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A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT

BY VALEN E. JOHNSON

University of Michigan

This article describes an extension of classical χ2 goodness-of-fit
tests to Bayesian model assessment. The extension, which essentially
involves evaluating Pearson’s goodness-of-fit statistic at a parameter value
drawn from its posterior distribution, has the important property that it is
asymptotically distributed as a χ2 random variable on K − 1 degrees of
freedom, independently of the dimension of the underlying parameter vector.
By examining the posterior distribution of this statistic, global goodness-of-
fit diagnostics are obtained. Advantages of these diagnostics include ease
of interpretation, computational convenience and favorable power properties.
The proposed diagnostics can be used to assess the adequacy of a broad class
of Bayesian models, essentially requiring only a finite-dimensional parameter
vector and conditionally independent observations.

1. Introduction. Model assessment presents a challenge to Bayesian statis-
ticians, one that has become an increasingly serious problem as computational
advances have made it possible to entertain models of a complexity not considered
even a decade ago. Because diagnostic methods have not kept pace with these com-
putational advances, practitioners are often faced with the prospect of interpreting
results from a model that has not been adequately validated.

Numerous solutions to this problem have been considered. The most orthodox
of these depend on the specification of alternative models and the use of Bayes
factors for model selection. This approach is reasonable when both a relatively
broad class of models can be specified as alternatives, and when implied Bayes
factors can be readily computed. Unfortunately, it often happens in practice that
neither requirement is satisfied, making this approach impractical for routine
application. Complicating the situation still further is the fact that Bayes factors
are not defined when improper priors are used in model specification, although
this difficulty may be partially circumvented through the use of intrinsic Bayes
factors or related devices [e.g., Berger and Pericchi (1996) and O’Hagan (1995)].

A second strategy for assessing model adequacy centers on the use of posterior-
predictive model checks. This approach was initially proposed by Guttman (1967)
and Rubin (1984), and was extended to more general discrepancy functions
by Gelman, Meng and Stern (1996). [Gelfand (1996) has advocated related
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techniques based on cross-validatory predictive densities.] The primary advantage
of posterior-predictive model assessment is its relative ease of implementation.
In many models, the output from numerical algorithms used to generate samples
from the posterior distribution can be used to generate observations from the
predictive model, which in turn can be used to compute p-values for the
discrepancy function of interest. Posterior-predictive model assessment also
facilitates case-diagnostics, which, in many circumstances, are more telling in
examining model fit than are global goodness-of-fit statistics. However, such
approaches also have an important disadvantage. As Bayarri and Berger (2000)
and Robins, van der Vaart and Ventura (2000) and others have noted, they do not
produce p-values that have (even asymptotically) a uniform distribution. Because
output from predictive posterior model checks is not calibrated, using p-values
based on them for model assessment is problematic.

Bayarri and Berger (2000) and Robins, van der Vaart and Ventura (2000) pro-
pose alternative distributions under which p-values, and thus model diagnostics,
can be calculated. These include partial posterior-predictive p-values and condi-
tional predictive p-values [Bayarri and Berger (2000)], and modifications to poste-
rior predictive and “plug-in” p-values [Robins, van der Vaart and Ventura (2000)].
The attractive feature of each of these variations on more standard definitions of
p-values is that these statistics are distributed either as U(0,1) random variables,
or approach U(0,1) random variables as sample sizes become large. Their draw-
back is that they can seldom be defined and calculated in realistically complex
models.

The goal of this article is to present a goodness-of-fit diagnostic that bridges
the gap between diagnostics that are easy to compute but whose null distributions
are unknown, and diagnostics whose null distributions are known but that cannot
generally be computed. The proposed diagnostic is closely related to the classical
χ2 goodness-of-fit statistic, whose properties are now briefly reviewed.

In the case of a point null hypothesis, the standard χ2 statistic may be defined as

R0 =
K

∑

k=1

(mk − npk)
2

npk

,

where mk represents the number of observations observed within the kth
partitioning element, pk the probability assigned by the null model to this interval,
K the number of partitions or intervals specified over the sample space and
n the sample size. For independent and identically distributed data satisfying
certain regularity requirements, Pearson (1900) demonstrated that the asymptotic
distribution of R0 was χ2 with K − 1 degrees of freedom.

The situation for composite hypotheses is more complicated. Assuming that
bins are determined a priori, Cramér [(1946), pages 426–434] demonstrated that
the distribution of

Rg =
K

∑

k=1

(mk − np
g
k )2

np
g
k
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is that of a χ2 random variable with K −s −1 degrees of freedom, where s denotes
the dimension of the underlying parameter vector θ and {pg

k } denote estimates
of the bin probabilities based on either maximum likelihood estimation for the
grouped data or on the minimum χ2 method. Maximum likelihood estimation for
the grouped data implies maximization of the function

∏

k

pk(θ)mk

with respect to θ , while minimum χ2 estimation involves the determination of a
value of θ that minimizes a function related to Rg .

The statistic Rg is the form of the χ2 test most often used in statistics, where it
is routinely used to test independence in contingency tables [see, e.g., Fienberg
(1980)]. In that context, grouped maximum likelihood estimation is natural.
Although the Bayesian χ2 statistic proposed below can be extended for testing
independence in contingency tables, this is not its intended purpose. Instead, it
is intended primarily for use as a goodness-of-fit test. In this regard, the aspect of
model fit assessed is similar to that examined using the classical χ2 goodness-of-fit
test; namely, the proportion of counts observed in predefined parcels of the sample
space is compared to the proportion of counts that are expected in these parcels
under a specified probability model.

Chernoff and Lehmann (1954) considered the distribution of the χ2 statistic in
the more typical situation in which values of the bin probabilities are based on
maximum likelihood estimates obtained using the raw (ungrouped) data. Denote
these values by p̂k . In this case, the distribution of the goodness-of-fit statistic is
generally not one of a χ2 distribution, but instead produces a value R̂ that has a
distribution that falls stochastically between R0 and Rg . For models containing
many parameters, the gap between the degrees of freedom associated with these
two statistics is large, and, as a result, the χ2 goodness-of-fit test based on the
maximum likelihood estimate is usually not useful for assessing model fit in high-
dimensional settings.

The goodness-of-fit statistic proposed here represents a modification of the χ2

statistics considered above. The modification, denoted by RB(θ̃) (or more simply,
by RB when no confusion arises), is obtained by fixing the values of pk and instead
considering the bin counts mk as random quantities. Allocation of observations to
bins is made according to the value of each observation’s conditional distribution
function, conditionally on a single parameter value θ̃ sampled either from the
posterior distribution or the asymptotic distribution of the maximum likelihood
estimator. [The statistic obtained in this way has some resemblance to the χ2

statistics considered by, e.g., Moore and Spruill (1975), although emphasis there
focuses on randomized cells rather than on posterior sampling of parameter
vectors.] The distinguishing feature of RB(θ̃) is that, for many statistical models,
its asymptotic distribution is χ2 on K − 1 degrees of freedom, independently of
the dimension of the parameter vector θ .
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Because it is the sampling distribution of RB that has a χ2 distribution, one
might argue that this procedure does not really represent a Bayesian goodness-
of-fit diagnostic. However, sampling parameter values from a distribution for the
purpose of inference occurs more naturally within the Bayesian paradigm, and for
this reason it is likely that the proposed diagnostic will find more application there.
In addition, the formal test statistics proposed below are based on the posterior
distribution of RB . For this reason, values of θ̃ used in the definition of RB are
assumed to represent samples from the posterior distribution on the parameter
vector, rather than samples generated from the asymptotic normal distribution of
the maximum likelihood estimator. However, either interpretation is valid.

The remainder of the paper is organized as follows. In the next section,
the Bayesian χ2 statistic RB is defined and its asymptotic properties are
described. Corollaries extending these properties from i.i.d. observations to
conditionally independent observations and to fixed-bin applications are presented,
and strategies for combining information contained in dependent samples of RB

values generated from the same posterior distribution are described. Following
this, several examples that illustrate the application of this statistic and summaries
from its posterior are presented. Discussion and concluding remarks appear in
Section 4. Proofs of the theorem and corollaries of Section 2 appear in the
Appendix.

2. A Bayesian χ2 statistic. To begin, let y1, . . . , yn (= y) denote scalar-
valued, continuous, identically distributed, conditionally independent observations
drawn from probability density function f (y|θ) defined with respect to Lebesgue
measure and indexed by an s-dimensional parameter vector θ ∈ � ⊂ Rs . Denote
by F(·|θ) and F−1(·|θ) the (nondegenerate) cumulative distribution and inverse
distribution functions corresponding to f (·|θ). To construct a sampled value θ̃

from the posterior, augment the observed sample y with an i.i.d. sample v1, . . . , vs

from a U(0,1) distribution. Let p(θ |y) denote the posterior density of θ based
on y, and let p(θj |θ1, . . . , θj−1,y) denote the marginal conditional posterior
density of θj given (θ1, . . . , θj−1,y). Define θ̃ implicitly by

v1 =
∫ θ̃1

−∞
p(θ1|y) dθt1, . . . , vs =

∫ θ̃s

−∞
p(θs |θ̃1, . . . , θ̃s−1,y) dθs.(1)

Thus, θ̃ denotes a value of θ sampled from the posterior distribution based on y.
Let θ0 denote the true but unknown value of θ . The maximum likelihood estimate
of θ is denoted by θ̂ .

To construct the Bayesian goodness-of-fit statistic proposed here, choose quan-
tiles 0 ≡ a0 < a1 < · · · < aK−1 < aK ≡ 1, with pk = ak − ak−1, k = 1, . . . ,K .
Define zj (θ̃) to be a vector of length K whose kth element is 0 unless

F(yj |θ̃) ∈ (ak−1, ak],(2)
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in which case it is 1. Finally, define

m(θ̃) =
n

∑

j=1

zj (θ̃).

It follows that the kth component of m(θ̃), mk(θ̃), represents the number of
observations that fell into the kth bin, where bins are determined by the quantiles
of the inverse distribution function evaluated at θ̃ . Finally, define

RB(θ̃) =
K

∑

k=1

[
(mk(θ̃) − npk)√

npk

]2

.(3)

The asymptotic distribution of RB is provided in the following theorem.

THEOREM 1. Assuming that the regularity conditions specified in the Appen-

dix apply, RB converges to a χ2 distribution with K − 1 degrees of freedom as

n → ∞.

The simplicity of Theorem 1 is somewhat remarkable given the complexity
of the corresponding distribution of R̂. As mentioned above, the asymptotic
distribution of R̂ does not, in general, follow a χ2 distribution. Instead, it has
the distribution of the sum of a χ2 random variable with K − s − 1 degrees
of freedom and the weighted sum of s additional squared normal deviates with
weights ranging from 0 to 1. In contrast, the asymptotic distribution of RB follows
a χ2

K−1 distribution, independently of the dimension of the parameter vector θ .
Heuristically, the idea underlying Theorem 1 is that the degrees of freedom

lost by substituting the grouped MLE for θ in Pearson’s χ2 statistic are exactly
recovered by replacing the MLE with a sampled value from the posterior in RB .
That is, the s degrees of freedom lost by maximizing over the grouped likelihood
function to obtain Rg are exactly recovered by sampling from the s-dimensional
posterior on θ .

As a corollary, Theorem 1 can be extended to the more general case in which
the functional form of the density f (y|θ) varies from observation to observation.
Specifically, if the density of the j th observation is denoted by fj (y|θ), with
distribution and inverse distribution functions Fj and F−1

j , respectively, then the
following corollary also applies.

COROLLARY 1. Assume the conditions referenced in Theorem 1 are extended

so as to provide also for the asymptotic normality of both the posterior distribution

on θ and the maximum likelihood estimator when the likelihood function is

proportional to

n
∏

j=1

fj (yj |θ).
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Assume also that the functions fj (·|θ) satisfy the same conditions implied in

Theorem 1 for f (·|θ). Define the kth component of zj (θ) to be 1 or 0 depending

on whether or not

Fj (yj |θ̃) ∈ (ak−1, ak],(4)

with a fixed. Then the asymptotic distribution of RB based on this revised definition

of zj (θ) is χ2 with K − 1 degrees of freedom.

Outlines of the proof of Theorem 1 and the corollary appear in the Appendix.
From a practical perspective, the corollary is important because it extends the

definition of RB to essentially all models in which observations are continuous
and conditionally independent given the value of a finite-dimensional parameter
vector.

The results cited above for continuous-valued random variables can be extended
to discrete random variables in one of two ways. The most direct extension
is to simply proceed as in the continuous case, using a randomization procedure
to allocate counts to bins when the mass assigned to an observation spans the
boundaries defining the bins. The second is to define fixed bins in the standard
way based on the possible outcomes of the random variable, and to then evaluate
the bin probabilities at sampled values of θ from the posterior distribution. That is,
if f (y|θ) denotes the probability mass function of a discrete random variable y and

pk(θ̃) = 1

n

n
∑

j=1

∑

y∈bin k

fj (y|θ̃),(5)

then the χ2 statistic RB may be redefined as

RB(θ̃) =
K

∑

k=1

[
(mk − npk(θ̃))

√

npk(θ̃)

]2

.(6)

In this case, the asymptotic distribution of RB(θ̃) is similar to that described above
in the continuous case and is detailed in the following corollary.

COROLLARY 2. If the regularity conditions specified in Theorem 1 apply to

the discrete probability mass function f (y|θ), then, using predefined bins and the

definition of the bin probabilities given in (5), the distribution of RB(θ̃) as defined

in (6) converges to a χ2 distribution with K − 1 degrees of freedom as n → ∞.

The asymptotic χ2 distribution of RB(θ̃) described in the theorem and
corollaries above is achieved when a large sample of independent observations
is drawn from a sampling density, and a value of θ̃ is drawn from the posterior
induced by this observation. However, when two values of θ̃ are drawn from the
same posterior distribution (i.e., based on the same observation), the values of RB
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that result are correlated. This correlation complicates the interpretation of test
statistics defined with respect to posterior distribution on RB values.

Combining information across a posterior sample of RB values might be
accomplished in a variety of ways, including modifications of the methodologies
proposed in Verdinelli and Wasserman (1998) or Robert and Rousseau (2002).
Another possibility is to simply report the proportion of RB values drawn from
the posterior distribution that exceeds a specified critical value from their nominal
χ2

K−1 distribution. For a given data vector and probability model, such a procedure
might lead to a statement that, say, 90% of RB values generated from the posterior
distribution exceeded the 95th percentile of the reference χ2 distribution.

Though decidedly non-Bayesian, such a report is convenient from several
perspectives. By reporting the proportion of RB values that exceeds the critical
value of the test, the unpalatable aspect of basing a goodness-of-fit test on a
randomly selected value of RB is avoided. It is also straightforward to compare
the proportion of RB values that exceeds the critical value of the test to the size of
the test; if the RB values did represent independent draws from their nominal χ2

distribution, the proportion of values falling in the critical region of the test would
exactly equal the size of the test. Any excess in this proportion must therefore be
attributed either to dependence between the sampled values of RB from the given
posterior or lack of fit. Finally, and perhaps most importantly, this strategy requires
almost no computational effort. In most practical Bayesian models, values of RB

can be computed almost as an afterthought within the MCMC schemes used to
sample from the posterior distribution of the parameter vector.

In the event that formal significance tests must be performed to assess model
adequacy, they can be based on a comparison of the observed value of a summary
statistic based on the posterior distribution of RB values to an approximation of
the sampling distribution of the summary statistic induced by repeated sampling of
the data vector. The summary statistic considered here is defined as the posterior
probability that a value of RB drawn from the posterior distribution (based on a
single value of y) exceeds the value of a χ2

K−1 random variable. This probability,
denoted by A, is related to a commonly used quantity in signal detection theory
and represents the area under the ROC curve [e.g., Hanley and McNeil (1982)] for
comparing the joint posterior distribution of RB values to a χ2

K−1 random variable.
The expected value of A, if taken with respect to the joint sampling distribution
of y and the posterior distribution of θ given y, would be 0.5. Large deviations in
the expected value of A from 0.5, when the expectation is taken with respect to the
posterior distribution of θ for a fixed value of y, indicate model lack of fit.

Unfortunately, approximating the sampling distribution of A is a numerically
burdensome endeavor, and calculating it obviates many of the advantages that are
gained by using a test statistic with a known reference distribution. To a large
extent, the computations required to approximate A’s sampling distribution are
as complicated as, or even more complicated than, similar techniques used to
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approximate the sampling distribution of discrepancy functions used in posterior-
predictive model checks [e.g., Sinharay and Stern (2003)]. However, knowing the
nominal value of A makes this computation unnecessary when the observed value
of A falls within several hundredths of 0.5 or is smaller than 0.5. Procedures
for approximating the sampling distribution of A for the purpose of determining
the significance of departures of the observed value of A from 0.5 are described
in the examples using methodology delineated by Dey, Gelfand, Swartz and
Vlachos (1998).

As an aside, it is interesting to compare the test statistic RB and its reference
distribution to the χ2 discrepancy function and its reference distribution as
proposed in Gelman, Meng and Stern (1996). The reference distribution of RB(θ̃)

is obtained by sampling y from its “true” distribution F(·|θ0), and then sampling
a single value of θ̃ from the posterior distribution of θ given y. The resulting
distribution is asymptotically χ2

K−1; this result is unrelated to posterior-predictive
distributions or samples drawn from them. In contrast, the reference distribution
of the χ2 discrepancy function proposed by Gelman, Meng and Stern (1996) is
obtained as the distribution of the statistic

n
∑

i=1

(y
pp
i − E(y

pp
i |θ))2

Var(ypp
i |θ)

(7)

induced by repeatedly drawing values ypp = (y
pp
1 , . . . , y

pp
n ) from the posterior-

predictive density based on the observed data vector y. As Gelman, Meng and
Stern point out, this statistic does not have a χ2 distribution.

The power characteristics of the Bayesian χ2 statistics defined above, like their
classical counterparts, depend on the selection of the bin probabilities pk . Clearly,
consistency of derived tests against general alternatives requires that K → ∞ as
n → ∞. On the other hand, as many authors have noted [see, e.g., Koehler and Gan
(1990) for a review of this topic], using too many cells can result in a significant
loss of power.

A general criterion for choosing cell probabilities was proposed by Mann and
Wald (1942), who suggested the use of 3.8(n − 1)0.4 equiprobable cells. Subse-
quent authors [e.g., Williams (1950), Watson (1957), Hamdan (1963), Dahiya and
Gurland (1973), Gvanceladze and Chibisov (1979), Best and Rayner (1981), Quine
and Robinson (1985) and Koehler and Gan (1990)] found that the Mann–Wald
criterion often results in too many bins and loss of power. Based on numerical
simulations of seven classes of alternative probability models, Koehler and Gan
(1990) noted that near-optimal power against a Gaussian null model was obtained
when the Mann–Wald criterion was divided by 4. Such a rule also finds approx-
imate agreement with simulation results reported by Kallenberg, Oosterhoff and
Schriever (1985) (although they also recommend the use of nonequiprobable cells
against certain types of alternative hypotheses). This rule of thumb, which may be
approximately reformulated as taking n0.4 equiprobable cells, was found to yield
nearly optimal results in the examples described below.
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3. Examples.

3.1. Goodness-of-fit tests under a normal model with unknown mean and

variance. In this example, the distribution of RB under a normal model is
investigated and compared with the distributions of R̂ and Rg . Posterior samples
of RB generated from a single data vector are used in ROC-type analyses
to generate a summary model diagnostic. The power of this test statistic is
investigated and compared to the power of the test statistic Rg when data are
generated under nonnormal alternatives.

Let y = (y1, . . . , y50) denote a random sample from a standard normal
distribution. For purposes of illustration, assume that the mean µ and variance σ 2

of the data are unknown and that the joint prior assumed for (µ,σ ) is proportional
to 1/σ . Let (µ̃, σ̃ ) denote a sampled value from the posterior distribution based
on y.

For a given data vector y and posterior sample (µ̃, σ̃ ), bin counts mk(µ̃, σ̃ ) are
determined by counting the number of observations yi that fall into the interval
(σ̃�−1(ak−1) + µ̃, σ̃�−1(ak) + µ̃), where �−1(·) denotes the standard normal
quantile function. Based on these counts, RB(µ̃, σ̃ ) is calculated according to (3).

Figure 1 depicts a quantile-quantile plot of RB values calculated for 10,000
independent samples of y. Each value of RB depicted in this plot corresponds to a
single draw of (µ,σ ) from the posterior distribution based on a single observation
vector y. In accordance with the rule-of-thumb discussed in Section 2, five
equiprobable bins were used in the definition of RB . As expected, the distribution
of RB closely mimics that of a χ2

4 random variable.
The normal deviates used in the construction of Figure 1 were also used to

compute the classical χ2 statistic based on the maximum likelihood estimates of
µ and σ (i.e., using the ungrouped data). The quantile-quantile plot of 10,000 R̂

values obtained from these data is displayed in Figure 2. In this plot, the R̂ values
have been plotted against the expected order statistics from a χ2

2 random variable.
Five equal probability bins based on the standard normal distribution were also
used to define these R̂ values. As might be expected, the plotted χ2 values display
some deviation from their approximate χ2

2 distribution.
Grouped maximum likelihood estimates were also used to calculate Rg values

using these normal samples. The corresponding quantile-quantile plot for the
10,000 Rg values is displayed in Figure 3; as expected, these values demonstrate
substantially better agreement with a χ2

2 random variable than do the values
depicted in Figure 2.

Returning to the investigation of the properties of RB , Figure 1 demonstrates
excellent agreement between this statistic and its asymptotic distribution. To
illustrate its power in detecting departures from the normal model, suppose
now that the experiment above is repeated with independent Student t variates
substituted for the normal deviates. That is, the actual observation vectors used
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FIG. 1. Quantile-quantile plot of RB values for i.i.d. normal data. Values of RB displayed in this

plot were determined from independent samples of 50 standard normal deviates, and are plotted

against the expected order statistics from a χ2
4 distribution. Posterior samples of the mean and

variance were estimated using reference priors and observations were binned into five bins of equal

probability [i.e., a = (0,0.2,0.4,0.6,0.8,1)].

in the simulation represent Student t variates, but the statistical model used to
calculate values of RB is still based on the assumption that the data are normally
distributed. The degrees of freedom of the t variates used in this experiment range
from 1 to 10, and for each value within this range, 10,000 independent samples of
size 50 were drawn.

To study the power of the statistic RB in detecting departures from normality
in this experiment, formal significance tests were performed using the statistic A
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FIG. 2. Quantile-quantile plot of R̂ values for i.i.d. normal data. Values of R̂ displayed in this

plot were each determined from a separate sample of 50 standard normal deviates, and are plotted

against the expected order statistics from a χ2
2 distribution. For comparison, the top curve depicts

values of expected order statistics from a χ2
4 distribution.

described in Section 2. This statistic may be defined formally as

A = Pr
θ̃ |y

(

RB(θ̃) > X
)

, X ∼ χ2
K−1,(8)

and, in repeated sampling of both y and θ given y, has a nominal value of 0.5.
Numerically, the value of A, for a fixed data vector y, can be approximated in a
straightforward way using Monte Carlo integration.

Formal model assessment using the statistic A can be based on approximating
the sampling distribution of A using “posterior-predictive-posterior” model checks
[e.g., Dey, Gelfand, Swartz and Vlachos (1998)]. That is, sampled values θ̃
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FIG. 3. Quantile-quantile plot of Rg values for i.i.d. normal data. Values of Rg displayed in this

plot were each determined from a separate sample of 50 standard normal deviates, and are plotted

against the expected order statistics from their asymptotic χ2
2 distribution.

from the posterior can be used to generate posterior-predictive observations ypp

according to f (·|θ̃). In large samples, values of θ̃ will be close to θ0, and so
the distribution of ypp will be close to the distribution of y. Posterior-predictive-
posterior values of App can be generated for each value of ypp by averaging RB ,
computed from ypp, over the posterior distribution of θ induced by ypp. Values
of App obtained from this procedure approximate the sampling variability of the
summary test statistic A that can be attributed to computing the probability in (8)
using the posterior distribution of θ for a given value of y, without averaging over
the distribution of y. The value of A obtained for the original data vector can then
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be compared to the empirical distribution of the values of App obtained from the
posterior distribution on the posterior-predictive data.

In principle, exactly this procedure can be implemented to calculate the
probability that the test statistic A, based on a random sample of t variates, falls
into the critical region of a test based on the empirical distribution of sampled
values App. In this case, however, it is not necessary to generate values of App

for each sample of t variates. Under the normal model, values of RB are invariant
to shifts in location and scale of the data, so the sampling distribution of A, for
any future draw of 50 i.i.d. normal deviates, can be approximated by the empirical
distribution of A values obtained under the normal sampling scheme used at the
beginning of this example. It follows that critical regions for significance tests
based on A are exact under this model, save for the Monte Carlo error encountered
in the empirical approximation of their distribution.

Figure 4 displays the proportion of times in 10,000 draws of t samples that the
value of the test statistic A was larger than the 0.95 quantile of the sampled values

FIG. 4. Power of test statistics A, RB and Rg in detecting departures from normality when data are

distributed according to t distributions. The uppermost curve depicts the power of the test statistic

A against t alternatives with degrees of freedom displayed on the horizontal axis. The curve in the

middle depicts the corresponding power of a single value of RB when compared to a χ2
4 distribution.

The curve at the bottom of the plot represents the power of Rg against the t alternatives. All values

of the power refer to the power of the test statistics in rejecting the null hypothesis of normality in

significance tests of size 0.05 and samples of size 50.
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of App. For comparison, the observed power of the test based on the grouped-
maximum-likelihood χ2 statistic Rg at the 5% level is also shown, as is the
observed power obtained using a randomized test based on only a single value
of RB . To facilitate comparison with the distribution of RB , five equiprobable bins
from a standard normal distribution were used in the definition of Rg .

From Figure 4, it is clear that the test statistic A offers substantially better
power than Rg against this class of alternative models. Part of this advantage stems
from the symmetry and unimodality of the alternative hypotheses, which Rg is ill-
equipped to accommodate, and part from the fact that the bins used in the definition
of Rg were fixed according to the null hypothesis. Substantially better power could
be obtained by using the test statistic R̂ with bins based on the particular y vector
observed, but such tests do not achieve their nominal levels of significance. Perhaps
surprisingly, the power of a randomized test based on a single value of RB is
comparable to the power of A based on the complete posterior distribution of RB

values.

3.2. Lip cancer data. Spiegelhalter, Best, Carlin and van der Linde (2002)
describe a re-analysis of lip cancer incidence data originally considered by Clayton
and Kaldor (1987). Their purpose in examining these data was to illustrate the use
of the deviance information criterion (DIC) to select from among five potential
models for the number of lip cancer cases, yi , observed in 56 Scottish districts
as a function of available age and sex adjusted expected rates Ei . These data and
models are reconsidered here for the related purpose of assessing which of the
models provides an adequate probabilistic description of the data.

Following the Spiegelhalter et al. analysis of these data, begin by assuming that
yi is Poisson with mean µi = exp(θi)Ei . Five models for θi are considered:

1. θi = α0, α0 a constant.
2. θi = α0 + γi , γi exchangeable random effects.
3. θi = α0 + δi , δi spatial random effects with a conditional autoregressive prior

[e.g., Besag (1974)].
4. θi = α0 + δi + γi , δi and γi as above.
5. θi = αi , αi uniform on (−∞,∞).

Five thousand, thinned posterior samples of µ = {µi} were generated for each
of these models using WinBUGS code [Spiegelhalter, Thomas and Best (2000)]
kindly provided by Dr. Best. For each sampled value of µi , the Poisson counts yi

were assigned to one of five equiprobable bins defined according to the Poisson
distribution function evaluated at yi for the given value of µi . In those cases for
which the probability mass function assigned to yi spanned more than one bin,
allocation to a single bin was performed randomly according to the proportion of
mass assigned to the bins. Averaging over all posterior samples of µ for a given
model yielded the values of A depicted in Table 1. Because 56 data points were
available, five bins were again used in the definition of the individual values of RB .
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TABLE 1
Values of the goodness-of-fit statistic A and the proportion of critical

RB values for models of lip cancer incidence data

Model A Proportion of RB > 9.49 DIC

1 0.999 1.000 382.7
2 0.517 0.055 104.0
3 0.538 0.076 89.9
4 0.537 0.075 89.7
5 0.677 0.198 111.7

The second column provides the value of the summary statistic A achieved for
each model. The third column lists the proportion of posterior samples of RB

that exceeded the 95th quantile of a χ2
4 distribution for each model. DIC values

obtained under the “mean” parameterization are listed for comparison.

The proportion of RB values exceeding the 95th quantile from a χ2
4 distribution

was computed using the posterior sample µ. No posterior-predictive or posterior-
predictive-posterior computations were performed to obtain these values.

In Table 1, both the large value of A and the large proportion of RB values
exceeding the 95th quantile of the χ2

4 distribution provide a clear indication of
lack of fit for the first model. Lack of fit in this instance can be attributed to the
failure of the model to adjust for district effects; the posterior mean of the number
of counts assigned to the five bins was (16.0,4.9,5.2,7.1,22.8).

The values of A and proportions of extreme values of RB reported in rows 2–4
do not suggest lack of fit of the aspect of these models being tested by the χ2 test.

The most interesting row in Table 1 is the last, which corresponds to fitting a
separate Poisson model for each observation. The value of A for this model is 0.68,
and nearly 20% of RB values generated from its posterior—nearly four times the
number expected—exceeded the 5% critical value from the χ2

4 distribution.
At first glance, one might suspect that these suspicious values arise from

overfitting. However, the last model generates the most dispersed posterior
distribution of any of the models considered, since only one observation figures
into the marginal posterior of each µi . Instead, the difficulty with this model arises
from the prior assumptions made on µ. The assumption of a uniform prior on θi

implies a prior for the mean of each Poisson observation proportional to 1/µi ; this
prior shrinks the estimate of every µi toward 0. This results in an overabundance
of counts in the higher bins and larger than expected values of RB . The posterior
mean of the bin counts for this model was (8.4,9.8,10.9,12.1,14.8). Refitting the
fifth model with noninformative priors proportional to 1/

√
µi yielded a value of

A = 0.501 and only 4.7% of RB values exceeding 9.49.
It is also interesting to compare the values in the second and third columns of

this table with those provided for the DIC. All statistics suggest inadequacy of the
first model, though for different reasons. For the first model, the high values of
A and RB suggest that the data do not follow Poisson distributions with a common
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scaling of adjusted expected rates. The value of the DIC statistic suggests either
that the model does not fit the data or that it is not as precise in predicting the data
as the other models considered. An advantage of the χ2 statistics in this case is
that their values are interpretable without fitting alternative models.

The comparatively large value of the DIC statistic for the second model can be
attributed to greater dispersion in its posterior as compared to posterior dispersion
of the third and fourth models, even though the exchangeable model appears to
adequately represent variation in the observed data. The comparatively large value
of DIC reported for the fifth model reflects some combination of lack of fit and a
posterior that is more dispersed than others considered.

4. Extensions. In addition to providing a convenient mechanism for assessing
model adequacy, values of RB generated from a posterior distribution may prove
useful both as a convergence diagnostic for MCMC algorithms and for detecting
errors written in computer code to implement these algorithms.

Monitoring values of RB generated within an MCMC algorithm provides a
rudimentary convergence diagnostic for slow-mixing chains. In fact, exceedances
of RB over a prespecified quantile from its null distribution can be incorporated
formally into the convergence diagnostics proposed in Raftery and Lewis (1992).
To the extent that such exceedances are adequately described by a two-state
Markov chain, the use of RB in this context eliminates the requirement to assess
convergence on a parameter-by-parameter basis, as is normally done in Raftery and
Lewis’ diagnostic scheme. It also provides a natural mechanism for determining
whether burn-in has occurred.

A less obvious but perhaps equally important use of the RB statistic involves
code verification. Many practitioners currently fit models using customized code
written for their specific application, a practice that frequently results in coding
errors that are difficult to detect. This problem can be largely overcome by simply
monitoring the distribution of RB , which, in my experience, tends to deviate
substantially from its null distribution when a model has been misspecified or
miscoded.

5. Discussion. Goodness-of-fit tests based on the statistic RB provide a
simple way of assessing the adequacy of model fit in many Bayesian models.
Essentially, the only requirement for their use is that observations be conditionally
independent. From a computational perspective, such statistics can be calculated
in a straightforward way using output from existing MCMC algorithms.

Approximating the sampling distribution of A, though conceptually straightfor-
ward, does introduce an additional computational burden, but is necessary only
when the achieved value of A is “significantly” larger than 0.5. Significance of A

in this context has a natural interpretation in terms of the posterior probability that
a sampled value of RB exceeds a random variable drawn from its nominal χ2 dis-
tribution. In this regard, values of A that are close to 0.5 may indicate adequate
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model fit for the purposes of a given analysis even when the sampling distribution
of App would permit rejection of the model in a significance test.

Aside from applications in Bayesian model assessment, the χ2 statistic
proposed here can be extended, albeit somewhat awkwardly, to models estimated
using maximum likelihood. In that setting, parameter values can be sampled from
their asymptotic normal distribution and used as if they were sampled from a
posterior distribution. Although not entirely palatable from a classical perspective,
such a procedure does provide a mechanism for conducting a (suboptimal)
goodness-of-fit test for complicated models in which alternative tests may be
difficult to perform.

APPENDIX

Outlines of proofs of theorems and corollaries. The proofs of Theorem 1
and Corollary 1 are based largely on the proof given in Chernoff and Lehmann
(1954) in establishing the asymptotic distribution of R̂.

Assume that conditions specified in Cramér [(1946), pages 426 and 427] and
Chen (1985) apply. Cramér specifies conditions that are sufficient for establishing
the distribution of the χ2 goodness-of-fit statistic when evaluated at the parameter
vector maximizing the likelihood estimate based on the grouped data, whereas
Chen’s conditions are sufficient for establishing the asymptotic normality of the
posterior distribution. Essentially, these conditions require that the likelihood be a
smooth function of the parameter vector θ in an open interval containing θ0 (the
true value of θ ), that the posterior distribution concentrate around a point in this
interval, that the information contained in the observations increase with sample
size and that the prior assign nonnegligible mass to the interval containing θ . In
addition, assume that all third-order partial derivatives of f (y|θ) [or, in the case of
the corollary, fj (y|θ)] with respect to the components of θ exist and are bounded
in an open interval containing θ0. Finally, note that all expectations and statements
regarding probabilistic orders of magnitude described below are computed under
the sampling distribution of y given θ0.

The following lemmas are needed.

LEMMA A.1. Under the conditions stated above, if θ̂ refers to the maximum

likelihood estimate of θ , θ̃ refers to a value of θ sampled from the posterior

distribution and mk(·) refers to the number of counts assigned to the kth bin at

a specified value of θ , then

1√
n

(

mk(θ̃) − mk(θ̂)
)

= 1√
n

(

m∗
k(θ̃) − m∗

k(θ̂)
)

+ op(1)(9)

= 1√
n

s
∑

i=1

∂m∗
k(θ̂)

∂θi

(θ̃i − θ̂i) + op(1),(10)
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where

m∗
k(θ) = nE

[

Ind
(

y ∈ [F−1(ak−1|θ),F−1(ak|θ)]
)]

.

PROOF. Expanding m∗
k(θ̃) in a Taylor series expansion about m∗

k(θ̂) yields

m∗
k(θ̃) − m∗

k(θ̂) =
s

∑

i=1

∂m∗
k(θ̂)

∂θi

(θ̃i − θ̂i) + Op

(
1

n

)

.(11)

Define

	zk,j = zk,j (θ̃) − zk,j (θ̂).

Then

|	zk,j | ≤ Ind
(

yj ∈
[

min
(

F−1(ak−1|θ̃),F−1(ak−1|θ̂)
)

,

max
(

F−1(ak−1|θ̃),F−1(ak−1|θ̂)
)])

+ Ind
(

yj ∈
[

min
(

F−1(ak|θ̃),F−1(ak|θ̂)
)

,

max
(

F−1(ak|θ̃),F−1(ak|θ̂)
)])

.

Because (θ̂ − θ̃) is Op(1/
√

n ),
√

n	zk,j = Op(1). It follows that

√
n

∑

j

	zk,j/n = mk(θ̃) − mk(θ̂)√
n

= m∗
k(θ̃) − m∗

k(θ̂)√
n

+ op(1).

Substituting this expression into (11) yields (10). �

COROLLARY A.2. The previous lemma also applies if θ0 is substituted for θ̃ ,
that is,

1√
n

(

mk(θ0) − mk(θ̂)
)

= 1√
n

(

m∗
k(θ0) − m∗

k(θ̂)
)

+ op(1)

= 1√
n

s
∑

i=1

∂m∗
k(θ̂)

∂θi

(θ0,i − θ̂i) + op(1).

LEMMA A.3. Define

p̂k = F [F−1(ak|θ0)|θ̂ ] − F [F−1(ak−1|θ0)|θ̂ ] =
∫ F−1(ak |θ0)

F−1(ak−1|θ0)
f (y|θ̂) dy.(12)

Then, under the conditions stated above,

p̂k − pk = 1

n

(

m∗
k(θ0) − m∗

k(θ̂)
)

+ Op

(
1

n

)

.(13)



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT 2379

PROOF. For notational simplicity, define

G(γ, δ; c) = F [F−1(c|γ )|δ]
and

Hi(γ ; c) = ∂G(γ, δ; c)

∂δi

∣
∣
∣
∣
δ=γ

.

Then, noting that m∗
k(θ0) = npk = n(G(θ0, θ0, ak) − G(θ0, θ0, ak−1)),

(p̂k − pk) − 1

n

(

m∗
k(θ0) − m∗

k(θ̂)
)

= [G(θ0, θ̂;ak) − G(θ0, θ̂;ak−1)] + [G(θ̂ , θ0;ak) − G(θ̂, θ0;ak−1)] − 2pk

=
[

∑

i

Hi(θ0;ak)(θ̂i − θ0,i) −
∑

i

Hi(θ0;ak−1)(θ̂i − θ0,i)

]

+
[

∑

i

Hi(θ̂ ;ak)(θ0,i − θ̂i) −
∑

i

Hi(θ̂;ak−1)(θ0,i − θ̂i)

]

+ Op

(
1

n

)

=
∑

i

[Hi(θ0;ak) − Hi(θ̂;ak)](θ̂i − θ0,i)

−
∑

i

[Hi(θ0;ak−1) − Hi(θ̂;ak−1)](θ̂i − θ0,i) + Op

(
1

n

)

=
∑

h

∑

i

[
∂Hi(θ0;ak)

∂θ0,h

− ∂Hi(θ0;ak−1)

∂θ0,h

]

(θ̂h − θ0,h)(θ̂i − θ0,i) + Op

(
1

n

)

= Op

(
1

n

)

.
�

COROLLARY A.4.
√

n(p̂k − pk) = 1√
n

(

mk(θ0) − mk(θ̂)
)

+ Op

(
1√
n

)

.

PROOF OF THEOREM 1. Decompose the terms appearing in (3) as follows:

mk(θ̃) − npk√
npk

= mk(θ̃) − mk(θ̂)
√

npk

− mk(θ0) − mk(θ̂)
√

npk

+ mk(θ0) − npk√
npk

.(14)

From Lemma A.1 and Corollary A.2, the first two terms on the right-hand side
of (14) are asymptotically equivalent to

∑

i ∂m∗
k(θ̂)/∂θi(θ̃i − θ̂i)√

npk

and

∑

i ∂m∗
k(θ̂)/∂θi(θ0,i − θ̂i)√

npk

.(15)
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Also, (θ̃ − θ̂) is asymptotically normal with mean 0 and covariance matrix equal to
the negative inverse of the information matrix [Chen (1985)]. So, too, is (θ̂ − θ0),
and the two quantities are asymptotically independent [e.g., Olver (1974) and Cox
and Hinkley (1974)].

Following Chernoff and Lehmann (1954), define ǫ to be a K × 1 vector with
components

ǫk = mk(θ0) − npk√
npk

,

and let ν̂ be the vector with components

ν̂k =
√

n(p̂k − pk)/
√

pk.

It follows from their results that

ν̂ = D(J̃ + J∗)−1(

D′ǫ +
√

nA∗)

+ op(1),(16)

where J∗ is the matrix whose (i, j)th component is

E

[
∂ log g(y|z, θ)

∂θi

∂ logg(y|z, θ)

∂θj

]

,

g(y|z, θ) is the conditional distribution of y given z and θ , J̃ ≡ D′D is the matrix
with elements

K
∑

k=1

1

pk

∂pk

∂θa

∂pk

∂θb

,

and A∗ is the vector whose ath component is

1

n

n
∑

j=1

∂ log g(y|zj , θ)

∂θa

.

From the second corollary, the right-hand side of (16) also describes the large
sample distribution of (mk(θ0) − mk(θ̂))/

√
npk .

Taking η = √
nA∗ and invoking the central limit theorem, Chernoff and

Lehmann note that the asymptotic distribution of (ǫ,η) is

N

[

0,

(

I − qq′ 0
0 J∗

)]

,(17)

where q is the vector with components
√

pk . Letting ε denote a variable having
the same distribution as ǫ, and τ denote a variable having the same distribution
as η, with all four variables distributed independently, it follows that RB has the
asymptotic distribution of

(Tε + Sτ − Tǫ − Sη + ǫ)′(Tε + Sτ − Tǫ − Sη + ǫ),
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where S = D(J̃ + J∗)−1 and T = SD′. Noting that D′q = 0, the asymptotic
distribution of (Tε + Sτ − Tǫ − Sη + ǫ)′ is N(0, I − qq′). The result follows.

�

PROOF OF COROLLARY 1. Because the proof of this corollary is similar to
the proof of Theorem 1, only an outline is presented here.

To begin, note that Lemma A.1 and Corollary A.2 extend to this setting if m∗
k(θ)

is redefined as

m∗
k(θ) =

n
∑

j=1

E
[

Ind
(

yj ∈ [F−1
j (ak−1|θ),F−1

j (ak|θ)]
)]

.

Next, Lemma A.3 applies if (12) is modified so that

p̂j,k = Fj [F−1
j (ak|θ0)|θ̂ ] − Fj [F−1

j (ak−1|θ0)|θ̂ ]
(18)

=
∫ F−1

j (ak|θ0)

F−1
j (ak−1|θ0)

fj (y|θ̂) dy,

where pj,k and related estimates refer to the probability that the j th observation
falls into the kth bin. Then

p̂j,k − pj,k =
(

z∗
j,k(θ0) − z∗

j,k(θ̂)
)

+ Op

(
1

n

)

,(19)

where

z∗
j,k(θ) = E

[

Ind
(

yj ∈ [F−1
j (ak−1|θ),F−1

j (ak|θ)]
)]

.

Corollary A.4 generalizes to

1√
n

n
∑

j=1

(p̂j,k − pj,k) = 1√
n

n
∑

j=1

(

zk,j (θ) − zk,j (θ̂)
)

+ Op

(
1√
n

)

.

Extending Chernoff and Lehmann’s (1954) result to the case of nonidentically
distributed random variables requires the following modifications of the definitions
of variables used in the i.i.d. case. Let

ǫj =
(

zj,1 − pj,1√
npj,1

, . . . ,
zj,K − pj,K√

npj,K

)′
, ǫ = (ǫ′

1, . . . , ǫ
′
n)

′,

J̃ =
∥
∥
∥
∥
∥

n
∑

α=1

K
∑

r=1

1

pα,r

∂pα,r

∂θi

∂pα,r

∂θj

∥
∥
∥
∥
∥
,
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D =
























1√
p1,1

∂p1,1

∂θ1
. . .

1
√

p1,1

∂p1,1

∂θs
...

...

1
√

p1,K

∂p1,K

∂θ1
. . .

1
√

p1,K

∂p1,K

∂θs

1
√

p2,1

∂p2,1

∂θ1
. . .

1
√

p2,1

∂p2,1

∂θs

...
...

1
√

pn,K

∂pn,K

∂θ1
. . .

1
√

pn,K

∂pn,K

∂θs
























,

P =
(

Ik| . . . |Ik
︸ ︷︷ ︸

n times

)

,

J∗ =
∣
∣
∣
∣
∣
E

[(
n

∑

α=1

∂ log gα(y|z, θ)

∂θi

)

·
(

n
∑

β=1

∂ loggβ(y|z, θ)

∂θj

)]∣
∣
∣
∣
∣
,

A∗
i = 1

n

n
∑

j=1

∂ log gj (y|z, θ)

∂θi

, ν̂j,r = p̂j,r − pj,r√
npj,r

.

Then

ν̂ = D(J̃ + J∗)−1(

D′ǫ +
√

nA∗)

+ op(1).

The covariance matrix of ǫ may be written

1

n
In×K − 1

n






q1q1
′ 0 . . . 0

...
...

...
...

0 . . . 0 qnqn
′




 ,

where qi is the vector whose j th component is
√

pi,j . Denote the rightmost
matrix in this equation by Q. Similarly, define η = √

nA∗. Then the asymptotic
distribution of η has mean 0 and covariance matrix equal to J∗/n, and is
independent of ǫ.

Letting r̂ denote the vector with components (zk,j (θ) − zk,j (θ̂))/(
√

npj,k ), it
follows from the generalization of Corollary A.4 that the distribution of Pr̂ is
asymptotically the same as that of Pν̂. Letting r̃ denote the vector with components
(zk,j (θ̃) − zk,j (θ̂))/(

√
npj,k ), then Pr̃ and Pr̂ are, for large n, independent and

identically distributed. Noting that

RB = (ǫ − r̂ + r̃)′P′P(ǫ − r̂ + r̃)

and that D′Q = 0, some algebra and application of the central limit theorem yields
the desired result. �
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PROOF OF COROLLARY 2. Expanding the components of RB(θ̃) yields

mk − npk(θ̃)√
n

= mk − npk(θ0)√
n

− n(pk(θ̂) − pk(θ0))√
n

− n(pk(θ̃) − pk(θ̂))√
n

.(20)

Asymptotically, Taylor series expansions show that the second term on the right-
hand side of this equation has the distribution of Tǫ + Sη described in the proof of
Theorem 1, while the third term has the distribution of Tε+Sτ . The result follows
using methodology in the proof of Theorem 1. �
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