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With the advance of imaging technology, digital pathology imaging of
tumor tissue slides is becoming a routine clinical procedure for cancer di-
agnosis. This process produces massive imaging data that capture histologi-
cal details in high resolution. Recent developments in deep-learning methods
have enabled us to identify and classify individual cells from digital pathol-
ogy images at large scale. Reliable statistical approaches to model the spatial
pattern of cells can provide new insight into tumor progression and shed light
on the biological mechanisms of cancer. We consider the problem of model-
ing spatial correlations among three commonly seen cells observed in tumor
pathology images. A novel geostatistical marking model with interpretable
underlying parameters is proposed in a Bayesian framework. We use aux-
iliary variable MCMC algorithms to sample from the posterior distribution
with an intractable normalizing constant. We demonstrate how this model-
based analysis can lead to sharper inferences than ordinary exploratory anal-
yses, by means of application to three benchmark datasets and a case study
on the pathology images of 188 lung cancer patients. The case study shows
that the spatial correlation between tumor and stromal cells predicts patient
prognosis. This statistical methodology not only presents a new model for
characterizing spatial correlations in a multitype spatial point pattern condi-
tioning on the locations of the points, but also provides a new perspective for
understanding the role of cell–cell interactions in cancer progression.

1. Introduction. Cancer is a complex disease characterized by uncontrolled
tumor cell growth. The pathological examination of hematoxylin and eosin (H&E)-
stained tissue slides forms the basis of cancer diagnosis. It has been reported
that cell growth patterns are associated with the survival outcome (Amin et al.
(2002), Barletta, Yeap and Chirieac (2010), Borczuk et al. (2009), Gleason and
Mellinger (2002)) and treatment response (Tsao et al. (2015)) of cancer patients.
In addition, the interactions between tumor cells and other types of cells (e.g.,
immune cells) play important roles in the progression and metastasis of cancer
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(Gillies, Verduzco and Gatenby (2012), Hanahan and Weinberg (2011), Junttila
and de Sauvage (2013), Mantovani et al. (2002), Merlo et al. (2006), Orimo et al.
(2005), Polyak, Haviv and Campbell (2009)). Spatial variations among cell types
and their association with patient prognosis have been previously reported in breast
cancer (Mattfeldt et al. (2009)). Pathological examination of tissue slides requires
a pathologist to match the observed image slides with his/her memory for certain
patterns and features (such as tumor content, nuclei counts and tumor boundary).
This process is laborious, tedious and subject to errors. More importantly, due to
the limitations of the human brain in interpreting highly complex pathology im-
ages, it is hard for pathologists to systematically explore those subtle but impor-
tant patterns, such as tumor cell distribution and interaction with the surrounding
micro-environment. Pathological examination by the human eyes is insufficient to
decipher the large amount of complex and comprehensive information harbored in
the high resolution pathology images.

With the advance of imaging technology, H&E-stained pathology imaging is
becoming a routine clinical procedure, which produces massive digital pathology
images on a daily basis. Digital pathology image analyses have been proven to
be valuable in clinical diagnosis and prognosis of various malignancies, includ-
ing precancerous lesions in the esophagus (Sabo et al. (2006)), prostate cancer
(Tabesh et al. (2007)), neuroblastoma (Sertel et al. (2009a)), lymphoma (Sertel
et al. (2009b)), breast cancer (Beck et al. (2011), Yuan et al. (2012)) and recently,
lung cancer (Luo et al. (2016), Yu et al. (2016)). However, current studies of
pathology image analysis mainly focus on the morphology features, such as tissue
texture and granularity. For example, Tabesh et al. (2007) aggregate color, texture
and morphometric cues at the global and histological object levels to predict the
malignancy level of prostate cancer. Both Yu et al. (2016) and Luo et al. (2016)
used a large number of objective morphological features (e.g., cell size, shape, dis-
tribution of pixel intensity in the cells and nuclei, texture of the cells and nuclei,
etc.) extracted by CellProfiler (Carpenter et al. (2006), Kamentsky et al. (2011))
to predict lung cancer prognosis. Yuan et al. (2012) even integrate histopathol-
ogy and genomics information, extending approaches that only use morphological
features to predict breast cancer patient survival. However, these imaging data,
which capture histological details in high resolution, still leave unexplored more
undiscovered knowledge. Computer vision and machine learning algorithms have
enabled us to automatically identify individual cells from digital pathology im-
ages at large scale (e.g. Yuan et al. (2012)). Recent developments in deep-learning
methods have greatly facilitated this process. We have developed a convolutional
neural network (CNN) to identify individual cells and classify their types into three
categories: lymphocyte, stromal and tumor.

Consequently, a pathology image is abstracted into a spatial map of marked
points, where each cell belongs to one of the three distinct types. The analysis of
pathology images thus becomes an investigation of those marked point pattern,
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which will provide a new perspective for the role of cell–cell interactions in can-
cer progression. Currently, a patient cohort usually contains hundreds of patients,
and each patient has one or more pathology images. These rich datasets provide
a great opportunity to study the cell–cell interactions in cancer. Recently, Li et al.
(2017) developed a modified Potts model to study the spatial patterns observed in
tumor pathology images, by projecting irregularly distributed cells into a square
lattice. However, this approximate method relies on selection of an ad hoc lattice.
More importantly, it models the interaction among different regions (small squares
defined by the lattice), but not those among individual cells.

The study of interactions between objects, which results in the spatial correla-
tion of marks, has been a primary focus in spatial statistics. It is a key aspect in
population forestry (Stoyan and Penttinen (2000)) and ecology (Dale (2000)) the-
ory, but receives little attention in biology. Illian et al. (2008) discussed in detail a
large variety of numerical, functional and second-order summary characteristics,
which can be used to describe the spatial dependency between different types of
points in a planar region. The most common approaches are based on generalizing
the standard distance-dependent G-, K-, J- and L-functions to their “cross-type”
versions (see, e.g., Besag (1977), Diggle and Cox (1981), Lotwick and Silver-
man (1982), Ripley (1977), Vincent and Jeulin (1989), van Lieshout and Baddeley
(1996, 1999)). Mark connection functions (MCFs) are another well recognized tool
for qualitative marks, which are more suitable for the detection of mark correlation
in an exploratory analysis (Wiegand and Moloney (2004)). The ad hoc testing of
hypotheses, such as spatial independences of the marks, based on some suitable
summary characteristics (e.g., K-functions) has also been discussed in the litera-
ture (Grabarnik, Myllymäki and Stoyan (2011)). However, model-based analysis,
which may sharpen inferences about the spatial pattern, is lagging. Marked point
process models are usually constructed by familiar devices, such as Cox, clus-
ter and thinned processes (Gelfand et al. (2010)). For example, Diggle and Milne
(1983) defined the class of bivariate Cox processes and investigated the structure of
correlated bivariate Cox models. Gibbsian point processes are more appropriate to
account for interaction between points than Cox models, which tend to reflect un-
derlying environmental variation. Ogata and Tanemura (1985) and Diggle, Eglen
and Troy (2006) formulated pairwise interaction models based on Gibbs distribu-
tions for bivariate marked point patterns and argued that model-based inference is
statistically more efficient. Inference for those mark-dependent/independent pair-
wise interactions are mainly based on frequentist approaches, which can only pro-
vide for point estimation. Bayesian inference of marked point processes has been
notably underrepresented in the literature (Bognar (2008)). For more detailed ex-
amples of modeling approaches for marked point processes, see Baddeley and
Turner (2006).

In this paper, motivated by the emerging needs of tumor pathology images anal-
ysis, we develop a novel geostatistical marking model, which aims to study the
mark formulation at a finite known set of points through a Bayesian framework.
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A local energy function of three groups of parameters, that is, first- and second-
order intensities, and an exponential decay rate to the inter-point distance, is care-
fully defined, so is the related Gibbs distribution. The proposed model can serve as
a novel model-based approach to characterize the spatial pattern/correlation among
marks. We use the double Metropolis–Hastings (DMH) algorithm (Liang (2010))
to sample from the posterior distribution with an intractable normalizing constant
in the Gibbs distribution. The model performs well in simulated studies and three
benchmark datasets. We also conduct a case study on a large cohort of lung can-
cer pathology images. The result shows that the spatial correlation between tumor
and stromal cells is associated with patient prognosis (P-value = 0.007). Although
the morphological features of stroma in tumor regions have been discovered to be
associated with patient survival, there is no strong statistical evidence to support
this, due to a lack of rigorous statistical methodology. In the study, the proposed
statistical methodology not only delivers a new perspective for understanding how
marks (i.e., cell types in pathology images) formulate, given an independent un-
marked point process, but also provides a refined statistical tool to characterize
spatial interactions, which the existing approaches (e.g., MCF) may lack sufficient
power to do so.

The remainder of the paper is organized as follows: Section 2 introduces the
proposed modeling framework, including the local energy function and its related
Gibbs distribution (i.e., the model likelihood), the choices of priors and the model
interpretation. Section 3 describes the Markov chain Monte Carlo (MCMC) algo-
rithm and discusses the resulting posterior inference. Section 4 assesses perfor-
mance of the proposed model on simulated data. Section 5 analyzes three bench-
mark datasets and a large cohort of lung cancer pathology images from the Na-
tional Lung Screening Trial (NLST). Section 6 concludes the paper with some
remarks on future research directions.

2. Model. We describe a spatial map of cells in a Cartesian coordinate sys-
tem, with n observed cells indexed by i. We use (xi, yi) ∈ R

2 to denote the x- and
y-coordinates and zi ∈ {1, . . . ,Q},Q ≥ 2 to denote the type of cell i. In spatial
point pattern analysis, such data are considered as multitype point pattern data,
where (x1, y1), . . . , (xn, yn) are the point locations in a compact subset of the 2-
dimensional Euclidean space R

2 (note that the proposed model can be easily ex-
tend to a general case of Rk, k ≥ 3) and z1, . . . , zn are their associated qualitative
(i.e., categorical or discrete) univariate marks. The mark attached to each point in-
dicates which type/class it is (e.g., on/off, case/control, species, etc.). Without loss
of generality, we assume that the data points are restricted within the unit square
[0,1]2. This can be done by rescaling each pair of coordinates (xi, yi) to (x′

i, y
′
i).

Suppose all the points are within a known rectangle, with four vertices’ coordi-
nates denoted by (vlwr

x , vlwr
y ), (v

upp
x , vlwr

y ), (v
upp
x , v

upp
y ) and (vlwr

x , v
upp
y ), then x′

i =

(xi − vlwr
x )/L and y′

i = (yi − vlwr
y )/L, where L = max(v

upp
x − vlwr

x , v
upp
y − vlwr

y ).
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Since our primary interest lies in the spatial correlations of different types of
cells, we only treat the marks as random variables, conditional on their fixed lo-
cations within a bounded observation window. This removes the need to infer the
unmarked point process, simplifying the modeling construction and eliminating
error due to the estimation of point density. Baddeley (2010) argued that it is of-
ten appropriate to analyze a marked point pattern by conditioning on the locations
and under some reasonable assumptions, the marks effectively constitute a random
field.

2.1. Energy functions. In the analysis of tumor pathology images, cell distri-
bution and cell–cell interaction may reveal important messages about the tumor
cell growth and its micro-environment. Therefore, it is of great interest to study
the arrangements of cell types associated with the observed cells, given their lo-
cations. In spatial point pattern analysis, such a problem is called geostatistical

marking (Illian et al. (2008)), which is to study the formulation of the marks z in
a pattern, given the points (x,y). In this subsection, we explore the formulation
of energy functions, accounting for both of the first- and second-order properties
of the point data. The energy function (also known as the potential function) orig-
inates in statistical physics. It can be interpreted as the energy required to obtain
a stable arrangement of z, which is contributed by each zi as well as each pair of
(zi, z

′
i).

At the initial stage, we assume that each point interacts with all other points in
the space. A complete undirected graph G = (V ,E) can be used to depict their
relationships, with V denoting the set of points (i.e., the n observed cells) and
E denoting the set of direct interactions (i.e., the (n − 1)n/2 cell–cell pairs). We
define G as the interaction network and define its potential energy as

(2.1) V (z|ω,�) =
∑

q

ωq

∑

i

I (zi = q)+
∑

q

∑

q ′

θqq ′

∑

(i∼i′)∈E

I
(

zi = q, zi′ = q ′),

where the notation (i ∼ i ′) denotes that points i and i′ are the interacting pair in
G (i.e., they are connected by an edge in G), and I denotes the indicator func-
tion. Note that θqq ′ = θq ′q as the edge between any pairs of points has no ori-
entation. On the right-hand side of equation (2.1), the first term can be viewed
as the weighted average of the numbers of points with different marks, while
the second term can be viewed as the weighted average of the numbers of pairs
connecting two points with the same or different marks. In the context of spa-
tial point pattern analysis, the first and second terms are referred to the first- and
second-order potentials/characteristics, respectively. Their corresponding param-
eters ω = (ω1, . . . ,ωQ) and � = [θqq ′]Q×Q are defined as the first- and second-
order intensities. These two groups of parameters control the enrichment of dif-
ferent marks and the spatial correlations among them simultaneously. A detailed
interpretation of ω and � is discussed in Section 2.4.



BAYESIAN MARK INTERACTION MODEL 1713

In mathematical physics and statistical thermodynamics, the interaction energy
between two points (i.e., particles and cells) is usually an exponential decay func-
tion with respect to the distance between the two points (see, e.g., Avalos and
Bucci (2014), Chulaevsky (2014), Kashima (2010), Penrose and Lebowitz (1974),
Rincón, Ganahl and Vidal (2015)). Similarly, exponential decay has also been ob-
served in biological systems, such as cell–cell interactions (Hui and Bhatia (2007),
Segal and Stephany (1984)) and gene-gene correlations (Xiao, Reilly and Kho-
dursky (2009), Xiao, Wang and Khodursky (2011)). In this study, we assume the
interaction energy between a pair of points decreases exponentially at a rate λ pro-
portional to the distance,

V (z|ω,�, λ) =
∑

q

ωq

∑

i

I (zi = q)

+
∑

q

∑

q ′

θqq ′

∑

(i∼i′)∈E

e−λdii′ I
(

zi = q, zi′ = q ′),
(2.2)

where dii′ =
√

(xi − xi′)
2 + (yi − yi′)

2 is the Euclidean distance between points i

and i ′. A larger value of the decay parameter λ makes the interaction energy vanish
much more rapidly with the distance, while a smaller value leads to e−λdii′ ≈ 1 and
equation (2.2) → equation (2.1). See Figure S1 in the Supplementary Material (Li
et al. (2019)) for examples of exponential decay functions with different values
of parameter λ. The decay function makes our approach similar in spirit to the
other literature on spatial prediction, which are built from a fairly simple concept:
spatial correlation suggests that one should give more weight to observations near
the prediction location than to those far away (Waller (2005)). In addition to the
exponential decay, we can also consider the other decay forms under different
scenarios and for different applications, such as the step decay I (d ≤ λ),0 < λ <

1, the power-law decay d−λ, λ > 0 and the power-exponential decay e−λdβ
, λ >

0, β > 0. However, note that different choices of decay functions may result in
different estimations on the second-order intensities.

As shown in equation (2.2), it needs to sum over n data points and (n − 1)n/2
pairs of data points to compute the potential energy, resulting in a tedious compu-
tation, especially when n is large. An alternative way is to obtain an approximate
value of V (z|ω,�, λ) by neglecting those pairs with distance beyond a certain
threshold c, c ∈ (0,1). It can be illustrated that a point (i.e., a cell) can only inter-
act with its nearby points within a certain range c. Therefore, the complete network
G reduces to a sparse network G′ = (V ,E′), with E′ ⊆ E denoting the set of edges
joining pairs of points i and i ′ in G′, if their distance dii′ is smaller than a threshold
c. We write the potential energy of the interaction network G′ as

V (z|ω,�, λ) =
∑

q

ωq

∑

i

I (zi = q)

+
∑

q

∑

q ′

θqq ′

∑

(i∼i′)∈E′

e−λdii′ I
(

zi = q, zi′ = q ′).
(2.3)
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Note that c is not a model parameter, but a user-defined value. We may determine
its value from a mark connection function analysis (discussed in Section 4) or
from the subjective assessment of an experienced expert in the related field. The
choice of a large c causes a considerably complex network, while a too small value
results in a sparse network that may neglect some important spatial information.
See Figure S2 in the Supplementary Material (Li et al. (2019)) for an example
of three-type point pattern data (n = 100) and its corresponding mark interaction
networks G′ under different choices of c. By introducing the sparse network G′,
we not only reduce the computational cost, but also define a local spatial structure.

2.2. Data likelihood. According to the fundamental Hammersley–Clifford
theorem (Hammersley and Clifford (1971)), if we have a locally defined energy,
such as equation (2.3), then a probability measure with a Markov property exists.
This frequently seen measure in many problems of probability theory and statisti-
cal mechanics is called a Gibbs measure, which gives the probability of observing
marks associated with their locations in a particular state,

(2.4) p(z|ω,�, λ) =
exp(−V (z|ω,�, λ))

∑

z′ exp(−V (z′|ω,�, λ))
.

The normalizing constant C(ω,�, λ) =
∑

z′ exp(−V (z′|ω,�, λ)) is also called a
partition function. An exact evaluation of C(ω,�, λ) needs to sum over the entire
space of z, which consists of Qn states. Thus, it is intractable even for a small size
model. Take Q = 2 and n = 100, for example, it needs to sum over 2100 ≈ 1.268×

1030 elements. To address this issue, we employ the double Metropolis–Hastings
(DMH) algorithm (Liang (2010)) to make inference on the model parameters ω,
� and λ. DMH is an auxiliary variable MCMC algorithm, which can make the
normalizing constant ratio canceled by augmenting appropriate auxiliary variables
through a short run of the ordinary Metropolis–Hastings (MH) algorithm. More
details are given in Section 3.1.

Equation (2.4) serves as the full data likelihood. Since the model satisfies the
local Markov property, we can also write the probability of observing point i be-
longing to class q conditional on its neighborhood configuration(s),

p(zi = q|z−i,ω,�, λ)

∝ exp
(

−ωq −
∑

q ′

θqq ′

∑

{i′:(i∼i′)∈E′}

e−λdii′ I
(

zi′ = q ′)
)

,
(2.5)

where z−i denotes the collection of all marks excluding the ith one. According to
equation (2.5), the conditional probability depends on the first-order intensity ωq ,
the second-order intensities θqq ′, q ′ = 1, . . . ,Q, the decay parameter λ, and the
neighborhood of the points defined by c. Equation (2.5) is essentially a multino-
mial logistic regression and hence the parameters ωq and θqq ′ can be interpreted
in terms of conditional odds ratios.
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2.3. Parameter priors. The proposed model in the Bayesian framework re-
quires the specification of prior distributions for the unknown parameters. In this
subsection, we specify the priors for all three groups of parameters: ω, � and λ.
For the first- and second-order intensities ω and �, we notice that an identifiabil-
ity problem arises from equation (2.4) or (2.5). For example, adding a nonzero
constant, say s, into ωq, q = 1, . . . ,Q does not change the probability of ob-
serving point i belonging to class q . Similarly, the settings of � and � + s1

lead to the same conditional probability, where 1 is a Q-by-Q matrix of ones.
Therefore, imposing an appropriate constraint is necessary. Without loss of gen-
erality, suppose the points with mark Q have the largest population and we set
ωQ = 1 and θQQ = 1. For the other parameters in ω and �, we consider nor-
mal priors and set ωq ∼ N(µω, σ 2

ω), q = 1, . . . ,Q − 1 and θqq ′ ∼ N(µθ , σ
2
θ ), q =

1, . . . ,Q − 1, q ′ = q, . . . ,Q. We suggest users choose the standard normal dis-
tribution; that is, µω = µθ = 0 and σω = σθ = 1. For the decay parameter λ, we
specify a gamma prior λ ∼ Ga(aλ, bλ). One standard way of setting a weakly in-
formative gamma prior is to choose small values for the two parameters, such as
aλ = bλ = 0.001. The Ga(a, b) prior is an attempt at noninformativeness within
the conditionally conjugate family, with both a and b set to a low value, such as
0.1, 0.01 and 0.001 (Gelman et al. (2014)).

2.4. Interpretation. In this subsection, we aim to interpret the meanings of the
model parameters ω and �. In order to understand the relationship between the
estimated parameter values and the observed multitype point pattern.

Suppose there is only one point in the space. Then equation (2.5) reduces to
p(z1 = q|·) ∝ exp(−ωq), which implies the probability of observing a point with
mark q in this single-point system is equal to πq = exp(−ωq)/

∑

q exp(−ωq).
Note that the vector π = (π1, . . . , πQ) has a natural constraint; that is,

∑

q πq = 1.
Furthermore, suppose there are n points in the space and there are almost no
mark interactions. This can be fulfilled by any one of the following conditions:
(1) the distance between any pairs of two points is beyond the given value c, that
is, dii′ > c,∀(i ∼ i ′) ∈ E; (2) the second-order intensities are all equal, that is,
� = s1,∃s ∈ R; or (3) the decay parameter λ goes to infinity, that is, λ → ∞.
Then equation (2.5) converges to p(zi = q|z−i,ω,�, λ) ∝ exp(−ωq) = πq , im-
plying that the expected number of points with mark q is nπq . Thus, after trans-
forming the first-order intensities ω to their probability measures π , we find a
clear path to describe the abundance of different marks in the above simplified
situations.

Suppose there are only two points 1 and 2 in the space, with the type of the sec-
ond point known; say z2 = q ′. For convenience, we further assume ω1 = · · · = ωQ.
We first consider the case of the two points being at the same location, that is,
d12 = 0. Then equation (2.5) turns out to be p(z1 = q|z2 = q ′, ·) ∝ exp(−θqq ′),
which implies the probability of observing the point with unknown mark belong-
ing to type q , given the one with the known mark q ′ (at the same location), is
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φqq ′ = exp(−θqq ′)/
∑

q exp(−θqq ′). We use a Q-by-Q matrix φ to denote the col-
lection of φqq ′, q = 1, . . . ,Q,q ′ = 1, . . . ,Q. Note that each column in φ should
be summed to 1 and φ is not necessary to be a symmetric matrix as �. In this
duo-point system (and more complex cases therein), the larger the value of φqq ′ ,
the more likely the points with mark q get attracted to the nearby points with mark
q ′. Thus, the spatial correlations among marks can be easily interpreted by the
probability matrix φ.

In the aforementioned duo-point model with known parameters, if the assump-
tion of equivalent first-order intensities is relaxed, then the probability of assigning
mark q to point 1 conditional on the mark of point 2 is q ′ is a strictly monotonic
function of their distance d ,

(2.6) MIFq|q ′(d) =
exp(−ωq − θqq ′e−λd)

∑

q ′′ exp(−ωq ′′ − θq ′′q ′e−λd)
.

We call the above equation the mark interaction function (MIF) of mark q given
mark q ′. As the distance increases, its value ultimately converges to πq . The plot
of MIF is a more comprehensive way to describe the spatial correlation/interaction
between marks.

In conclusion, π , φ and MIF directly characterize a single point behavior (i.e.,
the assignment of its mark) in a model with small size, such as n = 1 and 2. How-
ever, the observed multitype point pattern is a reflection of how each individual
point reacts with its neighbors. Note that the mappings from ω to π and from
� to φ are one-to-one/unique, so we can implement this step after obtaining the
estimates of ω and �.

3. Model fitting. In this section, we describe the MCMC algorithm for pos-
terior inference. Our inferential strategy allows for simultaneously estimating (1)
the first-order intensities ω, which reveal the abundance of different marks; (2) the
second-order intensities �, which capture the spatial correlation among marks;
and (3) the decay parameter λ. We first give the full details of our MCMC algo-
rithm and then discuss the resulting posterior inference.

3.1. MCMC algorithm. We are interested in estimating ω, � and λ, which
define the Gibbs measure based on the local energy function. However, the data
likelihood, as shown in equation (2.4), includes an intractable normalizing con-
stant C(ω,�, λ), making the Metropolis–Hastings (MH) algorithm infeasible in
practice. To address this issue, we use the double Metropolis–Hastings algorithm
(DMH) proposed by Liang (2010). The DMH is an asymptotic algorithm, which
has been shown to produce accurate results by various spatial models. Unlike other
auxiliary variable MCMC algorithms (Møller et al. (2006), Murray, Ghahramani
and MacKay (2012)) that also aim to have the normalizing constant ratio canceled,
the DMH sampler is more efficient because: (1) it removes the need for exact sam-
pling while it only needs to generate auxiliary variables through a short run of the
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MH algorithm initialized with the original observation; and (2) it does not require
drawing the auxiliary variables from a perfect sampler, which can be very expen-
sive or impossible for many models with intractable normalizing constants. Liang
et al. (2016) also proposed an adaptive exchange algorithm, which generates auxil-
iary variables via an importance sampling procedure from a Markov chain running
in parallel. However, this exact algorithm is computationally more intensive than
the DMH. See the Appendix for details of our MCMC algorithm.

3.2. Posterior estimation. We obtain posterior inference by summarizing the
MCMC samples after burn-in. Suppose that we obtain sequences of MCMC sam-
ples for the model parameters, that is, ω(1)

q , . . . ,ω
(U)
q ,1 ≤ q ≤ Q, θ (1)

qq ′, . . . , θ
(U)
qq ′ ,1 ≤

q, q ′ ≤ Q and λ(1), . . . , λ(U), where U is the total number of iteration after burn-
in, then an approximate Bayesian estimator of each parameter can be simply ob-
tained by averaging over the samples, ω̂q =

∑U
u=1 ω

(u)
q /U , θ̂qq ′ =

∑U
u=1 θ

(u)
qq ′/U

and λ̂ =
∑U

u=1 λ(u)/U , where u indexes the iteration. We suggest to project the
parameters (ω,�) to (π ,�), or plot the MIFs as given in equation (2.6).

4. Simulation. In this section, we use simulated data generated from the pro-
posed model to assess performance of our strategy for posterior inference on the
model parameters. In addition, we discuss how to choose the tunable parameter c

based on the MCF plots and investigate the sensitivity of the model to the choice
of c.

We considered to generate the points by using two different point processes: (1)
a homogeneous Poisson process (HPP) with a constant intensity η = 2000 over the
space [0,1]2; and (2) a log Gaussian Cox process (LGCP) with an inhomogeneous
intensity η(x, y) = exp(6+|x −0.3|+ |y −0.3|+GP(x, y)), x ∈ [0,1], y ∈ [0,1]

and GP denotes a zero-mean Gaussian process with variance equal to 1 and scale
equal to 1. The mark of each point, zi ∈ {1,2}, was simulated by using a Gibbs
sampler based on equation (2.5). We ran 100,000 iterations with a random starting
configuration of z. The true parameters were set as follows: (1) the decay param-
eter λ = 60 or λ = 0, and the threshold c = 0.05, which implies that any pair of
points with distance large than 0.05 were not considered in the model construction;
(2) the first-order intensities ω = (1,1), which correspond to π = (0.5,0.5); and
(3) the second-order intensities � were set according to each of the five scenarios,
as shown in Table S1 in the Supplementary Material (Li et al. (2019)). They repre-
sented the cases of high/low repulsion, complete randomness and high/low attrac-
tion. Attraction or inter-mark attraction is defined as the clustering of points with
different marks, while repulsion (also known as inhibition or suppression) is de-
fined vice versa. We repeated the above steps to generate 30 independent datasets
for each point process and each setting of λ and �. See Figure S3 for examples
of simulated data generated by the HPP under settings of � and λ = 60, and their
mark connection functions (MCFs) and multitype K-functions. MCF is used to
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describe the spatial correlations of marks, where its quantity MCFqq ′(d) is inter-
preted as the empirical probability that two points at distance d have marks q and
q ′. An upward trend in MCFqq(d) with a downward trend in MCFqq ′(d) indicates
attraction, while the opposite case suggests repulsion. K-function is a standard
tool for exploratory analysis of spatial point pattern data and (Lotwick and Silver-
man (1982)) defined its “cross” variant that is suitable in the bivariate case. Let ρq

denote the expected number of points with mark q per unit area, then ρqKq ′,q(d)

represents the expected number of additional points with mark q within distance
d of an arbitrary point with mark q ′. In the bivariate case, a similarity between
K11(d) and K22(d) suggests that different types of points are generated by the
same underlying process, while K11(d) = K22(d) = 0 reveals an inhibitory effect
within each of the component patterns. For the rigorous definitions and detailed
explanations of these two summary statistics, please refer to Baddeley (2010).

For the prior on ω1, we used a normal distribution N(1,1), corresponding that
π1 ∈ [0.125,0.878] with 95% probability a priori. For the priors on θ11 and θ12, we
used a standard normal distribution N(0,1). Note that we set the constraints ω2 = 1
and θ22 = 1 to avoid the identifiability problem. We set the hyperparameters that
control the gamma prior on the exponential decay to aλ = bλ = 0.001, which leads
to a vague prior with variance equal to 1000. We chose the tunable parameter
c = 0.05. Results we report below were obtained by running the MCMC chain
with 50,000 iterations, discarding the first 50% sweeps as burn in. We started the
chain from a model by randomly drawing ω1, θ11, θ12 and λ from their priors and
assigning a random configuration of z. All experiments were implemented in R

with Rcpp package to accelerate computations on a Mac PC with 2.60 GHz CPU
and 16 GB memory. In our implementation, the MCMC algorithm ran about half
an hour for each dataset.

Table 1 summarizes the results of posterior inference on the model parameters,
for simulated datasets from the HPP and λ = 60. For the results for the other sce-
narios, please see Table S2–S4 in the Supplementary Material (Li et al. (2019)).
Each estimate was obtained by averaging over 30 independent datasets. Overall,
the tables indicate that our model fitting strategy based on the DMH algorithm
works well. However, we notice that the decay parameter λ was greatly overesti-
mated in the complete randomness scenarios. This is not surprising because all zi ’s
are completely irrelevant to each other (i.e., p(zi = q|·) ∝ exp(−ωq)) under this
scenario. Therefore, λ was ill-defined when λ = 0. The observed large values of
λ also indicate the weights, associated with the second-order intensities, decrease
faster and thus explain why each mark was dominated by the first-order inten-
sities. We also found that high repulsion scenarios had the worst performance on
θ12, which measures the interaction strength between different types of points. The
reason is that we can only observe a small number of the interacting pairs between
type 1 and 2 points. Take Figure S3(a) for example, such interacting pairs can be
only seen near the border between the two clumps. Therefore, a biased estimation
on θ12 is expected.
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TABLE 1
Simulated datasets from the homogeneous Poisson process with λ = 60: Results of posterior

inference on the model parameters. Values are averaged over 30 simulated datasets for each

scenario, with standard deviations indicated in parentheses

High Low Complete Low High
repulsion repulsion randomness attraction attraction

ω1 1.0 1.0 1.0 1.0 1.0
ω̂1 1.30 (0.39) 1.05 (0.12) 1.04 (0.09) 1.08 (0.18) 1.05 (0.19)

θ11 1.0 1.0 1.0 1.0 1.0
θ̂11 0.71 (0.37) 0.97 (0.09) 0.84 (0.33) 0.94 (0.15) 0.95 (0.14)

θ12 3.2 1.9 1.0 0.2 −1.2
θ̂12 2.52 (0.26) 1.82 (0.17) 0.81 (0.30) 0.05 (0.19) −1.14 (0.20)

λ 60 60 60 60 60
λ̂ 48.36 (6.79) 58.77 (7.49) 186.76 (118.09) 65.58 (11.82) 58.75 (4.81)

The proposed model contains a tunable parameter c, which defines the neighbor-
hood for each point. A large value of c quadratically increases the computational
cost, while a small value may cause biased estimates. We suggest users choose a
value of 0.1 or less unless there is strong evidence in support of a larger value.
Such evidence could be either subjective, such as an assessment from an experi-
enced expert, or objective, such as MCF plots from the data. Take Figure S3 in the
Supplementary Material (Li et al. (2019)), for example. For attraction scenarios,
the MCF curve converged right after d passing over the true value of c. However,
for repulsion scenarios, the curve tends to have a much bigger lag, especially for
larger values of φ12 or φ21. We also conducted a sensitivity analysis. We fit each
of the 120 simulated datasets generated from the HPP (30 for each scenario, ex-
cluding the complete randomness) into the proposed model with c = 0.03, 0.05
and 0.1. Figure S4 show the boxplots of the three estimates ω̂1, θ̂11 and θ̂12 under
different values of c for each scenario. The model was quite robust to different
choices of c.

5. Application. In this section, we first investigate the performance of our
methodology using three benchmark datasets. Then we apply the model to a large
cohort of lung cancer pathology images, and the result reveals novel potential
imaging biomarkers for lung cancer prognosis.

5.1. spatstat datasets. R package spatstat is a major tool for spatial
point pattern analyses. One of the basic data types offered by it is multitype point
pattern data. We used two retinal cell datasets with marks on/off and one wood
dataset with six species to quantify their attraction/repulsion characteristics using
the proposed model.
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FIG. 1. The plots of the rescaled marked points of [left]: amacrine with a unit standing for

approximate 1000 µm, including 142 “light-off” cells (◦) and 152 “light-on” cells (+); [middle]:
betacells with a unit standing for approximate 1000 µm, including 70 “light-off” cells (◦) and

65 “light-on” cells (+); [right]: lansing with a unit standing for approximate 282 m (≈ 924 ft),
including 135 black oaks (◦), 703 hickories (+), 514 maples (△), 105 miscellaneous trees (×), 346
red oaks (�) and 448 white oaks (∗).

Since 1970s, there has been considerable interest in studying the spatial pattern
presented by particular types of mammalian retinal cell bodies (Wässle, Peichl and
Boycott (1981), Wässle and Riemann (1978), Hughes (1981a, 1981b), Peichl and
Wässle (1981), Rockhill, Euler and Masland (2000), Vaney, Peichl and Boycott
(1981)). One of the two commonly used examples is the amacrine cells dataset
(Diggle (1986)), consisting of two types of displaced amacrine cells within the reti-
nal ganglion cell layer of a rabbit. The other is the betacells dataset (Wässle
and Illing (1981)), composed of two types of beta cells that are associated with the
resolution of fine details in the visual system of a cat. Figure 1 [left] and [middle]
depict how the two different types of amacrine and beta cells distribute in restricted
rectangular regions. Their MCF and multitype k-function plots are shown in Fig-
ure S5 in the supplemental material (Li et al. (2019)). Although the MCF plots
clearly indicate strong attraction among cells with the different type and the inter-
action region radius around 0.1, no quantities can be accurately estimated further.
We applied the proposed model with the same hyperparameter and algorithm set-
tings as described in Section 4 and the choice of c = 0.2 for each dataset. We
ran four independent MCMC chains and used the potential scale reduction factor
(PSRF) (Gelman et al. (1992)) to evaluate convergence. PSRF is a statistic com-
paring the estimated between-chains and within-chain variances for each model
parameter. Its value should be close to 1 if multiple chains have converged to the
target posterior distribution. In this case, the PSRFs for all the model parameters
were below 1.029, clearly suggesting that the MCMC chains converged. Then, for
each dataset, we pooled together the outputs from the four chains and reported the
estimated model parameters with their 95% credible interval in Figure S6 and S7.
We plotted the estimated MIFs in Figure 2. Our method, as well as other methods
(Diggle (1986), van Lieshout and Baddeley (1999)), suggest attraction between
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FIG. 2. The MIF functions estimated from [left]: amacrine; [middle]: betacells; [right]:
lansing (only the MIFs between the same mark are shown here; see Figure S8 for the numeri-

cal results of interactions between different marks).

the cells (i.e., most cells have a nearest neighbor of the opposite type). The mes-
sage about oppositely labeled pairs between neighbor cells would strengthen the
assumption that there are two separate channels for brightness and darkness as pos-
tulated by Hering in 1874. Furthermore, our method is able to provide an accurate
quantitative description, which can benefit the development and retinal sampling
efficiency.

The third dataset in spatstat that was used is the lansing dataset. It con-
tains the locations and botanical classification of trees in a 924 × 924 feet (19.6
acre) area of Lansing Woods, Clinton County, MI, USA. Figure 1 [right] shows the
rescaled multitype point pattern that consists of Q = 6 types of trees. The MCF
plots are shown in Figure S5 in the Supplementary Material (Li et al. (2019)),
which indicate exhibition of clustering among the trees with the same type. With
the same hyperparameter, algorithm and convergence diagnostic settings, we ap-
plied the proposed model with the choice of c = 0.1. The PSRFs were ranging
from 1.003 to 1.022. The estimated model parameters are reported in Figure S8
and the MIFs are summarized in Figure 2 [right]. The pattern reveals that the first
five types of trees exhibited clustering, especially for black oak and miscellaneous
trees. This means if one species had a clump in an area, then no other species
tended to form a clump there. We also found white oak had the least φ̂qq value,
which suggests its spatial pattern was more likely random. Those findings were
also reported in Cox and Lewis (1976) and Cox (1979). In addition, our MIF plots
indicates that there was no interaction between the same type trees beyond 90 feet.

5.2. Case study on lung cancer. Lung cancer is the leading cause of death
from cancer in both men and women. Non-small-cell lung cancer (NSCLC) ac-
counts for about 85% of deaths from lung cancer. Current guidelines for diag-
nosing and treating NSCLC are largely based on pathological examination of
H&E-stained tumor tissue section slides. We have developed a ConvPath pipeline
(https://qbrc.swmed.edu/projects/cnn/) to determine the locations and types of

https://qbrc.swmed.edu/projects/cnn/
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FIG. 3. Lung cancer case study: Two examples of the rescaled marked point data from NLST

dataset, where black, red and green points represent lymphocyte (◦), stromal (+) and tumor (△)
cells. For the data shown in the left, λ̂ = 172.102, π̂lym = 0.022, π̂str = 0.173, π̂tum = 0.805

and φ̂tum,str = 0.012; For the data shown in the right, λ̂ = 169.268, π̂lym = 0.011, π̂str = 0.603,

π̂tum = 0.386 and φ̂tum,str = 0.162.

cells observed in the processed tumor pathology images. Specifically, the clas-
sifier, based on a convolutional neural network (CNN), was trained using a large
cohort of lung cancer pathology images manually labeled by pathologists, and it
can classify each cell by its Q = 3 category: lymphocyte (a type of immune cell),
stromal, or tumor cell. The overall classification accuracy is 92.9% and 90.1% in
training and independent testing datasets, respectively (Wang et al. (2018)).

In this case study, we used the pathology images from 188 NSCLC patients in
the National Lung Screening Trial (NLST). Each patient has one or more tissue
slide(s) scanned at 40× magnification. The median size of the slides is 24,244 ×

19,261 pixels. A lung cancer pathologist first determined and labeled the region of
interest (ROI) within the tumor region(s) from each tissue slide using an annotation
tool, ImageScope (Leica Biosystem). ROIs are regions of the slides containing the
majority of the malignant tissues and are representative of the whole slide image.
Then we randomly chose five square regions, each of which is in a 5000 × 5000
pixel window, per ROI as the sample images. The total number of sample images
that we collected was 1585. For each sample image, the ConvPath (illustrated in
Figure S9 in the Supplementary Material (Li et al. (2019))) software was used to
identify cells from the sample images and classify each cell into one of three types,
so that a corresponding spatial map of cells was generated and used as the input
of our model. The number of cells in each sample image ranges from n = 2876
to 26,463. Figure 3 shows the examples of two sample images and Figure S10
displays their MCF and multitype K-function plots.

We applied the proposed model with the same hyperparameter and algorithm
settings as described in Section 4 and different choices of c = 0.02, 0.05 and 0.1.
We then computed the pairwise Pearson correlation coefficients between the esti-
mated model parameters under different choices of c. These correlations indicated
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TABLE 2
Lung cancer case study: The p-values of the transformed model parameters (in percentile %) by

fitting a Cox proportional hazards model with survival time (defined as the number of days from

diagnosis to death for participants who died or last contact for all other participants) and vital

status (death or alive) as responses, and model parameters and clinical variables as predictors. The

overall p-value (Wald test) is 0.003

Predictor Coefficient exp (Coef.) SE P -value

φ̂str,lym 0.147 1.158 0.052 0.106
φ̂tum,lym 0.030 1.030 0.025 0.546
φ̂lym,str −0.009 0.991 0.008 0.543
φ̂tum,str 0.096 1.100 0.016 0.002

φ̂lym,tum −0.002 0.998 0.008 0.896
φ̂str,tum −0.059 0.943 0.019 0.128

π̂lym 0.034 1.035 0.015 0.219
π̂str −0.032 0.969 0.007 0.019

λ̂ −0.006 0.994 0.003 0.382

Age 0.038 1.039 0.009 0.176

Female/male −0.138 0.871 0.091 0.631

Smoking/nonsmoking −0.001 0.999 0.089 0.997

substantial agreement between any pair of settings, with values ranging from 0.967
to 0.997. The estimated parameters (with their summary statistics summarized in
Table S5) that we used for the following three downstream analyses were obtained
under the most conservative choice of c = 0.1.

5.2.1. Association study. With the estimated parameters in each sample im-
age, we conducted a downstream analysis to investigate their associations with the
other measurements of interest. Specifically, a Cox proportional hazards model
(Cox (1992)) was fitted to evaluate the association between the transformed model
parameters π̂ and �̂ (in percentile %), and patient survival outcomes, after ad-
justing for other clinical information, such as age, gender and tobacco history.
Multiple sample images from the same patient were modeled as correlated obser-
vations in the Cox proportional hazards model to compute a robust variance for
each coefficient. The overall p-value for the Cox model was 0.002 (Wald test), and
the p-value and coefficient for each individual variable are summarized in Table 2.
The results imply that a low interaction between stromal and tumor cells is asso-
ciated with good prognosis in NSCLC patients (p-value = 0.007). Interestingly,
Beck et al. (2011) also discovered that the morphological features of the stroma
in the tumor region are associated with patient survival in a systematic analysis of
breast cancer. Besides, the abundance of the stromal cells itself (p-value = 0.017)
is also a prognostic factor, while the underlying biological mechanism is currently
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unknown. The positive coefficient of the predictor φtum,str implies that a higher
value may reveal a higher risk of death. Indeed, we obtained φ̂tum,str = 0.012 for
the data shown in Figure 3 [left] and it was from a patient who was still alive over
2615 days after the surgery, while the estimated value of φtum,str = 0.162 for the
data shown in Figure 3 [right] and it was from a patient who died on the 1246th day
after the surgery. These two images have distinctive patterns, as the former clearly
shows the same type cells tend to clump in the same area, while the latter displays
a case where stromal and tumor cells are thoroughly mixed together, indicating the
spread of stromal cells into the tumor region. Although the high/low interaction
between stromal and tumor cells can be easily seen by eyes in these two images,
the patterns are much more subtle for many other images. Therefore, the proposed
model can be used to predict the survival time when human visualization does not
work.

By contrast, we fitted a similar Cox proportional hazards model by us-
ing the MCF features as predictors. Specifically, we first used MCFlym,lym(d),
MCFlym,str(d), MCFlym,tum(d), MCFstr,str(d) and MCFstr,tum(d), where d = 0.1
for each sample image as covariates. The results are summarized in Table S6 in the
Supplementary Material (Li et al. (2019)). As we can see, there was no significant
predictor and the overall p-value for the Cox model was 0.60 (Wald test). Next, we
tried to vary d from 0 to 0.1. Figure S12(a) shows the p-values of those statistics
against d . We repeated this analysis with the features from multitype K-functions
and reported the results in Table S7 and Figure S12(b). Again, we were unable
to find any association between cell–cell interactions and clinical outcomes. The
comparison demonstrates the advantage of modeling the pathology images via the
proposed model over the traditional explanatory analysis for characterizing spatial
correlation.

5.2.2. Predictive performance by cross-validation. Lastly, we used leave-one-
out cross-validation to evaluate the above Cox proportional hazards model. Specif-
ically, we trained the model by using (N − 1) sample images and then predicted
the risk score of the left-out sample. After repeating this step for each of the N

sample images, we calculated the average risk score for each patient from all the
associated sample images. Based on the average risk score, we divided the pa-
tients into two equally sized groups (i.e., low and high-risk). Their corresponding
Kaplan–Meier survival curves are shown in Figure 4. The log-rank test shows that
there is a significant difference (p-value < 0.0001) between the two curves.

5.2.3. Unsupervised clustering analysis. Furthermore, we performed a model-
based clustering analysis on the features extracted by the model. First, each of the
eight parameters φ̂str,lym, φ̂tum,lym, φ̂lym,str, φ̂tum,str, φ̂lym,tum, φ̂str,tum, π̂lym, π̂str of
multiple sample images from the same patient were averaged. We then used the
multivariate Gaussian mixture model (Fraley and Raftery (2002)) to cluster pa-
tients using those parameter. To estimate the number of clusters that best represents
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FIG. 4. Lung cancer case study: The Kaplan–Meier plot for the low and high-risk groups obtained

by leave-one-out cross-validation (log rank test p-value < 0.0001).

the data as well as its covariance structure, we plotted the Bayesian information
criterion (BIC) values against the number of clusters from 1 to 9, as shown in Fig-
ure 5 [left]. It shows that clustering patients into three groups achieves the best fit
of the data measured by BIC, where the first, second and third groups have 79, 77
and 32 patients, respectively. Next, we visualized the means of these patient-level
parameters for each group, shown as a radar chart in Figure 5 [middle], and plotted
the Kaplan–Meier survival curve for each group in Figure 5 [right]. The patients
from group 1 had higher survival probabilities, while the patients from the last
group had the poor prognosis. The log-rank test shows that there are significant
differences (p-value = 0.015) among the survival curves of the three groups. The
analysis, again, demonstrates that the proposed mark interaction features can be
used as a potential biomarker for patient prognosis.

FIG. 5. Lung cancer case study: [left] The BIC plot of the model-based clustering on the patien-

t-level parameters; [middle] The radar chart of the averaged patient-level parameters of the three

groups (shown in different colors), where the outer ring and the center have the values of 0 and 1,
respectively; [right] The Kaplan–Meier plot for the three groups with patient survival (log rank test

p-value = 0.015).
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6. Conclusion. The major cell types in a malignant tissue of lung are tumor
cells, stromal cells and infiltrating lymphocytes. The distribution of different types
of cells and their interactions play a key role in tumor progression and metasta-
sis. For example, stromal cells are connective tissue cells, such as fibroblasts and
pericytes, and their interaction with tumor cells is known to play a major role in
cancer progression (Wiseman and Werb (2002)). Tumor-infiltrating lymphocytes
have been associated with patient prognosis in multiple tumor types previously
(Brambilla et al. (2016), Huh, Lee and Kim (2012)). Recent advances in deep
learning methods have made possible the automatic identification and classifica-
tion of cells at large scale. For example, the ConvPath pipeline could determine the
location and cell type for thousands of cells. However, it is challenging to utilize
the vast amount of information extracted digitally. In this study, we developed a
Bayesian statistical method to model the spatial interaction among different types
of cells in tumor regions. We focused on modeling the spatial correlation of marks
in a spatial pattern that arose from a pathology image study. A Bayesian frame-
work was proposed in order to model how the mark in a pattern might have been
formed given the points. The proposed model can utilize the spatial information
of thousands of points from any point processes. The output of the model is the
parameters that characterize the spatial pattern. After a certain transformation, the
parameters are identifiable and interpretable, and most importantly, transferable for
conducting an association study with other measurements of interest. Furthermore,
this statistical methodology provides new insights into the biological mechanisms
of cancer.

For the lung cancer pathology imaging data, our study shows the interaction
strength between stromal and tumor cells is associated with patient prognosis.
This parameter can be easily measured using the proposed method and used as
a potential biomarker for patient prognosis. This biomarker can be translated into
real clinical tools at low cost because it is based only on tumor pathology slides,
which are available in standard clinical care.

Several extensions of our model are worth investigating. First, the proposed
model can be extended to finite mixture models for inhomogeneous mark interac-
tions. Second, the correlation among first- and second-order intensity parameters
could be taken into account by modeling them as a multivariate normal distribu-
tion. Third, in some scenarios, we may need to consider edge effects in that the
marks associated with the points within the observation window may also interact
with those marks of points outside the window. Therefore, some edge-correction
methods, such as minus sampling, should be employed. Last but not least, the
proposed model provides a good chance to investigate the performance of other
approximate Bayesian computation methods, such as variational Bayes (Ren et al.
(2011)). These could be future research directions.
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APPENDIX: MCMC ALGORITHM

Update of ω: We update each of ωq , q = 1, . . . ,Q − 1 by using the DMH al-
gorithm. We first propose a new ω∗

q from N(ωq, τ
2
ω). Next, according to equation

(2.5), we implement the Gibbs sampler to simulate an auxiliary variable z∗ starting
from z based on the new ω∗, where all the elements are the same as ω excluding
the qth one. The proposed value ω∗

q is then accepted to replace the old value with
probability min(1, r). The Hastings ratio r is given as

r =
p(z∗|ω,�, λ)

p(z|ω,�, λ)

p(z|ω∗,�, λ)

p(z∗|ω∗,�, λ)

N(ω∗
q;µω, σ 2

ω)

N(ωq;µω, σ 2
ω)

J (ωq;ω∗
q)

J (ω∗
q;ωq)

,

where the form of p(z|ω,�, λ) is given by equation (2.4). As a result, the nor-
malizing constant in equation (2.4) can be canceled out. Note that the last fraction
term, which is the proposal density ratio, equals 1 for this random walk Metropolis
update on ωq .

Update of �: We update each of θqq ′, q = 1, . . . ,Q−1, q ′ = q, . . . ,Q by using
the DMH algorithm. We first propose a new θ∗

qq ′ from N(θqq ′, τ 2
θ ) and set θ∗

q ′q =

θ∗
qq ′ as the matrix is symmetric. Next, according to equation (2.5), an auxiliary

variable z∗ is simulated via the Gibbs sampler with z as the starting point. This
simulation should be based on the new �∗, where all the elements are the same as
� except the two elements corresponding to θqq ′ and θq ′q . The proposed value θ∗

qq ′

as well as θ∗
q ′q is then accepted to replace the old values with probability min(1, r).

The Hastings ratio r is given as

r =
p(z∗|ω,�, λ)

p(z|ω,�, λ)

p(z|ω,�∗, λ)

p(z∗|ω,�∗, λ)

N(θ∗
qq ′;µθ , σ

2
θ )

N(θqq ′;µθ , σ
2
θ )

J (θqq ′; θ∗
qq ′)

J (θ∗
qq ′; θqq ′)

,

where the form of Pr(z|θ , λ) is given by equation (2.4). As a result, the normaliz-
ing constant in equation (2.4) can be canceled out. Note that the last fraction term,
which is the proposal density ratio, equals 1 for this random walk Metropolis up-
date on θqq ′ .

Update of λ: We update the decay parameter λ by using the DMH algorithm.
We first propose a new λ∗ from a gamma distribution Ga(λ2/τλ, λ/τλ), where the
mean is λ and the variance is τλ. Next, according to equation (2.5), we implement
the Gibbs sampler to simulate an auxiliary variable z∗ starting from z based on
the new λ∗. The proposed value λ∗ is then accepted to replace the old value with
probability min(1, r). The Hastings ratio r is given as

r =
p(z∗|ω,�, λ)

p(z|ω,�, λ)

p(z|ω,�, λ∗)

p(z∗|ω,�, λ∗)

Ga(λ∗;a, b)

Ga(λ;a, b)

J (λ;λ∗)

J (λ∗;λ)
,

where the form of Pr(z|θ , λ) is given by equation (2.4). As a result, the normaliz-
ing constant in equation (2.4) can be canceled out. Note that the last fraction term,
which is the proposal density ratio, equals 1 for this random walk Metropolis up-
date on λ.
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SUPPLEMENTARY MATERIAL

Figures and tables (DOI: 10.1214/19-AOAS1254SUPPA; .pdf). We provide
additional supporting plots and tables.

Code (DOI: 10.1214/19-AOAS1254SUPPB; .zip). We provide code in the form
of R/C++ code. It can also be downloaded from GitHub (link: https://github.com/
liqiwei2000/BayesMarkInteractionModel).
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