems are often termed as

inverse heat transfer problems. Generally, inverse problems

are ill posed. Beck et al [1] provide the importance and

practical nature of the inverse heat conduction problems.

The inverse heat transfer problems depend on temperature

and/or heat flux measurements for the estimation of

unknown parameters in a heat transfer processes. Qzisik

and Orlande [2] deal with fundamental concepts of inverse

heat transfer problems. They have discussed extensively the

concept of parameter estimation and function estimation

approach.

Estimation methods can be classified into two types: (1)

deterministic and (2) stochastic. Because of ill-posed nature

of the problem, stochastic method is commonly used. When

the cause is known and the effect is observed, then the

method is called as Forward model. A general parameter

estimation procedure is depicted in figure 1. Y represents

experimental or surrogated temperature and Z(x) represents

temperature data from the forward model for the assumed

input x. R2 is the error between the forward model tem-

perature and experimental/surrogated temperature and

generally represented as the L2 Norm. When the error is

within the limit as per the error proposed, the estimation

process is terminated and the solution to the problem is the

initial guess, which is given as input to the forward model.

In accordance to this, when the calculated error is not

within the limit, then a suitable inverse model is incorpo-

rated and the objective function is minimised. Such an

estimation procedure is shown in figure 2.

Many studies have been carried out in the area of inverse

heat transfer and several methods are proposed for deter-

mining the boundary heat flux. Mota et al [3] considered

one-dimensional nonlinear heat conduction equation and

simultaneously estimated volumetric heat capacity, thermal

conductivity and boundary heat flux using the Bayesian*For correspondence
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approach. Markov Chain Monte Carlo (MCMC) approach

along with Metropolis–Hastings algorithm was employed.

Wang and Zabaras [4] used Bayesian inference for the

solution of inverse heat conduction problem. The posterior

probability density function is obtained for the unknown

heat flux using MCMC sampling algorithm. Giralomi [5]

proved that the Bayesian influential framework provides

consistent approach in the estimation of unknown param-

eters. Liang et al [6] considered one-dimensional transient

heat conduction problem and estimated the Robin coeffi-

cient using Bayesian inference. MCMC algorithm was used

to sample the unknown parameters, and it proved that the

Bayesian inference method could provide accurate esti-

mates as well as uncertainty for the problem chosen. Par-

thasarathy and Balaji [7] applied Bayesian inference to

estimate multiple parameters in two-dimensional conduc-

tion. The focus of the work was to determine the effect of

noise and prior information on the retrieval results.

Gnanasekaran and Balaji [8] used the Bayesian approach

to estimate thermophysical parameters from simple, inex-

pensive experiments on natural convection heat transfer

from a vertical rectangular fin. MCMC method was used to

estimate unknown heat transfer coefficient and thermal

conductivity with and without subjective priors. Konda

Reddy et al [9] carried out transient experiments on a

rectangular fin and obtained temperature data using the

transient Liquid Crystal Thermography (LCT) technique.

Treating the inverse problem as an estimation problem, the

difference between the temperature measured using LCT

and simulated temperatures was minimised with the

Bayesian methodology in the inverse model to determine

the point estimates. Cheung and Beck [10] investigated

hybrid Monte Carlo method to show that it can be used to

solve higher-dimensional Bayesian model updating prob-

lems. New formulae for Markov chain convergence

assessment are derived. Practical issues for the feasibility of

the hybrid Monte Carlo method to such problems were

addressed, and improvements were proposed to make it

more effective and efficient for solving such model

updating problems. The effectiveness of the proposed

approach for Bayesian model updating of structural

dynamic models with many uncertain parameters was

illustrated with a simulated data example. Gnanasekaran

and Balaji [11] carried out transient experiments using fin

to simultaneously estimate the unknown parameters and

applied the MCMC method. The usefulness of priors was

also investigated.

Balaji and Tamanna Padhi [12] used ANN in conjunction

with MCMC method to solve an inverse heat conduction

problem. They considered steady-state two-dimensional

heat conduction from a square slab with uniform volumetric

internal heat generation. They estimated heat transfer

coefficient, heat generation and thermal conductivity for the

surrogated data with noise and without noise. Deng and

Hwang [13] used continuous-time analogue Hopfield neural

network to compute the temperature distribution in forward

heat conduction problems and solved inverse heat con-

duction problems by using a back propagation neural

(BPN) network to identify the unknown boundary condi-

tions. Ghadimi et al [14] incorporated an inverse algorithm

based on the ANNs and the sequential function specifica-

tion method was successfully applied for estimation of the

heat flux absorbed by the locomotive brake disc. The three-

dimensional direct problem involving turbulent, unsteady

and conjugate heat transfer boundary condition is numeri-

cally solved for known values of 47 different heat fluxes,

and temperature histories of 18 different locations inside

the brake disc were obtained. Somasundharam and Reddy

[15] used MH-MCMC sampling algorithm in Bayesian

inverse framework and estimated thermal conductivity,

heat transfer coefficient and emissivity. They used Parallel

Tempering (PT) and Evolutionary Monte Carlo (EMC)

along with MH-MCMC to sample through correlated pos-

terior probability density function (PPDF) to retrieve the

three mentioned thermal properties. They concluded that at

high noise levels, Parallel Tempering (PT) and Evolution-

ary Monte Carlo (EMC) perform equally and estimate the

parameter with the deviation of maximum 9%. Sensitivity

analysis [15–19] is an important study that indicates the

effectiveness of the change in parameter estimated on the

temperature. Sensitivity analysis has control over the

selection of the inverse method. Gradient-based methods

are also used as the inverse model in estimating the

parameters. These methods have a tendency of ending in

local minima or maxima. Refs. [20, 21] have estimated heat

flux using different gradient-based methods and reported

the values. Chen et al [22] used regression model to esti-

mate heat flux and temperature in a multi-layer gun barrel.
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Figure 1. Flow chart of parameter estimation.
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Figure 2. Parameter estimation using inverse model.

62 Page 2 of 16 Sådhanå (2018) 43:62



Recursive least squares estimator (RLSE) was used to

extract the time-varying heat flux on-line as the input. Refs.

[23, 24] used inverse heat conduction problem (IHCP) to

estimate transient heat flux. Man [25] used finite volume

method for determining the radiative heat flux calculated

from the radiative heat exchange within the furnace mod-

elled by considering the effect of furnace wall, slab, and

combustion gases introduced as the boundary condition of

the transient conduction equation of the slab.

Based on the literature review, the estimation of ther-

mophysical properties, unknown heat source, heat transfer

coefficients and unknown boundary conditions has become

very important in the field of thermal engineering. It has

been observed that Bayesian inference provides a coherent

framework to characterise the unknown quantities. It is

pertinent to mention here that very few literatures are

available in the estimation of boundary conditions for

conjugate heat transfer problems. The objective of the

present paper is to estimate the boundary heat flux for a

conjugate heat transfer from fin. The computational cost is

reduced by implementing ANN as the forward model.

MCMC, along with Metropolis–Hastings method, is used as

an inverse algorithm to estimate the unknown parameter.

2. Forward model

The problem considered includes a steel fin placed verti-

cally on an aluminium base. The dimension of the alu-

minium base is 250915098 mm3 and the base is subjected

to constant heat flux. The fin dimension is

250915096 mm3. To study the convection effect, an

extended domain is modelled and air is considered as the

medium. The thermophysical properties are considered to

be constant.

The problem is modelled as a two-dimensional conjugate

heat transfer problem. In accordance with this, flow is

symmetry and half of the physical domain is modelled to

save the computational cost. The domain is modelled and

meshed using ANSYS 14.5 tool. Meshing is done using

quadrilateral cells as the element. Grid independence is

applied to fix the number of grids, which is evident from

table 1.

At the solid–liquid interface, inflation layers are used for

the flow of information from the grid of one phase to the

grid of the other phase as well as between fin (solid) and

base (solid). The geometry of the model is shown in fig-

ure 3. A known heat flux is specified in the forward model

(refer B.C.1 in figure 3) and Eqs. (2.1) to (2.5) is solved and

the steady-state temperature distribution is obtained from

the fin.

The governing equation with the appropriate boundary

conditions is solved using the commercial ANSYS FLU-

ENT 14.5 software. The fundamental equations of fluid

flow are the continuity equation, momentum equations

(Navier–Stokes equation) and energy equation. The prop-

erties of the materials considered for the conjugate heat

transfer analysis are given in table 2.

All the cases considered in the present study involve

laminar, two-dimensional, steady convection. Boussinesq

approximation is incorporated to account for the density

change as a linear function of temperature for the buoyancy

term in the momentum equation. Viscous heat dissipation

and compressibility effects are not considered. Table 3

shows the boundary conditions used in the analysis.

Location 2 of the solution domain is the solid–fluid inter-

face for the flow of energy, momentum across the interface.

Since the problem is conjugate heat transfer, the transfer of

energy from aluminium base to steel fin is by conduction

and that from the fin wall to the fluid medium as well as

from aluminium base top to fluid medium is by convection.

So, at the solid–fluid interfaces, the transfer of energy will

be by convection. At location 8, which is the solid–fluid

interface, the information across the interface is prevented

by providing insulation. Based on the above assumption,

the governing equations can be written as follows. In the

forward model, Eqs. (2.1) to (2.5) is solved by assuming the

value for heat flux q.

Continuity

ou

ox
þ
ov

oy
¼ 0 ð2:1Þ

X-momentum equation

u
ou

ox
þ v

ou

oy
¼ �

1

q

op

ox
þ #

o
2u

ox2
þ
o
2u

oy2

� �

ð2:2Þ

Y-momentum equation

u
ov

ox
þ v

ov

oy
¼ �

1

q

op

oy
þ #

o
2v

ox2
þ
o
2v

oy2

� �

þ gbðT � T1Þ

ð2:3Þ

Energy equation (for fluid)

u
oT

ox
þ v

oT

oy
¼ a

o
2T

ox2
þ
o
2T

oy2

� �

ð2:4Þ

Energy equation (for solid)

ks
o
2T

ox2
þ
o
2T

oy2

� �

¼ 0 ð2:5Þ

Table 1. Grid independence study.

Nodes

Temperature at position (x,y) mm

1.5,30 1.5,60 1.5,90 1.5,120 1.5,150

13294 392.67 377.62 365.89 359.00 355.66

18494 395.92 379.70 367.16 359.78 356.17

22722 394.53 376.74 363.83 356.47 352.97

25088 396.32 379.83 367.57 360.04 356.67

28457 396.86 381.05 368.64 360.96 356.65
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2.1 Forward model validation

The forward model is validated against the known exact

solution, which is available for the constant area fin

(convecting at the tip) subjected to steady-state heat

transfer. The governing differential equation of the fin

under steady state is given by

o
2h

oX2
� mLð Þ2h ¼ 0 ð2:6Þ

Where

h ¼
T � T1

To � T1
; X ¼

x

L
ð2:7Þ

The boundary conditions are

x ¼ 0; h 0ð Þ ¼ 1

x ¼ L; hh Lð Þ ¼ �k
dh

dx

ð2:8Þ

The temperature distribution is obtained as [26]

h ¼
coshm L� xð Þ þ h

mk

� �

sinhm L� xð Þ

coshmLþ h
mk

� �

sinhmL
ð2:9Þ

The temperature distribution of the forward model and the

analytical solution are compared and reported in table 4. The

maximum error is found to be 0.37%. Thus, the validation of
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Figure 3. Schematic representation of the geometry model and boundary conditions.

Table 2. Properties of the materials used in simulation.

Properties Mild steel Aluminium

Density (kg/m3) 8030 2719

Specific heat (J/kg K) 502.48 871

Thermal conductivity (W/m K) 37 202.4

Table 3. Types of boundary conditions for analysis.

Boundary Type of boundary condition

1 q ¼ �k oT
ox

2 Solid–fluid interface

3 oT
ox

¼ 0

4 Pressure outlet

5 Pressure outlet

6 Pressure outlet

7 oT
ox

¼ 0

8 Solid–fluid interface
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the forward model ensures the reliability and accuracy of the

computational model for further simulations.

2.2 Fast forward model – ANN

Equations (2.1) to (2.5) are solved in FLUENT to obtain the

temperature distribution of the fin. One typical numerical

solution takes 20 min for convergence. A convergence

criteria of 1 9 10-6 is fixed for the numerical analysis. As

specified in figure 2, the estimation process is an iterative

technique and the numerical solution (forward model)

should be executed for every sample during the iterative

process. In this manner, the computational cost involved in

solving the forward model is high and time consuming.

Hence, one can avoid or reduce the computation cost by

replacing the existing forward model with a simple or fast

forward model based on new techniques.

The fast forward model used in the present work is ANN.

This is a computational tool used to find out relation

between large number of input and output data. ANN can

be basically characterised as multi-layer perceptron (MLP),

radial basis function network (RBF), adaptive linear net-

work (ADALINE) and more. Neural network resembles

biological nervous systems. This system approximates

functions according to the numerous known inputs and

outputs provided to the network. Inspired by the biological

neural network, ANNs are massively parallel computing

system consisting of an extremely large number of simple

processors with many interconnections. It is used to esti-

mate the relationship between a large number of input and

output parameters and finally predicts the output for the

input given within the range used during creation of the

network. This is done by interconnected neurons and pro-

cessing elements called nodes. Each node is associated with

some weight which is used to determine the strength of the

signal input to find the output as weighted sum of these

different inputs. Training is adjustment of these weights for

each neuron to approximate the function with least error

possibilities. In general, 70–75% of the data are considered

for training and the remaining used for testing purpose.

Training is accomplished by using a set of inputs for which

the output is known. A supervised learning algorithm called

the back propagation algorithm is used in the present work.

The Levenberg–Marquardt algorithm is used as the training

function to arrive at the network output at a faster rate. In

an MLP network, the nodes at each layer are fully con-

nected to the nodes in the next one. Each node in one layer

connects with a specific weight to every node in the next

layer. The network has three interfaces, namely input layer,

hidden layer and output layer. The signal flows from input

layer to the destined output layer with variations occurring

in hidden middle layer. Figure 4 shows the depiction of a

typical neural network model.

Training is accomplished using a set of network inputs

for which the desired outputs are known. The selection of

the number of hidden neurons is based on the values of

some of the common performance metrics used [12], as

follows. This is termed as neuron independence study as

shown in table 5. Based on this study, eight neurons have

been considered for training the network.

Mean Relative Error

MRE ¼
1

N

X

N

i¼1

tactual;i � tnetwork;i
�

�

�

�

tactual;i
�

�

�

�

ð2:10Þ

Correlation Coefficient

R2 ¼ 1�

PN
i¼1 tactual;i � tnetwork;i

� �2

PN
i¼1 t2actual;i

� � ð2:11Þ

3. Inverse model

3.1 Bayesian inference

Bayesian inference is used as a framework to minimise the

objective function. The inverse model is based on the

Table 4. Comparison between temperatures obtained from CFD

and analytical solution.

Position, x

(m)

Simulated

temperature (K)

Analytical

temperature (K)

Error

(%)

0.03 342.32 341.43 0.25

0.06 335.18 335.93 0.22

0.09 331.28 332.12 0.25

0.12 328.64 329.87 0.37

q T 

Input layer Hidden layer Output layer 

Figure 4. Layout of neural network.

Table 5. Neuron independence study.

No. of neurons MRE R2 Rtest

4 0.00664 0.99993443 0.997818

6 0.00700 0.999922362 0.999949

8 0.00608 0.999941288 0.999949

10 0.00656 0.999938161 0.997362

13 0.00617 0.999940957 0.997676
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Bayes’ theorem to relate the experimental/surrogate data Y

and the parameter x is as follows:

P x=Yð Þ ¼
PðY=xÞP xð Þ

p Yð Þ
ð3:1Þ

where P(x/Y) is the posterior probability density function

(PPDF); P(Y/x) is the likelihood function or the forward

model; P(x) is the prior density function; and P(Y) is the

normalising constant.

In Eq. (3.1), ‘x’ is often termed as hypothesis [4].

Bayesian inference forms a powerful technique for

estimation, hypothesis testing, decision making and

selection of the model. Given the observations, the

posterior probability of a hypothesis is proportional to

the product of its likelihood and prior probability.

The likelihood P(Y/x) provides the probability of

obtaining the data vector (Y) for a given parameter

vector x (direct problem). P(x) gives any prior

knowledge about the estimators. Prior can be of three types

[7, 27]: Gaussian prior, log-normal prior and uniform

prior.

The Bayes’ theorem can also be stated as in ref.

[8]

Ppostðq=TÞ ¼
Pf ðT=qÞPpr qð Þ

rPf ðT= qð ÞPpr qð Þdq
ð3:2Þ

P T=qð Þ ¼ 2pr2
� �

�n
2

:exp
�1

2r2
Tmeas � Tsim qð Þ½ �T Tmeas � Tsim qð Þ½ �

	 
 ð3:3Þ

P qð Þ ¼ 2pr2
� ��0:5

:exp
�1

2r2p
q� lp
� �2

( )

ð3:4Þ

Ppostðq=TÞ ¼ 2pr2
� �

�n
2

� exp
�1

2r2
Tmeas � Tsim qð Þ½ �T Tmeas � Tsim qð Þ½ �

	 


� 2pr2
� ��0:5

�exp
�1

2r2p
q� lp
� �2

( )

ð3:5Þ

Equation (3.3) provides the expression for the likeli-

hood function, which is, in other terms, also called as the

forward model. The uncertainty r is due to the mea-

surement errors and the error in the forward model. The

PPDF is expressed as the product of PðT=qÞ and P qð Þ. For
a uniform prior, the PPDF now becomes PðT=qÞ; that is,
the posterior probability density is equivalent to the

likelihood function. In Eq. (3.3), n represents the total

number of temperatures measured in the experiment. A

frequently employed prior is the Gaussian prior, which is

given by Eq. (3.4). When the likelihood function follows

a normal distribution, the mean value represents the

estimate of the unknown parameter. The mean expression

is given as

MeanðxretÞ ¼

P

i qie � 1
2

x2i þ q� lp
� �2

=r2p

� �� �h i

P

i e � 1
2

x2i þ q� lp
� �2

=r2p

� �� �h i ð3:5Þ

Where
P

i spans all the points in the database. The estimate

can also be reported in terms of maximum of the PPDF and

it is given as

MAP ¼ argmax P qjTð Þ½ � ð3:6Þ

3.2 Metropolis–Hastings algorithm

The sampling algorithm used in this work is Metro-

polis–Hastings algorithm [8]. It has been found in the

literature that the MH algorithm is very powerful and

the problem of being trapped in to local minima/max-

ima is avoided. The procedure for the algorithm is

given as

a. Initialise x1
b. for i = 1…, M

1. Draw a sample u * U(0,1), that is, from a uniform

distribution between 0 and 1.

2. Draw a sample x**q(x*/xi)

3. If u\A(x*, xi), xi?1 = x*

4. Else go to step 2 with xi?1 = xi

Acceptance function, A x�; xi
� �

¼ min

1;
P x�ð Þ�q

xi
x�ð Þ

P xið Þ�q x�
xi

� �

0

@

1

A

0

@

1

A.

4. Sensitivity analysis

It is important to carry out the sensitivity analysis to

determine the behaviour and characteristics of the

unknown parameter before performing the estimation

process. The sensitivity study is carried out to know the

behaviour of the estimated temperature with the changes

in the parameter. The sensitivity analysis is the Jacobian

matrix that investigates the behaviour between the inputs

and the outputs. The objective of SA is to identify how

the variability in an output quantity of interest (Ti) is

connected to an input (Pj) in the model; the result is a

sensitivity derivative oTi
oPj

� �

. Before addressing the esti-

mation of the unknown parameters, the behaviour of the

determinant of the information matrix JTJ [2, 16] is

determined. The information matrix is also called as

sensitivity matrix J and the entries of the matrix Jij are
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called sensitivity coefficients. The sensitivity matrix [2]

is defined as

J Pð Þ ¼
oTT Pð Þ

oP

� �T

¼

oT1

oP1

oT1

oP2

oT1

oP3

. . .
oT1

oPN

oT2

oP1

oT2

oP2

oT2

oP3

. . .
oT2

oPN

.

.

.

oTI

oP1

.

.

.

oTI

oP2

.

.

.

oTI

oP3

. . .

.

.

.

oT1

oPN

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

The present work involves Navier–Stokes equations and

it is not easy to obtain the Jacobian matrix. As a repre-

sentative case, the steady-state temperature using Green’s

function from ref. [16] is considered for a fin with high

thermal conductivity and an attempt has been made to

calculate the sensitivity coefficient. The steady-state tem-

perature is given as

T x; tð Þ � T1 ¼
qL

k

e�mx � e�m 2L�xð Þ
� �

mL 1þ e�2mLð Þ
ð4:1Þ

oTi

oq
¼

e�mxi � e�mð2L�xiÞ

mL 1þ e�2mLð Þ

� �

L

k
ð4:2Þ

The sensitivity coefficient with respect to an unknown

parameter Pj (q in this case) is determined by differentiating

the solution with respect to Pj. The plot of sensitivity

coefficient is shown in figure 5. When the determinant of

JTJ&0, then the inverse problem is ill conditioned. In such

conditions, prior information is essential for estimation of

the parameter. Therefore, it is desirable to have linearly

independent sensitivity coefficients Jij with large magni-

tudes, such that the inverse problem is not very sensitive to

measurement errors and accurate estimates of the parame-

ters can be obtained. From figure 5, it is seen that the trend

of the graph is decreasing and one can come to a conclusion

that the estimation of heat flux is possible when the tem-

perature sensor is closer to the base of the fin because of the

fact that sensitivity coefficient Jij tends to zero and the

information is no more useful to estimate the heat flux.

5. Results and discussion

There are various iterative methods available for the esti-

mation of unknown parameters in inverse heat transfer

problem. In the present work, deterministic gradient-based

methods cannot be used because of the complexity involved

in obtaining the Jacobian matrix. A stochastic-based

approach is used for the present conjugate heat transfer

problem, which helps eliminate the tedious calculation of

Jacobian matrix.

5.1 Forward solution from numerical model

(CFD)

The objective of the work is to show the validity of the

Bayesian framework in estimating heat flux with uniform

prior and normal prior information about the unknown heat

flux for the perturbed surrogated data. The forward model

consists of a numerical model and the geometry is modelled

and meshed using ANSYS 14.5 with the selected grid size.

The numerical analysis is carried out in the meshed region

with the specified boundary conditions and convergence

criteria of 1910-6. The heat flux applied at the base is

varied from 1100 to 2300 W/m2. The selection of heat flux

range confirms that the Rayleigh number does not exceed

the critical value and the flow remains laminar. Steady-state

heat transfer simulations are carried out for different values

of heat flux and the corresponding temperature data are

obtained. Figures 6 and 7 show the temperature distribution

and velocity contour for 1200 W/m2 respectively.

Figure 5. Plot of sensitivity coefficients along with positions.
Figure 6. Temperature plot along the length of the fin at heat flux

1200 W/m2 from CFD simulation.

Sådhanå (2018) 43:62 Page 7 of 16 62



Simulations are carried out for different heat flux and the

temperature distribution is obtained for each case. Figure 8

shows the temperature distribution along the length of fin

for various heat flux values.

5.2 Forward solution from numerical model

(ANN)

As mentioned previously, numerical simulations are now

replaced with ANN for different heat flux values that act as

a fast forward model for further simulations. Table 6 shows

the comparison between CFD and ANN temperature at a

location (x,y), (1.5,62) mm. It has been observed that a

maximum error of 0.9% is noticed, which indicates that the

forward model (ANN) used in this work predicts values

very close to the simulated temperature (CFD).

5.3 Estimation of unknown heat flux

In this section, an attempt is made for the estimation of heat

flux from the fin, for the known experimental or surrogated

temperature. The unknown parameter is estimated with and

without subjective prior. Initially, the unknown heat flux is

estimated without considering the prior information. This

work considers the surrogated temperature data instead of

experimental temperature. In this case, the PPDF is directly

equal to the likelihood function. Surrogated data added with

noise mimics the experimental data. Figure 9 shows the

information about the surrogated data. An assumed heat

flux from the specified range is given as input to the for-

ward model to obtain the surrogated temperature. Now, the

problem turns out to be single-parameter estimation where

the temperature is known and heat flux is assumed to be

unknown.

Furthermore, the error between ANN and the surrogated

temperature is minimised using Bayesian methodology and

the unknown heat flux is estimated. The forward model

measurement error is assumed to be 5%. With the help of

MH-MCMC algorithm, the heat flux is estimated for vari-

ous values of surrogated temperature. The effect of number

of samples on estimation is discussed in table 7. It is

observed that as the number of samples is increased, the

changes in the point estimates are negligible. Hence, 5000

samples are considered for faster computational rate.

Figure 7. Velocity plot at heat flux 1200 W/m2 from CFD

simulation.

Figure 8. Variation in temperature with position for different

heat flux.

Table 6. Comparison between temperatures obtained from CFD

and ANN.

Heat flux,

q, W/m2

Simulation

temperature, K

(CFD)

Forward model

temperature, K

(ANN)

Error

(%)

930 339.36 338.20 0.34

1050 340.04 343.11 0.90

1280 349.49 351.54 0.58

1450 355.93 356.12 0.05

Heat Flux Numerical Model Temperature 

Figure 9. Schematic representation of surrogated temperature.
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The PPDF of heat flux 1200 W/m2 plotted against dif-

ferent samples is shown in figure 10. As seen from table 7,

the standard deviation of the estimated heat flux is very less

and the same is reflected in the PPDF plot. The mean and

the MAP of the estimated heat flux reported in table 7 for

different samples do not vary significantly, and both predict

closer to the known heat flux value. This again proves the

robustness of the Bayesian framework.

Figure 11 represents the frequency distribution of the

heat flux and is clearly seen that the samples oscillate with

respect to the mean 1200 W/m2. In case of uniform prior,

the PPDF is equal to the likelihood function and Eq. (3.3) is

used for estimating heat flux. When a Gaussian prior is

incorporated, the PPDF now becomes Eq. (3.5). Gaussian

prior is incorporated to capture the prior knowledge of the

parameter. The expression for the Gaussian prior is given

by Eq. (3.4).

From table 8, it is seen that the assumed value of heat

flux used to obtain surrogated temperature and the heat flux

estimated using MH-MCMC algorithm agrees very well for

both the prior models considered. The estimated values of

heat flux is reported as mean, MAP and standard deviation

in which the uncertainty associated with the estimated

parameters can directly be obtained using the Bayesian

framework. There is no significant difference between the

heat flux values estimated by using uniform prior and

normal prior because the surrogated temperature contains

no noise. Table 8 also shows the comparison between the

Table 7. Effect of sample size on Bayesian retrieval of heat flux.

Heat flux, q

W/m2

Number of

samples

Bayesian retrieved values

for q(W/m2)

Mean MAP SD

1200 5000 1200.27 1200.46 0.314

10000 1200.36 1200.45 0.312

15000 1200.26 1198.90 0.313

20000 1200.71 1198.83 0.316

Figure 10. PPDF plot for (a) = 5000 samples, (b) = 10000 samples, (c) =15000 samples, (d) = 20000 samples.
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Figure 11. Frequency histogram data of heat flux 1200 W/m2 for (a) = 5000 samples, (b) = 10000, samples, (c) = 15000 samples, (d) =

20000 samples.

Table 8. Retrieved values of heat flux using MH-MCMC with prior and without prior.

Heat flux Prior model

Number of samples = 5000 Number of samples =10000

Mean MAP SD Mean MAP SD

930 Uniform 929.76 929.77 0.310 929.93 929.25 0.300

Normal 929.41 929.61 0.300 929.31 929.46 0.290

1050 Uniform 1050.25 1050.64 0.290 1050.11 1048.86 0.290

Normal 1047.90 1048.20 0.256 1048.10 1048.30 0.246

1450 Uniform 1451.47 1448.67 0.430 1451.26 1448.92 0.450

Normal 1447.00 1447.00 0.426 1447.10 1447.80 0.381

Table 9. Estimation of heat flux for perturbed data at different noise levels.

Heat flux, W/m2 Prior model

Noise level = 0.1K Noise level = 0.5K

Mean MAP SD Mean MAP SD

930 Uniform 932.17 932.46 0.312 942.28 942.09 0.307

Normal 930.16 930.86 0.284 938.72 939.85 0.301

1050 Uniform 1052.6 1052.4 0.291 1062.8 1062.5 0.288

Normal 1050.4 1050.4 0.245 1059.2 1059.8 0.257

1450 Uniform 1455.0 1454.0 0.461 1473.4 1473.6 0.472

Normal 1451.5 1451.0 0.369 1466.7 1467.3 0.392
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number of samples considered for the estimation process.

To study the importance of prior information for a conju-

gate heat transfer problem, different priors are specified in

Eq. (3.5) and the unknown heat flux is estimated. However,

the standard deviation of prior plays important role during

the estimation process. For this purpose, the standard

deviation rp is assumed to be 5% and 2% and the corre-

sponding results are shown in tables 8 and 9 respectively.

Figure 12. PPDF for different heat flux values with uniform and normal prior.
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There is no remarkable difference in the values estimated

by using 5000 samples and 10,000 samples. Hence, to

reduce the computational cost and time, the number of

samples used in this analysis is 5000. The concept of burn

in has been adopted to avoid the influence of initial guess,

that is, first 1000 samples are not considered to calculate

mean, MAP and SD. The entire estimation procedure is

repeated for different heat flux and number sample con-

sidered is 5000. In this way, the robustness of the Bayesian

framework along with MH-MCMC algorithm proves to be

potent tool for the estimation of boundary heat flux for the

conjugate heat transfer problem. Figure 12 shows the PPDF

of the retrieved values of heat flux with uniform prior and

normal prior, respectively.

The PPDF gives information about mean and MAP of the

estimated parameter. Figure 13 shows the sampling distri-

bution of heat flux 1200 W/m2. An initial guess of 800 W/

m2and 1800 W/m2 is assumed as different cases and the

solution quickly converges to the actual heat flux of

1200 W/m2 within 500 samples, which is evident from

figure 13(a) and (b) respectively. Irrespective of the initial

guess, the proposed algorithm reaches the solution at a

faster rate.

5.4 Heat flux retrieval for perturbed data

In reality, the temperature distribution cannot be pure and

the presence of random noise can be observed when

experiments are performed. Nevertheless, the measurement

data are contaminated with Gaussian errors that can cause

large deviations of the final solution from the exact solu-

tion. To mimic experimental data, the surrogated data are

now added with noise at various levels. The forward model

is solved for the known heat flux and the temperature dis-

tribution obtained is perturbed by adding Gaussian noise

such as 0.1 K, 0.5 K. This represents noisy data similar to

the experimental temperature. So, one is interested not only

in estimation of unknown properties for surrogated data,

but also in how the estimation can be applied for noisy data.

The estimation results with 0.1 K and 0.5 K noise in the

data are shown in table 9.

With the noise level of (r = 0.5K), which in terms of

measurement level will be 3r (1.5K), the error in the

estimation is 1.2%. When prior information about the

parameter is incorporated, even with the noise addition the

estimated values are much closer to the actual value than

compared with the estimated values obtained from uniform

prior. Hence, with the proper selection of the mean and the

standard deviation of the prior, one can estimate the

unknown parameters precisely. Once again, it has been

proved that the potent Bayesian framework extended to

estimation of the heat flux for the noise added surrogated

data shows successful estimates and the retrieved heat flux

deviates only marginally to the original value. The PPDF

plot for the perturbed data for both uniform prior and

normal prior at noise levels 0.1 K and 0.5 K is shown in

figures 14 and 15 respectively. When normal prior is used

for estimation the estimated values are closer to the actual

value, whereas the value obtained from uniform prior is

slightly deviated from the actual value, signifying that

when non-informative prior is used then it is very much

essential to reduce the measurement error. This helps

improve the accuracy of the estimate. It has also been

observed in table 9 that the standard deviation of the esti-

mates using normal prior is lesser than the uniform prior for

all heat fluxes. This is due to the a priori information of the

unknown parameter, which simplifies the Markov chain

process.

For the incorporation of Gaussian prior the standard

deviation is considered as {rp = 0.05, 0.06, 0.09} of the

Gaussian mean. Different combinations of Gaussian mean

Figure 13. Sampling distribution for heat flux1200W/m2 with initial guess (a) = 800 W/m2 and (b) = 1800 W/m2.
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and standard deviation are considered. From table 10 it has

been observed that proper selection of the mean and the

standard deviation for the Gaussian distribution can

estimate the values precisely. Table 10 shows that when rp

= 0.09xlp, the mean estimate is closer to the actual value of

the heat flux. For the heat flux of 930 W/m2, several

Figure 14. PPDF at noise level = 0.1 K.
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combinations of mean and standard deviation are used and

it was observed that when the mean value was below

700 W/m2 the estimated values are deviating from the

actual values. Figure 16 shows the comparison of PPDF

obtained for heat flux value of 1450 W/m2 at 0.1 K noise

levels, when uniform and normal priors are used during

estimation. It is clearly observed that the standard deviation

of the PPDF for normal prior is lesser than that of the

standard deviation of the PPDF for uniform prior. This

strongly proves the fact that incorporating prior information

Figure 15. PPDF at noise level = 0.5 K.
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in the Bayesian framework will result in minimising the

uncertainty associated with the estimated parameters.

6. Conclusions

A two-dimensional laminar conjugate natural convection

from a fin with constant heat flux at the base has been

considered for the present study. ANSYS14.5 fluent is used

to model the computational geometry and simulations have

been carried out successfully with the selected grid. Tem-

perature distribution was obtained using CFD (forward

model). A neural network is developed using ANN, and it

acts as the fast forward model to obtain temperature dis-

tribution for various heat fluxes. A maximum error of

0.90% has been observed between the temperature obtained

from CFD and ANN. Hence, CFD is replaced by ANN as

the forward model. The Bayesian inference method was

successfully implemented to estimate the unknown heat

flux. The MCMC with MH algorithm has been explored to

estimate the heat flux for the surrogated data. The unknown

heat flux was also retrieved for the perturbed surrogated

data with good accuracy. Gaussian prior was incorporated,

and with the proper selection of the prior value, it was

possible to obtain precise estimation of the parameters. The

numerical results indicates that ‘‘Fast Forward Model-

ANN’’ approach can reduce the computational cost and the

powerful Bayesian statistical inference results in better

estimation process and quantifies the uncertainty accu-

rately. Therefore, Bayesian inference can be successfully

used for the estimation of parameters even for noisy data.

Nomenclature

ACFD asymptotic computational fluid dynamics

ANN artificial neural network

h heat transfer coefficient, W/m2 K

k thermal conductivity of the fin material, W/m K

L height of the fin, m

p perimeter of the fin, m

qref reference heat flux, W/m2

q flux input, W/m2

Tref reference temperature, K

Tnew temperature for given value of heat flux, K

X non-dimensional length

x distance from the base of fin, m

Greek symbols

h non-dimensional temperature

b 1=T , thermal expansion coefficient K-1

q density, kg/m3

m kinematic viscosity, m2/s
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