
Machine Learning, 9, 309-347 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Bayesian Method for the Induction of
Probabilistic Networks from Data

GREGORY F. COOPER GFC@MED.PITT.EDU
Section of Medical Informatics, Department of Medicine, University of Pittsburgh, B50A Lothrop Hall,

Pittsburgh, PA 15261

EDWARD HERSKOVITS EHH@SUMEX-AIM.STANFORD.EDU
Noetic Systems, Incorporated, 2504 Maryland Avenue, Baltimore, MD 21218

Editor: Tom Dietterich

Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In par-
ticular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypoth-

esis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend

the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic
inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary
evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods

in this paper to previous work, and we discuss open problems.

Keywords, probabilistic networks, Bayesian belief networks, machine learning, induction

1. Introduction

In this paper, we present a Bayesian method for constructing a probabilistic network from
a database of records, which we call cases. Once constructed, such a network can provide
insight into probabilistic dependencies that exist among the variables in the database. One
application is the automated discovery of dependency relationships. The computer program
searches for a probabilistic-network structure that has a high posterior probability given
the database, and outputs the structure and its probability. A related task is computer-assisted
hypothesis testing: The user enters a hypothetical structure of the dependency relationships
among a set of variables, and the program calculates the probability of the structure given
a database of cases on the variables.

We can also construct a network and use it for computer-based diagnosis. For example,
suppose we have a database in which a case contains data about the behavior of some sys-
tem (i.e., findings). Suppose further that a case contains data about whether this particular
behavior follows from proper system operation, or alternatively, is caused by one of several
possible faults. Assume that the database contains many such cases from previous episodes
of proper and faulty behavior. The method that we present in this paper can be used to
construct from the database a probabilistic network that captures the probabilistic dependen-
cies among findings and faults. Such a network then can be applied to classify future cases
of system behavior by assigning a posterior probability to each of the possible faults and
to the event "proper system operation." In this paper, we also shall discuss diagnostic infer-
ence that is based on combining the inferences of multiple alternative networks.

310 G.F. COOPER AND E. HERSKOVITS

Table 1. A database example. The term case in the first column
denotes a single training instance (record) in the database—
as for example, a patient case. For brevity, in the text we some-

times use 0 to denote absent and 1 to denote present.

Case

1

2
3
4

5
6
7
8
9

10

Variable values for each case

X1

present

present
absent

present

absent

absent
present

absent
present

absent

X2

absent

present
absent

present

absent
present

present
absent

present

absent

x3

absent

present

present

present

absent

present

present
absent

present

absent

Let us consider a simple example of the tasks just described. Suppose the fictitious data-
base of cases in table 1 is the training set. Suppose further that x1 represents a fault in the
system, and that x2 and x3, represent two findings. Given the database, what are the quali-
tative dependency relationships among the variables? For example, do x1 and x3 influence
each other directly, or do they do so only through x2? What is the probability that x3 will
be present if x1 is present? Clearly, there are no categorically correct answers to each of

these questions. The answers depend on a number of factors, such as the model that we
use to represent the data, and our prior knowledge about the data in the database and the
relationships among the variables.

In this paper, we do not attempt to consider all such factors in their full generality. Rather,
we specialize the general task by presenting one particular framework for constructing prob-
abilistic networks from databases (as, for example, the database in table 1) such that these
networks can be used for probabilistic inference (as, for example, the calculation of P(x3 =
present |x1 = present)). In particular, we focus on using a Bayesian belief network as a
model of probabilistic dependency. Our primary goal is to construct such a network (or
networks), given a database and a set of explicit assumptions about our prior probabilistic
knowledge of the domain.

A Bayesian belief-network structure Bs is a directed acyclic graph in which nodes repre-
sent domain variables and arcs between nodes represent probabilistic dependencies (Cooper,
1989; Horvitz, Breese, & Henrion, 1988; Lauritzen & Spiegelhalter, 1988; Neapolitan,
1990; Pearl, 1986; Pearl, 1988; Shachter, 1988). A variable in a Bayesian belief-network

structure may be continuous (Shachter & Kenley, 1989) or discrete. In this paper, we shall
focus our discussion on discrete variables. Figure 1 shows an example of a belief-network
structure containing three variables. In this figure, we have drawn an arc from x1 to x2

to indicate that these two variables are probabilistically dependent. Similarly, the arc from
x2 to x3 indicates a probabilistic dependency between these two variables. The absence of
an arc from x1 to x3 implies that there is no direct probabilistic dependency between x1

and x3. In particular, the probability of each value of x3 is conditionally independent of

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 311

Figure I. An example of a belief-network structure, which we shall denote as BSA.

the value of x1 given that the value of x2 is known. The representation of conditional de-

pendencies and independencies is the essential function of belief networks. For a detailed

discussion of the semantics of Bayesian belief networks, see (Pearl, 1988).

A Bayesian belief-network structure, BS, is augmented by conditional probabilities, BP,
to form a Bayesian belief network B. Thus, B = (BS, BP). For brevity, we call B a belief
network. For each node1 in a belief-network structure, there is a conditional-probability

function that relates this node to its immediate predecessors (parents). We shall use Ti, to

denote the parent nodes of variable xi. If a node has no parents, then a prior-probability

function, P(xi), is specified. A set of probabilities is shown in table 2 for the belief-network

structure in figure 1. We used the probabilities in table 2 to generate the cases in table 1
by applying Monte Carlo simulation.

We shall use the term conditional probability to refer to a probability statement, such

as P(x2 = present x1 = present). We use the term conditional-probability assignment to

denote a numerical assignment to a conditional probability, as, for example, the assign-

ment P(x2 = present x1 = present) = 0.8. The network structure BS1 in figure 1 and the
probabilities BP1 in table 2 together define a belief network which we denote as B1.

Belief networks are capable of representing the probabilities over any discrete sample
space: The probability of any sample point in that space can be computed from the proba-

bilities in the belief network. The key feature of belief networks is their explicit represen-

tation of the conditional independence and dependence among events. In particular, investi-

gators have shown (Kiiveri, Speed, & Carlin, 1984; Pearl, 1988; Shachter, 1986) that the

joint probability of any particular instantiation2 of all n variables in a belief network can

be calculated as follows:

where Xi represents the instantiation of variable xi and Ti represents the instantiation of

the parents of xi.
Therefore, the joint probability of any instantiation of all the variables in a belief network

can be computed as the product of only n probabilities. In principle, we can recover the

Table 2. The probability assignments associated with the belief-network structure BS1

in figure 1. We shall denote these probability assignments as BP1.

P(x1

P(X2

P(x2

P(x3

P(x3

= present)
= present x1

— present\x1

= present | x2

= present \x2

= present)
= absent)
= present)
= absent)

= 0.6
= 0.8
= 0.3
= 0.9
= 0.15

P (X 1

P(x2

P (x 2

P(x3

P(x3

= absent)
= absent\x1

— absent |x1

= absent | x2

= absent |x2

= present)
= absent)
= present)
= absent)

= 0.4
= 0.2
= 0.7
= 0.1
= 0.85

312 G.F. COOPER AND E. HERSKOVITS

complete joint-probability space from the belief-network representation by calculating the
joint probabilities that result from every possible instantiation of the n variables in the net-
work. Thus, we can determine any probability of the form P (W | V) , where W and V are
sets of variables with known values (instantiated variables). For example, for our sample
three-node belief network B1, P(x3 = present x1 = present) = 0.75.

In the last few years, researchers have made significant progress in formalizing the theory
of belief networks (Neapolitan, 1990; Pearl, 1988), and in developing more efficient
algorithms for probabilistic inference on belief networks (Henrion, 1990); for some com-
plex networks, however, additional efficiency is still needed. The feasibility of using belief
networks in constructing diagnostic systems has been demonstrated in several domains
(Agogino& Rege, 1987; Andreassen, Woldbye, Falck, & Andersen, 1987; Beinlich, Suer-
mondt, Chavez, & Cooper, 1989; Chavez & Cooper, 1990; Cooper, 1984; Heckerman,
Horvitz, & Nathwani, 1989; Henrion & Cooley, 1987; Holtzman, 1989; Suermondt &
Amylon, 1989).

Although researchers have made substantial advances in developing the theory and appli-
cation of belief networks, the actual construction of these networks often remains a diffi-
cult, time-consuming task. The task is time-consuming because typically it must be per-
formed manually by an expert or with the help of an expert. Important progress has been
made in developing graphics-based methods that improve the efficiency of knowledge acqui-
sition from experts for construction of belief networks (Heckerman, 1990). These methods
are likely to remain important in domains of small to moderate size in which there are
readily available experts. Some domains, however, are large. In others, there are few, if
any, readily available experts. Methods are needed for augmenting the manual expert-based
methods of knowledge acquisition for belief-network construction. In this paper, we pre-
sent one such method.

The remainder of this paper is organized as follows. In section 2, we present a method
for determining the relative probabilities of different belief-network structures, given a data-
base of cases and a set of explicit assumptions. This method is the primary result of the
paper. As an example, consider the database in table 1, which we call D. Let BS1 denote
the belief-network structure in figure 1, and let BS2 denote the structure in figure 2. The
basic method presented in section 2 allows us to determine the probability of BS1 relative
to BS2. We show that P(BS1 | D) is 10 times greater than P(BS2 D), under the assumption
that BS1 and BS2 have equal prior probabilities. In section 3, we discuss methods for
searching for the most probable belief-network structures, and we introduce techniques
for handling missing data and hidden variables. Section 4 describes techniques for employing

Figure 2. A belief-network structure that is an alternative to the structure in figure 1 for characterizing the proba-
bilistic dependencies among the three variables shown. We shall use BS2 to denote this structure.

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 313

the methods in section 2 to perform probabilistic inference. In section 5, we report the
results of an experiment that evaluates how accurately a 37-node belief network can be re-
constructed from a database that was generated from this belief network. Section 6 contains

a discussion of previous work. Section 7 concludes the paper with a summary and discus-
sion of open problems.

2. The basic model

Let us now consider the problem of finding the most probable belief-network structure,
given a database. Once such a structure is found, we can derive numerical probabilities
from the database (we discuss this task in section 4). We can use the resulting belief net-
work for performing probabilistic inference, such as calculating the value of P(x3 =
present | x1 = present). In addition, the structure may lend insight into the dependency
relationships among the variables in the database; for example, it may indicate possible
causal relationships.

Let D be a database of cases, Z be the set of variables represented by D, and BSi and
BSj be two belief-network structures containing exactly those variables that are in Z. In this
section, we develop a method for computing P(BS | D) / P (B S . | D) . By computing such

ratios for pairs of belief-network structures, we can rank order a set of structures by their
posterior probabilities. To calculate the ratio of posterior probabilities, we shall calculate
P(BSi, D) and P(BSj, D) and use the following equivalence:

Let BS represent an arbitrary belief-network structure containing just the variables in Z.
In section 2.1, we present a method for calculating P(BS, D). In doing so, we shall intro-
duce several explicit assumptions that render this calculation computationally tractable. A
proof of the method for calculating P(BS, D) is presented in theorem 1 in the appendix.

2.1. A formula for computing P(BS, D)

In this section, we present an efficient formula for computing P(BS, D). We do so by first
introducing four assumptions.

Assumption 1. The database variables, which we denote as Z, are discrete.

As this assumption states, we shall not consider continuous variables in this paper. One
way to handle continuous variables is to discretize them; however, we shall not discuss
here the issues involved in such a transformation.

314 G.F. COOPER AND E. HERSKOVITS

A belief network, which consists of a graphical structure plus a set of conditional proba-
bilities, is sufficient to capture any probability distribution over the variables in Z (Pearl,
1988). A belief-network structure alone, containing just the variables in Z, can capture

many—but not all—of the independence relationships that might exist in an arbitrary proba-
bility distribution over Z (For a detailed discussion, see (Pearl, 1988)).

In this section, we assume that BS contains just the variables in Z. In section 3.2, we
allow BS to contain variables in addition to those in Z.

The application of assumption 1 yields

where BP is a vector whose values denote the conditional-probability assignments associ-
ated with belief-network structure BS, and f is the conditional-probability density function
over BP given BS. Note that our assumption of discrete variables leads us to use the proba-
bility mass function P(D|B S , BP) in equation 3, rather than the density function f (D | B S ,
BP). The integral in equation (3) is over all possible value assignments to BP. Thus, we
are integrating over all possible belief networks that can have structure BS. The integral
represents a multiple integral and the variables of integration are the conditional probabili-
ties associated with structure BS.

Example: Consider an example in which BS is the structure BS1, shown in figure 1 and D
is the database given by table 1. Let BP denote an assignment of numerical probability
values to a belief network that has structure BS1. Thus, the numerical assignments shown
in table 2 constitute one particular value of BP—call it BP. Integrating over all possible
BP corresponds to changing the numbers shown in table 2 in all possible ways that are
consistent with the axioms of probability theory. The term f(Bp|BSl) denotes the likeli-
hood of the particular numerical probability assignments shown in table 2 for the belief-
network structure BS1. The term P(D| BS, Bp) denotes the probability of seeing the data
in table 1, given a belief network with structure BS1 and with probabilities given by table
2. The term P(BS1) is our probability—prior to observing the data in database D—that
the data-generating process is a belief network with structure BS1. D

The term P(BS) in equation (3) can be viewed as one form of preference bias (Buntine,
1990a; Mitchell, 1980) for network structure BS. Utgoff defines a preference bias as "the
set of all factors that collectively influence hypothesis selection" (Utgoff, 1986). A computer-
based system may use any prior knowledge and methods at its disposal to determine P(BS).
This capability provides considerable flexibility in integrating diverse belief construction
methods in artificial intelligence (AI) with the learning method discussed in this paper.

Assumption 2. Cases occur independently, given a belief-network model.

A simple version of assumption 2 occurs in the following, well-known example: If a
coin is believed with certainty to be fair (i.e., to have a 0.5 chance of landing heads), then
the fact that the first flip landed heads (case 1) does not influence our belief that the second
flip (case 2) will land heads.

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 315

It follows from the conditional independence of cases expressed in assumption 2 that

where m is the number of cases in D and Ch is the nth case in D.

Assumption 3. There are no cases that have variables with missing values.

Assumption 3 generally is not valid for real-world databases, where often there are some
missing values. This assumption, however, facilitates the derivation of our basic method
for computing P(BS, D). In section 3.2.1 we discuss methods for relaxing assumption 3
to allow missing data.

Assumption 4. The density function f (B P \ B S) in equations (3) and (4) is uniform.

This assumption states that, before we observe database D, we are indifferent regarding
the numerical probabilities to place on belief-network structure BS. Thus, for example, it

follows for structure BS1 in figure 1 that we believe that P(x2 = present xl = present)
is just as likely to have the value 0.3 as to have the value 0.6 (or to have any other real-
number value in the interval [0, 1]). In corollary 1 in the appendix, we relax assumption 4
to permit the user to employ Dirichlet distributions to specify prior probabilities on the
components of f (B P | B S) .

We now introduce additional notation that will facilitate our application of the preceding
assumptions. We shall represent the parents of Xi as a list (vector) of variables, which we
denote as T i , . We shall use wij to designate the jth unique instantiation of the values of the
variables in Ti, relative to the ordering of the cases in D. We say that wij is a value or

an instantiation of TT,. For example, consider node x2 in BS1 and table 1. Node x1 is the

parent of x2 in BS1, and therefore r2 = (x1). In this example, w2l = present, because in
table 1 the first value of x1 is the value present. Furthermore, w22 = absent, because the
second unique value of x1 in table 1 (relative to the ordering of the cases in that table)
is the value absent.

Given assumptions 1 through 4, we prove the following result in the appendix.

Theorem 1. Let Z be a set of n discrete variables, where a variable xi in Z has ri possible
value assignments: (v i1, .. ., virj.). Let D be a database of m cases, where each case con-
tains a value assignment for each variable in Z. Let BS denote a belief-network structure

containing just the variables in Z. Each variable xi in BS has a set of parents, which we
represent with a list of variables ri. Let wij denote they jth unique instantiation of Ti relative
to D. Suppose there are qi such unique instantiations of Ti. Define Nijk to be the number

of cases in D in which variable xi has the value vik and Ti is instantiated as wij. Let

316 G.F. COOPER AND E. HERSKOVITS

Given assumptions 1 through 4 of this section, it follows that

Example: Applying equation (5) to compute P(BS 1 , D), given belief-network structure BS1

in figure 1 and database D in table 1, yields

By applying equation (5) for BS2 in figure 2, we obtain P(BS2, D) = P(BS2) 2.23 X
10-10. If we assume that P(BS1) = P(BS2), then by equation (2), P(BS1 | D)/P(BS2 | D) = 10.
Given the assumptions in this section, the data imply that SS1 is 10 times more likely than
BS2. This result is not surprising, because we used B1 to generate D by the application
of Monte Carlo sampling. D

2.2. Time complexity of computing P(BS, D)

In this section, we derive a worst case time complexity of computing equation (5). In the
process, we describe an efficient method for computing that equation. Let r be the max-
imum number of possible values for any variable, given by r = max1<i<n[r i]. Define tBS

to be the time required to compute the prior probability of structure BS. For now, assume

that we have determined the values of Nijk, and have stored them in an array. For a given
variable xt the number of unique instantiations of the parents of xi, given by qi, is at most
m, because there are only m cases in the database. For a given i and j, by definition

Nij = ^1^k<r iN i jk ,and therefore we can compute Nij in O(r) time. Since there are at most
m n terms of the form Nij, we can compute all of these terms in O(m n r) time. Using this
result and substituting m for qi and r for ri in equation (5), we find that the complexity
of computing equation (5) is O(m n r + tBs), given that the values of Nijk are known.

Now consider the complexity of computing the values of Nijk for a node xi. For a given
xi, we construct an index tree Ti, which we define as follows. Assume that zi is a list of
the parents of xi. Each branch out of a node at level d in 7} represents a value of the
(d + l)th parent of xi. A path from the root to a leaf corresponds to some instantiation
for the parents of xi. Thus, the depth of the tree is equal to the number of parents of xi.
A given leaf in Ti contains counts for the values of xi (i.e., for the values vij, .. ., virj)
that are conditioned on the instantiation of the parents of xi as specified by the path from
the root to the leaf. If this path corresponds to the jth unique instantiation of Ti (i.e.,
Ti = W i j) , then we denote the leaf as lj,. Thus, lj in Ti corresponds to the list of values of

Nijk for k = 1 to ri. We can link the leaves in the tree using a list Li. Figure 3 shows an

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 317

Figure 3. An index tree for node x2 in structure BS1 using the data in table 1. In BS1, x2 has only one parent—
namely, x1; thus, its index tree has a depth of 1. A 4 is used to highlight an entry that is discussed in the text.

index tree for the node x2 in BS1 using the database in table 1. For example, in table 1,
there are four cases in which x2 is assigned the value present (i.e., x2 = 1) and its parent

x1 is assigned the value present (i.e., x1 = 1); this situation corresponds to the second col-
umn in the second cell of list L2 in figure 3, which is shown as 4.

Since xi has at most n — 1 parents, the depth of Ti is O(n). Because a variable has at
most r values, the size of each node in 7} is O(r). To enter a case into Ti, we must branch
on or construct a path that has a total of O(n) nodes, each of size O(r). Thus, a case can
be entered in O(n r) time. If the database contained every possible case, then 7} would
have O(r") leaves. However, there are only m cases in the database, so even in the worst
case only O(m) leaves will be created. Hence, the time required to construct Ti for node
xi is O(m n r) . Because there are n nodes, the complexity of constructing index trees for
all n nodes is O(m n2 r). The overall complexity of both constructing index trees and using
them to compute equation (5) is therefore O(m n2 r) + O(m n r + tB S) = O(m n2 r + tBs).3

If the maximum number of parents of any node is M, then the overall complexity is just
O(m u n r + tBs), by a straightforward restriction of the previous analysis.4 If O(tBs) =
O(u n r), and u and r can be bounded from above by constants, then the overall complexity
becomes simply O(m n).

2.3. Computing P(B S |D)

If we maximize P(BS, D) over all BS for the database in table 1, we find that x3 -» x2 -* x1

is the most likely structure; we shall use BS3 to designate this structure. Applying equa-
tion (5), we find that P(BS3, D) = P(BS3) 2.29 x 10-9. If we assume that the database
was generated by some belief network containing just the variables in Z, then we can com-
pute P(D) by summing P(BS, D) over all possible BS containing just the variables in Z.
In the remainder of section 2.3, we shall make this assumption. For the example, there
are 25 possible belief-network structures. For simplicity, let us assume that each of these
structures is equally likely, a priori. By summing P(BS, D) over all 25 belief-network
structures, we obtain P(D) = 8.21 X 1(10-10. Therefore, P(BS3 | D) = P(BS3, D)/P(D) =
(1/25) x 2.29 x 1(T-9/8.21 x 1(10-10 = 0.112. Similarly, we find that P(BS1 \D) = 0.109,
and P(SS2|D) = 0.011.

318 G.F. COOPER AND E. HERSKOVITS

Now we consider the general case. Let Q be the set of all those belief-network structures
that contain just the variables in set Z. Then, we have

As we discuss in section 3.1, the size of Q grows rapidly as a function of the size of Z.
Consider, however, the situation in which EBSeYP(BS, D) = P(D), for some set Y c Q,
where Y\ is small. If Y can be located efficiently, then P(BS i . |D) can be approximated
closely and computed efficiently. An open problem is to develop heuristic methods that
attempt to find such a set Y. One approach to computing equation (6) is to use sampling
methods to generate a tractable number of belief-network structures and to use these struc-
tures to derive an estimate of P(BS i | D) .

Let G be a belief-network structure, such that the variables in G are a subset of the vari-
ables in Z. Let R be the set of those belief-network structures in Q that contain G as a
subgraph. We can calculate the posterior probability of G as follows:

For example, suppose Z = {x1, x2, x3}, and G is the graph x1 -» x2. Then, Q is equal
to the 25 possible belief-network structures that contain just the variables in Z, and R is
equal to the 8 possible belief-network structures in Q that contain the subgraph x1 -> x2.
Applying equation (7), we obtain P(x1 -> x2 | D) , which is the posterior probability that
there is an arc from node x1 to node x2 in the underlying belief-network process that gen-
erated data D (given that the assumptions in section 2.1 hold and that we restrict our model
of data generation to belief networks). Probabilities (such as the probability P(x1 -> x2 | D))
could be used to annotate arcs (such as the arc x1 -> x2) to convey to the user the likeli-
hoods of the existences of possible arcs among the variables in Z. Such annotations may
be particularly useful for those arcs that have relatively high probabilities. It may be possi-
ble to develop efficient heuristic and estimation methods for the computation of equation
(7), which are similar to the methods that we mentioned for the computation of equation (6).

When arcs are given a causal interpretation, and specific assumptions are met, we can
use previously developed methods to infer causality from data (Pearl & Verma, 1991; Spirtes,
Glymour, & Schemes, 1990b). These methods do not, however, annotate each arc with
its probability of being true. Thus, the resulting categorical statements of causality that
are output by these methods may be invalid, particularly when the database of cases is

small. In this context, arc probabilities that are derived from equation (7)—such as P(x1

-> x2| D)—can be viewed as providing information about the likelihood of a causal rela-
tionship being true, rather than a categorical statement about that relationship's truth.

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 319

We also can calculate the posterior probability of an undirected graph. Let G' be an
undirected graph, such that the variables in G' are a subset of the variables in Z. Let
R' = {BS|BS is in Q, and if for distinct nodes x and y in G' there is an edge between

x and y in G', then it is the case that x - y is in BS or y - x is in BS, else it is the case
that x and y are not adjacent in BS}. By replacing R with R' and G with G' in equation
(7), we obtain a formula for P (G ' | D) . Thus, for example, if we use "—" to denote an
undirected edge, then P (x 1 — x 2 | D) is the posterior probability that the underlying belief-
network process that generated data D contains either an arc from x1 to x2 or an arc from

X2 to X1.

3. Application and extension of the basic model

In this section, we apply the results of section 2 to develop methods that locate the most
probable belief-network structures. We also discuss techniques for handling databases that
contain missing values and belief-network structures that contain hidden variables.

3.1. Finding the most probable belief-network structures

Consider the problem of determining a belief-network structure BS that maximizes
P(BS \D). In general, there may be more than one such structure. To simplify our exposi-
tion in this section, we shall assume that there is only one maximizing structure; finding
the entire set of maximally probable structures is a straightforward generalization. For a
given database D, P(BS, D) < P (B S |D) , and therefore finding the BS that maximizes
P(Bs\D) is equivalent to finding the BS that maximizes P(BS, D). We can maximize
P(BS, D) by applying equation (5) exhaustively for every possible BS.

As a function of the number of nodes, the number of possible structures grows exponen-
tially. Thus, an exhaustive enumeration of all network structures is not feasible in most
domains. In particular, Robinson (1977) derives the following efficiently computable recur-
sive function for determining the number of possible belief-network structures that contain
n nodes:

For n = 2, the number of possible structures is 3; for n = 3, it is 25; for n = 5, it is
29,000; and for n = 10, it is approximately 4.2 X 1018. Clearly, we need a method for
locating the BS that maximizes P(BS | D) that is more efficient than exhaustive enumera-
tion. In section 3.1.1, we introduce additional assumptions and conditions that reduce the
time complexity for determining the most probable BS- The complexity of this task, how-
ever, remains exponential. Thus, in section 3.1.2, we modify an algorithm from section
3.1.1 to construct a heuristic method that has polynomial time complexity.

320 G.F. COOPER AND E. HERSKOVITS

3.1.1, Exact methods

Let us assume, for now, that we can specify an ordering on all n variables, such that, if

xi precedes xj in the ordering, then we do not allow structures in which there is an arc
from xj to xi. Given such an ordering as a constraint, there remain 2(2) = 2n(n-1)/2 possi-
ble belief-network structures. For large n, it is not feasible to apply equation 5 for each
of 2n(n-1)/2 possible structures. Therefore, in addition to a node ordering, let us assume
equal priors on BS. That is, initially, before we observe the data D, we believe that all struc-
tures are equally likely. In that case, we obtain

where c is the constant prior probability, P(B S) , for each BS. To maximize equation (8),
we need only to find the parent set of each variable that maximizes the second inner prod-
uct. Thus, we have that

where the maximization on the right of equation (9) takes place over every instantiation
of the parents ri of xi that is consistent with the ordering on the nodes.

A node xt can have at most n - 1 nodes as parents. Thus, over all possible BS consis-
tent with the ordering, xi can have no more than 2n-1 unique sets of parents. Therefore,
the maximization on the right of equation (9) occurs over at most 2 ""' parent sets. It fol-
lows from the results in section 2.2 that the products within the maximization operator
in equation (9) can be computed in O(m n r) time. Therefore, the time complexity of com-
puting equation (9) is O(m n2 r 2n). If we assume that a node can have at most u parents,
then the complexity is only O(m u n r T(n, u)), where

Let us now consider a generalization of equation (9). Let ii be the parents of xi in BS,
denoted as ri -> xi. Assume that P(BS) can be calculated as P(BS) = I I 1 < i < n P(r i -» xi).
Thus, for all distinct pairs of variables xi and xj, our belief about xi having some set of
parents is independent of our belief about xj having some set of parents. Using this assump-
tion of independence of priors, we can express equation (5) as

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 321

The probability P (r i - xi) could be assessed directly or be derived with additional meth-
ods. For example, one method would be to assume that the presence of an arc in ri » xi

is independent of the presence of the other arcs there; if the probability of each arc in

ri - xi is specified, we then can compute P (r i - xi). Suppose, as before, that we have
an ordering on the nodes. Then, from equation (10), we see that

where the maximization on the right of equation (11) is taken over all possible sets ri con-
sistent with the node ordering. The complexity of computing equation (11) is the same as
that of computing equation (9), except for an additional term that represents an upper bound

on the complexity of computing P(ri —> xi). From equation (11), we see that the determi-
nation of the most likely belief-network structure is computationally feasible if we assume

(1) that there is an ordering on the nodes, (2) that there exists a sufficiently tight limit on
the number of parents of any node, and (3) that P(ri -> xi) and P(rj -» xj) are marginally

independent when i # j, and we can compute such prior probabilities efficiently. Unfor-
tunately, the second assumption in the previous sentence may be particularly difficult to
justify in practice. For this reason, we have developed a polynomial-time heuristic algorithm
that requires no restriction on the number of parents of a node, although it does permit
such a restriction.

3.1.2. A heuristic method

We propose here one heuristic-search method, among many possibilities, for maximizing
P(BS, D). We shall use equation (9) as our starting point, with the attendant assumptions

that we have an ordering on the domain variables and that, a priori, all structures are con-

sidered equally likely. We shall modify the maximization operation on the right of equa-
tion (9) to use a greedy-search method. In particular, we use an algorithm that begins by
making the assumption that a node has no parents, and then adds incrementally that parent

whose addition most increases the probability of the resulting structure. When the addi-
tion of no single parent can increase the probability, we stop adding parents to the node.
Researchers have made extensive use of similar greedy-search methods in classification

systems—for example, to construct classification trees (Quinlan, 1986) and to perform var-

iable selection (James, 1985).
We shall use the following function:

where the Nijk are computed relative to ri being the parents of xi and relative to a database
D, which we leave implicit. From section 2.2, it follows that g(i, ri) can be computed

322 G.F. COOPER AND E. HERSKOVITS

in O(m u r) time, where u is the maximum number of parents that any node is permitted
to have, as designated by the user. We also shall use a function Pred(xi-) that returns the
set of nodes that precede xt in the node ordering. The following pseudocode expresses the
heuristic search algorithm, which we call K2.5

1. procedure K2;
2. {Input: A set of n nodes, an ordering on the nodes, an upper bound u on the
3. number of parents a node may have, and a database D containing m cases.}
4. {Output: For each node, a printout of the parents of the node.}
5. for i: := 1 to n do
6. TT, := 0;
7- P0id := S(i> 7r;)l {This function is computed using equation (12).}
8. OKToProceed := true
9. while OKToProceed and |ir,| < u do

10. let z be the node in Pred(jc,) — TT, that maximizes g(i, TT, U {z});
11. Pnew'= gd, IT/ U {z});
12. if Pnew > PM then

14. 7T, := 7T,. U {z}

15. else OKToProceed := false;
16. end {while};
17. writefNode:', xh 'Parents of this node:', TT,)
18. end {for};
19. end {K2};

We now analyze the time complexity of K2. We shall assume that the factorials that are
required to compute equation (12) have been precomputed and have been stored in an array.
Equation (12) contains no factorial greater than (m + r — 1)!, because Ny can have a value
no greater than m. We can compute and store the factorials of the integers from 1 to
(m + r - 1) in O(m + r - 1) time. A given execution of line 10 of the K2 procedure
requires that g be called at most n - 1 times, because xt has at most n - 1 predecessors
in the ordering. Since each call to g requires O(m u r) time, line 10 requires O(m u n r)
time. The other statements in the while statement require 0(1) time. Each time the while
statement is entered, it loops O(u) times. The for statement loops n times. Combining these
results, the overall complexity of K2 is O(m + r - 1) + O(m u n r) O(u) n = O(m u2

n2 r). In the worst case, u = n, and the complexity of K2 is O(m n4 r).
We can improve the run-time speed of K2 by replacing g(i , TT,) and g(i, vr, U {z}) by

log(gO' , TT,)) and log(g(;', x, U {z})), respectively. Run-time savings result because the
logarithmic version of equation (12) requires only addition and subtraction, rather than
multiplication and division. If the logarithmic version of equation (12) is used in K2, then
the logarithms of factorials should be precomputed and should be stored in an array.

We emphasize that K2 is just one of many possible methods for searching the space of
belief networks to maximize the probability metric given by equation (5). Accordingly,
theorem 1 and equation (5) represent more fundamental results than does the K2 algorithm.
Nonetheless, K2 has proved valuable as an initial search method for obtaining preliminary

in O(m u r) time, where u is the maximum number of parents that any node is permitted
to have, as designated by the user. We also shall use a function Pred(;t,) that returns the

set of nodes that precede xt in the node ordering. The following pseudocode expresses the
heuristic search algorithm, which we call K2.5

1. procedure K2;
2. {Input: A set of n nodes, an ordering on the nodes, an upper bound u on the

3. number of parents a node may have, and a database D containing m cases.}
4. {Output: For each node, a printout of the parents of the node.}
5. for i: := 1 to n do

6. TT, := 0;

7- P0id := §(i> 7r;)l {This function is computed using equation (12).}
8. OKTo Proceed := true

9. while OKToProceed and |ir,| < u do
10. let z be the node in Pred(jc,) — TT, that maximizes g(i, TT, U {z});
11. Pnew := g(i, TT, U {?});
12. if Pnew > PM then

13. POM := P^H'i
14. 7T, := 7T,. U {Z}

15. else OKToProceed := false;

16. end {while};
17. write('Node:', jc,-, 'Parents of this node:', TT,)

18. end {for};
19. end {K2};

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 323

test results, which we shall describe in section 5. An open research problem is to explore
other search methods. For example, consider an algorithm that differs from K2 only in
that it begins with a fully connected belief-network structure (relative to a given node order)
and performs a greedy search by removing arcs; call this algorithm K2R (K2 Reverse).
We might apply K2 to obtain a belief-network structure, then apply K2R to obtain another
structure, and finally report whichever structure is more probable according to equation
(5). Another method of search is to generate multiple random node orders, to apply K2
using each node order, and to report which among the belief-network structures output

by K2 is most probable. Other search techniques that may prove useful include methods
that use beam search, branch-and-bound techniques, and simulated annealing.

3.2. Missing data and hidden variables

In this section, we introduce normative methods for handling missing data and hidden var-
iables in the induction of belief networks from databases. These two methods are funda-
mentally the same. As we present them, neither method is efficient enough to be practical
in most real-world applications. We introduce them here for two reasons. First, they demon-
strate that the Bayesian approach developed in this paper admits conceptually simple and

theoretically sound methods for handling the difficult problems of missing data and hidden
variables. Second, these methods establish a theoretical basis from which it may be possible
to develop more efficient approaches to these two problems. Without such a theoretical
basis, it may be difficult to develop sound methods for addressing the problems pragmatically.

3.2.1. Missing data

In this section, we consider cases in database D that may contain missing values for some
variables. Let Ch denote the set of variable assignments for those variables in the hth case
that have known values and let Q denote the set of variables in the case that have missing
values. The probability of the hth case can be computed as

where EChmeans that all the variables in Ch' are running through all their possible values.
By substituting equation (13) into equation (4), we obtain

To facilitate the next step of the derivation, we now introduce additional notation to describe
the value assignments of variables. Let xi be an arbitrary variable in Ch' or Ch. We shall
write a value assignment of xi as xi = dih, where dih is the value of xi in case h. For a

324 G.F. COOPER AND E. HERSKOVITS

variable xi in Ch, dih is not known, because xi is a variable with a missing value. The sum

in equation (13) means that for each variable xi in C'h we have dih assume each value that

is possible for xi. The overall effect is the same as stated previously for equation (13).

As an example, consider a database containing three binary variables that each have pres-

ent or absent as a possible value. Suppose in case 7 that variable x1 has the value present

and the values of variables x2 and x3 are not known. In this example, C7 = {x1 = present},

and Cj = {x2 = d27, x3 = d37}. For case 7, equation (13) states that the sum is taken over

the following four joint substitutions of values for d27 and d37,: {d27 <- absent, d37 «-

absent}, [d27 - absent, d37 - present}, {d27 - present, d37 - absent}, and {d27 «-
present, d37 - present}. For each such joint substitution, we evaluate the probability

within the sum of equation (13).

The reason we introduced the dih notation is that it allows us to assign case-specific
values to variables with missing values. We need this ability in order to move the summa-

tion in equation (14) to the outside of the integral. In particular, we now can rearrange

equation (14) as follows:

Equation 15 is a sum of the type of integrals represented by equation (4), which we solved

using equation (5). Thus, equation (15) can be solved by multiple applications of equation (5).

The complexity of computing equation (15) is exponential in the number of missing val-

ues in the database. As stated previously, this level of complexity is not computationally
tractable for most real-world applications. Equation 15 does, however, provide us with a

theoretical starting point for seeking efficient approximation and special-case algorithms,

and we are pursuing the development of such algorithms. Meanwhile, we are using a more

efficient approach for handling missing data. In particular, if a variable in a case has a

missing value, then we give it the value U (for unknown). Thus, for example, a binary

variable could be instantiated to one of three values: absent, present, or U. Other approaches
are possible, including those that compute estimates of the missing values and use these
estimates to fill in the values.

Example: Suppose that our database D is limited to the first two cases in table 1, and that

the value of x2 in the first case is missing. Let us calculate P(BS1 , D). Applying equation
(14), we have

which, by equation (15), is equal to

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 325

Each of these last two integrals can be solved by the application of equation (5).

3.2.2. Hidden variables

A hidden (latent) variable represents a postulated entity about which we have no data. For

example, we may wish to postulate the existence of a hidden variable if we are looking
for a hidden causal factor that influences the production of the data that we do observe.

We can handle a hidden variable (or variables) by applying equation (15), where the hidden

variable is assigned a missing value for each case in the database. In a belief-network struc-

ture, the hidden variable is represented as a single node, just as is any other variable.

Example: Assume the availability of the database shown in table 3, which we shall denote

as D.
Suppose that we wish to know P(BS2, D), where BS2 is the network structure shown

in figure 2. Note that, relative to D, A:, is a hidden variable, because D contains no data

about x1. Let us assume for this example that x1 is a binary variable. Applying equation

(15), we obtain the following result:

Each of these four integrals can be solved by application of equation (5). D

326 G.F. COOPER AND E. HERSKOVITS

Table 3. The database for the hidden
variable example.

Case

1
2

x2

absent
present

x3

absent
present

One difficulty in considering the possibility of hidden variables is that there is an unlimited

number of them and thus an unlimited number of belief-network structures that can contain
them. There are many possible approaches to this problem; we shall outline here the ap-
proaches that we believe are particularly promising. One way to avoid the problem is simply

to limit the number of hidden variables in the belief networks that we postulate. Another
approach is to specify explicitly nonzero priors for only a limited number of belief-network

structures that contain hidden variables. In addition, we may be able to use statistical indi-
cators that suggest probable hidden variables, as discussed in (Pearl & Verma, 1991; Spirtes
& Glymour, 1990; Spirtes et al., 1990b; Verma & Pearl, 1990); we then could limit ourselves
to postulating hidden variables only where these indicators suggest that hidden variables
may exist.

A related problem is to determine the number of values to define for a hidden variable.
One approach is to try different numbers of values. That is, we make the number of values
of each hidden variable be a parameter in the search space of belief-network structures.
We note that some types of unsupervised learning have close parallels to discovering the
number of values to assign to hidden variables. For example, researchers have successfully

applied unsupervised Bayesian learning methods to determine the most probable number
of values of a single, hidden classification variable (Cheeseman, Self, Kelly, Taylor, Freeman,

& Stutz, 1988). We believe that similar methods may prove useful in addressing the prob-
lem of learning the number of values of hidden variables in belief networks.

4. Expectations of probabilities

The previous sections concentrated on belief-network structures. In this section, we focus
on deriving numerical probabilities when given a database and a belief-network structure
(or structures). In particular, we shall focus on determining the expectation of probabilities.

4.1. Expectations of network conditional probabilities

Let oijk denote the conditional probability P(x i = v i k|ir = w i j)—that is, the probability
that xi has value vik, for some k from 1 to ri, given that the parents of x,, represented by

Ti, are instantiated as Wij. Call 0ijk a network conditional probability. Let £ denote the four

assumptions in section 2.1. Consider the value of E[0ijk|D, BS, £], which is the expected

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 327

value of 0ijk given database D, the belief-network structure BS , and the assumptions £. In
theorem 2 in the appendix, we derive the following result:

In corollary 2 in the appendix, we derive a more general version of E[0 i jk|D, BS, £] by
relaxing assumption 4 in section 2.1 to allow the user to express prior probabilities on
the values of network conditional probabilities. E[0 i jk|D, BS, £] is sometimes called the
Bayes' estimator of 0ijk. The value of E[0ijk |D, BS, |] in equation (16) is equal to the ex-
pectation of 0ijk as calculated using a uniform probability distribution and using the data

in D (deGroot, 1970). We note that Spiegelhalter and Lauritzen (1990) also have used such
expectations in their work on updating belief-network conditional probabilities.

By applying an analogous analysis for variance, we can show that (Wilks, 1962)

Example: Consider the probability P(x2 = present | x1 = present) for belief-network struc-
ture BS1. Let 0212 represent P(x2 = present|x1 = present). We now wish to determine
E[0212] D, BS, £] and Var[0212] D, BS, £], where D is the database in table 1. Since x2 is
a binary variable, r2 = 2. There are five cases in D in which x1 = present and therefore,

N21
 = 5. Of these five, there are four cases in which x1 = present and x2 = present, and,

thus, N212 = 4. Substituting these values into equations (16) and (17), we obtain E[0212|D,

BS, I] = 0.71 and Var[0212|D, BS, £] = 0.03. D

4.2. Expectations of general conditional probabilities given a network structure

A common application of a belief network is to determine E [P (W 1 | W 2)] , where W1 and
W2 are sets of instantiated variables. For example, W1 might be a disease state and W2 a
set of symptoms. Consider a decision that depends on just the likelihood of W1, given that
W2 is known. Researchers have shown that E[P(W1 | W2)] provides sufficient information
to determine the optimal decision to make within a decision-theoretic framework, as long

as the decision must be made without the benefit of additional information (Howard, 1988).
Thus, in many situations, knowledge of E[P(W 1 | W2)] is sufficient for decision making.

Since, in this paper we are constructing belief networks based on a database D, we wish
to know E[P(W 1 | W 2) |D, BS, £]. In (Cooper & Herskovits, 1991), we derive the follow-
ing equation:

where P(W1 | W2) is computed with a belief network that uses the probabilities given by

equation (16).

328 G.F. COOPER AND E. HERSKOVITS

4.3. Expectations of general conditional probabilities over all network structures

On the right side of equation (18), D, BS and £ are implicit conditioning information. To

be more explicit, we can rewrite that equation as

where P(Wl | W2, D, BS, £) may be calculated as P(W 1 | W2) using a belief network with

a structure BS and with conditional probabilities that are derived using equation (16). For
optimal decision making, however, we actually wish to know E[P(Wl | W 2) |D, £], rather
than E[P(W 1 | W2)| D, BS, £] for some particular BS about which we are uncertain. We can
derive E[P(W1|W2)|D, £] as

which, by equation (19), becomes

The probability P(BS| W2, D, £) is interesting because it contains W2 as conditioning infor-
mation. We can view W2 as additional data that augment D. If D is large, we may choose
to approximate P(BS W2, D, £) as P(BS |D, £). Alternatively, we may choose to assume
that W2 provides no additional information about BS, and therefore that P(BS |W2, D, £)
= P(BS |D, £). Otherwise, we must treat W2 as an additional case in the database. Typ-
ically, W2 will represent an incomplete case in which some model variables have unknown
values. In this situation, the techniques we discuss in section 3.2.1 for handling missing
data can be used to compute P(BS| W2, D, £).

Although it is not computationally feasible to calculate equation (20) for models with more
than a few variables, this equation provides a theoretical framework for seeking rapid and
accurate special-case, approximate and heuristic solutions. For example, techniques—such
as those discussed in the final paragraph of section 3.1—might be used in searching for
belief-network structures that yield relatively high values for P(BS | W2, D, £). If we normal-
ize over this set of structures, we can apply equation (20) to estimate heuristically the value
of E[P(W 1 | W 2) |D, £]. Another possible approach toward estimating E [P (W 1 | W 2) |D , £]
is to apply sampling techniques that use stochastic simulation.

Example: Suppose we wish to know P(x2 = present|x1 = present) given database D,
which is shown in table 4.

Let us compute P(x2 = present \ x1 = present) by using equation (20) and the assump-
tion that P(BS |x1 = present, D, £) = P(BS |D, £). For simplicity, we abbreviate P(x2 =
present|x1 = present) as P(x 2 |x 1) , leaving the values of x1 and x2 implicit. We shall
enclose network structures in braces for clarity; so, for example, {x1 - x2} means that

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 329

Table 4. The database used in the example

of the application of equation (20).

Case

1
2
3
4
5

x1

present

present

present

absent

absent

x2

present

present

present

present

absent

x1 is the parent of x2. Given a model with two variables, there are only three possible

belief-network structures—namely, {x1 - x2}, {x2 - x1}, and {x1 x2}. Thus, by equa-
tion (20)

where (1) the probabilities 0.80, 0.83, and 0.71 were computed with the three respective
belief networks that each contain network conditional probabilities derived using equation

(16), and (2) the probabilities 0.33,0.40, and 0.27 were computed using the methods discussed
in section 2.3.

5. Preliminary results

In this section, we describe an experiment in which we generated a database from a belief

network by simulation, and then attempted to reconstruct the belief network from the data-

base. In particular, we applied the K2 algorithm discussed in section 3.1.2 to a database
of 10,000 cases generated from the ALARM belief network, which has the structure shown

in figure 4. Beinlich constructed the ALARM network as an initial research prototype to
model potential anesthesia problems in the operating room (Beinlich et al., 1989). To keep

figure 4 uncluttered, we have replaced the node names in ALARM with the numbers shown

in the figure. For example, node 20 represents that the patient is receiving insufficient anes-

thesia or analgesia, node 27 represents an increased release of adrenaline by the patient,

node 29 represents an increased patient heart rate, and node 8 represents that the EKG

is measuring an increased patient heart rate. When ALARM is given input findings—

such as heart rate measurements—it outputs a probability distribution over a set of possible

problems—such as insufficient anesthesia. ALARM represents 8 diagnostic problems, 16

findings, and 13 intermediate variables that connect diagnostic problems to findings. ALARM

contains a total of 46 arcs and 37 nodes, and each node has from two to four possible values.
Knowledge for constructing ALARM came from Beinlich's reading of the literature and

330 G,F. COOPER AND E. HERSKOVITS

Figure 4. The ALARM belief-network structure, containing 37 nodes and 46 arcs.

from his own experience as an anesthesiologist. It took Beinlich approximately 10 hours
to construct the ALARM belief-network structure, and about 20 hours to fill in all the
corresponding probability tables.

We generated cases from ALARM by using a Monte Carlo technique developed by
Henrion for belief networks (Henrion, 1988). Each case corresponds to a value assignment
for each of the 37 variables. The Monte Carlo technique is an unbiased generator of cases,
in the sense that the probability that a particular case is generated is equal to the probability
of the case existing according to the belief network. We generated 10,000 such cases to
create a database that we used as input to the K2 algorithm. We also supplied K2 with
an ordering on the 37 nodes that is consistent with the partial order of the nodes as specified
by ALARM. Thus, for example, node 21 necessarily appears in the ordering before node
10, but it is not necessary for node 21 to appear immediately before node 10 in the order-
ing. Observing this ordering constraint, we manually generated a node order using the
ALARM structure.6 In particular, we added a node to the node-order list only when all
of that node's parents were already in the list. During the process of constructing this node
order, we did not consider the meanings of the nodes.

From the 10,000 cases, the K2 algorithm constructed a network identical to the ALARM
network, except that the arc from node 12 to node 32 was missing and an arc from node

15 to node 34 was added. A subsequent analysis revealed that the arc from node 12 to
node 32 is not strongly supported by the 10,000 cases. The extra arc from node 15 to node
34 was added due to the greedy nature of the K2 search algorithm. The total search time
for the reconstruction was approximately 16 minutes and 38 seconds on a Macintosh II
running LightSpeed Pascal, Version 2.0. We analyzed the performance of K2 when given
the first 100, 200, 500, 1000, 2000 and 3000 cases from the same 10,000-case database.
The results of applying K2 to these databases are summarized in table 5. Using only 3000
cases, K2 produced the same belief network that it created using the full 10,000 cases.

Although preliminary, these results are encouraging because they demonstrate that K2
can reconstruct a moderately complex belief network rapidly from a set of cases using
readily available computer hardware. (For the results of K2 applied to databases from other
domains, see (Herskovits, 1991).) We plan to investigate the extent to which the performance

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 331

Table 5. The results of applying K2 with subsets of the 10,000 ALARM cases.

100
200
500

1,000

2,000
3,000

10,000

5
4
2
1
1
1
1

33
19
7
5
3
1
1

19
29
55

108
204
297
998

of K2 is sensitive to the ordering of the nodes in ALARM and in other domains. In addi-
tion, we plan to explore methods that do not require an ordering.

6. Related work

In sections 2 through 5, we described a Bayesian approach to learning the qualitative and
quantitative dependency relationships among a set of discrete variables. For notational sim-
plicity, we shall call the approach BLN (Bayesian learning of belief networks). Many diverse
methods for automated learning from data have been developed in fields such as statistics
(Glymour, Schemes, Spirtes, & Kelley, 1987; James, 1985; Johnson & Wichern, 1982) and
AI (Blum, 1982; Carbonell, 1990; Hinton, 1990; Michalski, Carbonell, & Mitchell, 1983;
Michalski, Carbonell, & Mitchell, 1986). Since it is impractical to survey all these methods,
we shall restrict our review to representative methods that we believe are closest to BLN.
We group methods into several classes to organize our discussion, but acknowledge that
this classification is not absolute and that some methods may cross boundaries.

6.1. Methods based on probabilistic-graph models

In this section, we discuss three classes of techniques for constructing probabilistic-graph
models from databases.

6.1.1. Belief-network methods

Chow and Liu (1968) developed a method that constructs a tree-structured Markov graph,
which we shall call simply a tree, from a database of discrete variables. If the data are
being generated by an underlying distribution P that can be represented as a tree, then
the Chow-Liu algorithm constructs a tree with a probability distribution that converges
to P as the size of the database increases. If the data are not generated by a tree, then the
algorithm constructs the tree that most closely approximates the underlying distribution
P (in the sense of cross-entropy).

A poly tree (singly connected network) is a belief network that contains at most one un-

directed path (i.e., a path that ignores the direction of arcs) between any two nodes in the
network. Rebane and Pearl (1987) used the Chow-Liu algorithm as the basis for an algorithm

332 G.F. COOPER AND E. HERSKOVITS

that recovers polytrees from a probability distribution. In cases where the orientation of
an arc cannot be determined from the distribution, an undirected edge is used. In deter-
mining the orientation of arcs, the Rebane-Pearl algorithm assumes the availability of a

conditional-independence (CI) test—a test that determines categorically whether the follow-
ing conditional independence relation is true or false: Variables in a set X are independent
of variables in a set Y, given that the variables in a set Z are instantiated. In degenerate
cases, the algorithm may not return the structure of the underlying belief network. In addi-
tion, for a probability distribution P that cannot be represented by a polytree, the algorithm
is not guaranteed to construct the polytree that most closely approximates P (in the sense
of cross-entropy). An algorithm by Geiger, Paz, and Pearl (1990) generalizes the Rebane-
Pearl algorithm to recover polytrees by using less restrictive assumptions about the distri-
bution P.

Several algorithms have been developed that use a CI test to recover a multiply connected

belief network, which is a belief network containing at least one pair of nodes that have
at least two undirected paths between them. All such algorithms we describe here run in
time that is exponential in the number of nodes in the worst case. Wermuth and Lauritzen
(1983) describe a method that takes as input an ordering on all model nodes and then applies
a CI test to a distribution to construct a belief network that is a minimal I-map.7 Srinivas,
Russell, and Agogino (1990) allow the user to specify a weaker set of constraints on the
ordering of nodes, and then use a heuristic algorithm to search for a belief network I-map
(possibly nonminimal).

Spirtes, Glymour, and Scheines (1990b) developed an algorithm that does not require
a node ordering in order to recover multiply connected belief networks. Verma and Pearl
(1990) subsequently presented a related algorithm, which we now shall describe. The algo-
rithm first constructs an undirected adjacency graph among the nodes. Then, it orients
edges in the graph, when this step is possible given the probability distribution. The method
assumes that there is some belief-network structure that can represent all the dependencies
and independencies among the variables in the underlying probability distribution that gen-
erated the data. There are, however, probability distributions for which this assumption
is not valid. Verma and Pearl also introduce a method for detecting the presence of hidden
variables, given a distribution over a set of measured variables. They further suggest an
information-theoretic measure as the basis for a CI test. The CI test, however, requires
determining a number of independence relations that is on the order of n — 2. Such tests

may be unreliable, unless the volume of data is enormous.
Spirtes, Glymour, and Scheines (1991) have developed an algorithm, called PC, that, for

graphs with a sparse number of edges, permits reliable testing of independence using a
relatively small number of data. PC does not require a node ordering. For dense graphs
with limited data, however, the test may be unreliable. For discrete data, the PC algorithm
uses a CI test that is based on the chi-square distribution with a fixed alpha level. Spirtes
and colleagues applied PC with the 10,000 ALARM cases discussed in section 5. PC recon-
structed ALARM, except that three arcs were missing and two extra arcs were added; the
algorithm required about 6 minutes of computer time on a DecStation 3100 to perform
this task (Spirtes, Glymour, & Scheines, 1990a).

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 333

6.1.2. Markov graph methods

Fung and Crawford (1990) have developed an algorithm called Constructor that constructs

an undirected graph by performing a search to find the Markov boundary of each node.
The algorithm uses a chi-squared statistic as a CI test. In general, the smaller the Markov
boundary of the nodes, the more reliable the CI test statistic. For nodes with large Markov
boundaries, the test can be unreliable, unless there is a large number of data. A probability
distribution for the resulting undirected graph is estimated from the database. The method
of Lauritzen and Spiegelhalter (1988) then is applied to perform probabilistic inference
using the undirected graph. An interesting characteristic of Constructor is that it pretunes
the CI test statistic. In particular, instead of assuming a fixed alpha level for the test statistic,
the algorithm searches for a level that maximizes classification accuracy on a test subset
of cases in the database. Constructor has been applied successfully to build a belief network
that performs information retrieval (Fung, Crawford, Appelbaum, & Tong, 1990).

6.1.3. Entropy-based methods

In the field of system science, the reconstruction problem focuses on constructing from
a database an undirected adjacency graph that captures node dependencies (Pittarelli, 1990).
Intuitively, the idea is to find the smallest graph that permits the accurate representation
of a given probability distribution. The adequacy of a graph often is determined using entropy
as a measure of information content. Since the number of possible graphs typically is enor-
mous, heuristics are necessary to render search tractable. For example, one reconstruction
algorithm searches for an adjacency graph by starting with a fully connected graph. The
search is terminated when there is no edge that can be removed from the current graph
G1 to form a graph G2, such that the information loss in going from G1 and G2 is below
a set threshold. In this case, G1 is output as the dependency graph.

The Kutato algorithm, which is described in (Herskovits, 1991; Herskovits & Cooper,
1990), shares some similarities with the system-science reconstruction algorithms. In par-
ticular, Kutato uses an entropy measure and greedy search to construct a model. One key
difference, however, is that Kutato constructs a belief network rather than an undirected
graph. The algorithm starts with no arcs and adds arcs until a halting condition is reached.
Using the 10,000 cases generated from the ALARM belief network discussed in section 5,
Kutato reconstructed ALARM, except that two arcs were missing and two extra arcs were
added. The reconstruction required approximately 22.5 hours of computer time on a Mac-
intosh II computer. For a detailed analysis of the relationship between entropy-based algo-
rithms such as Kutato, and Bayesian algorithms such as K2, see (Herskovits, 1991).

An algorithm developed by Cheeseman (1983) and extended by Gevarter (1986) implicitly
searches for a model of undirected edges in the form of variable constraints. The algorithm
adds constraints incrementally to a growing model. If the maximum-entropy distribution
of models containing constraints of order n + 1 is not significantly different from that
of models containing constraints of order n, then the search is halted. Otherwise, con-
straints of order n + 1 are added until no significant difference exists; then, constraints
of order n + 2 are considered, and so on.

334 G.F. COOPER AND E. HERSKOVITS

6.2. Classification trees

Another class of algorithms constructs classification trees8 from databases (Breiman, Fried-

man, Olshen, & Stone, 1984; Buntine, 1990b; Hunt, Marin, & Stone, 1966; Quinlan, 1986).
In its most basic form, a classification tree is a rooted binary tree, where each pair of
branches out of a node corresponds to two disjoint values (or value ranges) of a domain
variable (attribute). A leaf node corresponds to a classification category or to a probability
distribution over the possible categories. We can apply a classification tree by using known

attribute values to traverse a path down the tree to a leaf node. In constructing a classifica-
tion tree, the typical goal is to build the single tree that maximizes expected classification
accuracy on new cases. Several criteria, including information-theoretic measures, have
been explored for determining how to construct a tree. Typically, a one-step lookahead
is used in constructing branch points. In an attempt to avoid overfitting, trees often are
pruned by collapsing subtrees into leaves. CART is a well-known method for constructing
a classification tree from data (Breiman et al., 1984). CART has been studied in a variety
of domains such as signal analysis, medical diagnosis, and mass spectra classification; it
has performed well relative to several pattern-recognition methods, including nearest-
neighbor algorithms (Breiman et al., 1984).

Buntine (1990b) independently has developed methods for learning and using classifica-
tion trees that are similar to the methods we discuss for belief networks in this paper. In
particular, he has developed Bayesian methods for (1) calculating the probability of a
classification-tree structure given a database of cases, and (2) computing the expected value
of the probability of a classification instance by using many tree structures (called the option-

trees method). Buntine empirically evaluated the classification accuracy of several algorithms
on 12 databases from varied domains, including the LED database of Breiman et al. (1984)
and the iris database of Fisher. He concluded that "option trees was the only approach
that was usually significantly superior to others in accuracy on most data sets" (Buntine,
1990b, page 110).

Kwok and Carter (1990) evaluated a simple version of the option-trees method on two
databases. In particular, they averaged the classification results of multiple classification
trees on a set of problems. The averaging method usually yielded more accurate classifica-
tion than did any single tree, including the tree generated by Quinlan's ID3 algorithm
(Quinlan, 1986). Averaging over as few as three trees yielded significantly improved classi-
fication accuracy. In addition, averaging over trees with different structures produced clas-
sification more accurate than that produced by averaging over trees with similar structures.

In the remainder of section 6.2, we present a brief comparison of classification trees
and belief networks. For a more detailed discussion, see (Crawford and Fung, 1991). Clas-
sification trees can readily handle both discrete and continuous variables. A classification
tree is restricted, however, to representing the distribution on one variable of interest—the
classification variable. With this constraint, however, classification trees often can repre-
sent compactly the attributes that influence the distribution of the classification variable.
It is simple and efficient to apply a classification tree to perform classification. For belief
networks, there exist approximation and special-case methods for handling continuous var-
iables (Shachter, 1990). Currently, however, the most common way of handling these vari-
ables is to discretize them. Belief networks can capture the probabilistic relationships among

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 335

multiple variables, without the need to designate a classification variable. These networks
provide a natural representation for capturing causal relationships among a set of variables
(see (Crawford & Fung, 1991) for a case study). In addition, inference algorithms exist
for computing the probability of any subset of variables conditioned on the values of any
other subset. In the worst case, however, these inference algorithms have a computational
time complexity that is exponential in the size of the belief network. Nonetheless, for net-
works that are not densely connected, there exist efficient exact inference algorithms
(Henrion, 1990). In representing the relationship between a node and its parents, there
are certain types of value-specific conditional independencies that cannot be captured easily
in a belief network. In some instances, classification trees can represent these independen-
cies efficiently and naturally. Researchers recently have begun to explore extensions to be-
lief networks that capture this type of independence (Fung & Shachter, 1991; Geiger and
Heckerman, 1991).

6.3. Methods that handle hidden variables

In the general case, discovering belief networks with hidden variables remains an unsolved
problem. Nonetheless, researchers have made progress in developing methods for detecting
the presence of hidden variables in some situations (Spirtes & Glymour, 1990; Spirtes et al.,
1990b; Verma & Pearl, 1990). Pearl developed a method for constructing from data a tree-
structured belief network with hidden variables (Pearl, 1986). Other researchers have devel-
oped algorithms that are less sensitive to noise than is Pearl's method, but that still are
restricted to tree-structured networks (Golmard & Mallet, 1989; Liu, Wilkins, Yin, & Bian,
1990). The Tetrad program is a semiautomated method for discovering causal relationships
among continuous variables (Glymour et al., 1987; Glymour & Spirtes, 1988). Tetrad con-
siders only normal linear models. By making the assumption that linearity holds, the pro-
gram is able to use an elegant method based on tetrads and partial correlations to introduce
likely latent (hidden) variables into causal models; these methods have been evaluated and
compared to statistical techniques such as LISREL and EQS (Spirtes, Scheines, & Glymour,
1990c). Researchers have made little progress, however, in developing general nonparametric
methods for discovering hidden variables in multiply connected belief networks.

7. Summary and open problems

The BLN approach presented in this paper can represent arbitrary belief-network struc-
tures and arbitrary probability distributions on discrete variables. Thus, in terms of its rep-
resentation, BLN is nearest to the most general probabilistic network approaches discussed
in section 6.1.

The BLN learning methodology, however, is closest to the Bayesian classification-tree
method discussed in section 6.2. Like that method, BLN calculates the probability of a
structure of variable relationships given a database. The probability of multiple structures
can be computed and displayed to the user. Like the option-trees method, BLN also can
use multiple structures in performing inference, as discussed in section 4.3. The BLN

336 G.F. COOPER AND E. HERSKOVITS

approach, however, uses a directed acyclic graph on nodes that represent variables rather
than a tree on nodes that represent variable values or value ranges. When the number of
domain variables is large, the combinatorics of enumerating all possible belief network

structures becomes prohibitive. Developing methods for efficiently locating highly probable
structures remains an open area of research.

Except for Bayesian classification trees, the methods discussed in section 6 are non-
Bayesian. These methods emphasize finding the single most likely structure, which they
then may use for inference. They do not, however, quantify the likelihood of that structure.
If a single structure is used for inference, implicitly the probability of that structure is
assumed to be 1. Section 6.2 discussed results suggesting that using multiple structures
may improve the accuracy of classification inference. Also, the non-Bayesian methods rely
on having threshold values for determining when conditional independence holds. BLN
does not require the use of such thresholds.

BLN is data-driven by the cases in the database and model-driven by prior probabilities.
BLN is able to represent the prior probabilities of belief-network structures. In section 2.1
we suggested the possibility that these probabilities may provide one way to bridge BLN
to other AI methods. Prior-probability distributions also can be placed on the conditional
probabilities of a particular belief network, as we show in corollaries 1 and 2 in the appen-
dix. If the prior-probability distributions on structures and on conditional probabilities are
not available to the computer, then uniform priors may be assumed. Additional methods
are needed, however, that facilitate the representation and specification of prior probabilities,
particularly priors on belief-network structures.

As we discussed in section 6.3, there has been some progress in developing methods
for detecting hidden variables, and in the case of some parametric distributions, for search-
ing for a likely model containing hidden variables. BLN can compute the probability of
an arbitrary belief-network structure that contains hidden variables and missing data without
assuming a parametric distribution. More specifically, no additional assumptions or heuris-
tics are needed for handling hidden variables and missing data in BLN, beyond the assump-
tions made in section 2.1 for handling known variables and complete data. Additional
research is needed, however, for developing ways to search efficiently the vast space of
possible hidden-variable networks to locate the most likely networks.

Although BLN shows promise as a method for learning and inference, there remain
numerous open problems, several of which we summarize here. For databases that are gen-

erated from a belief network, it is important to prove that, as the number of cases in the
database increases, BLN converges to the underlying generating network or to a network
that is statistically indistinguishable from the generating network. This result has been proved
in the special case that we assume a node order (Herskovits, 1991). Proofs of convergence
in the presence of hidden variables also are needed. Related problems are to determine
the expected number of cases required to recover a generating network and to determine
the variance of P(B S |D) . The theoretical and empirical sensitivities of BLN to different
types of noisy data need to be investigated as well. Another area of research is Bayesian
learning of undirected networks, or, more generally, of mixed directed and undirected net-
works. Also, recall that the K2 method presented in section 3.1.2 requires an ordering on
the nodes. We would like to avoid such a requirement. One approach is to search for likely
undirected graphs and to use these as starting points in searching for directed graphs.

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 337

Extending BLN to handle continuous variables is another open problem. One approach
to this problem is to use Bayesian methods to discretize continuous variables. Finally, regard-
ing evaluation, the results in section 5 are promising, but are limited in scope. Significantly

more empirical work is needed to investigate the practicality of the BLN method when
applied to databases from different domains.

Acknowledgments

We thank Lyn Dupre, Clark Glymour, the anonymous reviewers, and the Editor for helpful
comments on earlier drafts. We also thank Ingo Beinlich for allowing us to use the ALARM
belief network. The research reported in this paper was performed in part while the authors
were in the Section on Medical Informatics at Stanford University. Support was provided
by the National Science Foundation under grants IRI-8703710 and IRI-9111590, by the U.S.

Army Research Office under grant P-25514-EL, and by the National Library of Medicine
under grant LM-04136. Computing resources were provided in part by the SUMEX-AIM
resource under grant LM-05208 from the National Library of Medicine.

Notes

1. Since there is a one-to-one correspondence between a node in BS and a variable in BP, we shall use the terms
node and variable interchangeably.

2. An instantiated variable is a variable with an assigned value.
3. If hashing is used to store information equivalent to that in an index tree, then it may be possible to obtain

a bound tighter than O(m n2 r + tBS) for the average performance. In the worst case, however, due to the

collisions of hash keys, an approach that uses hashing may be less efficient than the method described in this
section.

4. Binary trees can be used to represent the values of nodes in the index trees we have described. We note, but

shall not prove here, that the overall complexity is reduced to O(m n2 |g r + tB) if we use such binary trees
in computing the values of Nijk and Nij.

5. The algorithm is named K2 because it evolved from a system named Kutato (Herskovits & Cooper, 1990)
that applies the same greedy-search heuristics. As we discuss in section 6.1.3, Kutato uses entropy to score
network structures.

6. The particular ordering that we used is as follows: 12 16 17 18 19 20 21 22 23 24 25 26 28 30 31 37 1 2
3 4 10 36 13 35 15 34 32 33 11 14 27 29 6 7 8 9 5.

7. A belief network B is an I-map of a probability distribution P if every CI relation specified by the structure

of B corresponds to a CI relation in P. Further, B is a minimal I-map of P if it is an I-map of P and the removal
of any arc from B yields a belief network that is not an I-map of P.

8. Classification trees also are known as decision trees, which are different from the decision trees used in deci-

sion analysis. To avoid any ambiguity, we shall use the term classification tree.

Appendix

This appendix includes two theorems and two corollaries that are referenced in the paper.
The proofs of the theorems are derived in detail. Although this level of detail lengthens
the proofs, it avoids our relying on previous results that may not be familiar to some readers.

Thus, the proofs are largely self-contained.

338 G.F. COOPER AND E. HERSKOVITS

Theorem 1. Let Z be a set of n discrete variables, where a variable xi in Z has ri possible
value assignments: (v i 1 , ..., v i r) . Let D be a database of m cases, where each case con-
tains a value assignment for each variable in Z. Let BS denote a belief-network structure
containing just the variables in Z. Each variable xt in Bs has a set of parents, which we
represent with a list of variables IT,. Let w^ denote they'th unique instantiation of ?r, relative
to D. Suppose there are qi such unique instantiations of TT,. Define Nijk to be the number
of cases in D in which variable xi has the value vik and TT, is instantiated as wij. Let

Suppose the following assumptions hold:

1. The variables in Z are discrete
2. Cases occur independently, given a belief-network model
3. There are no cases that have variables with missing values
4. Before observing D, we are indifferent regarding which numerical probabilities to assign

to the belief network with structure BS.

From these four assumptions, it follows that

Proof. By applying assumptions 1 through 4, we derive a multiple integral over a product
of multinomial variables, which we then solve.

The application of assumption 1 yields

where BP is a vector whose values denote the conditional-probability assignments associ-
ated with belief-network structure BS, and/is the conditional-probability-density function
over BP given BS. The integral is over all possible value assignments to BP.

Since P(BS) is a constant within equation (Al), we can move it outside the integral:

It follows from the conditional independence of cases expressed in assumption 2 that equa-
tion (A2) can be rewritten as

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 339

where m is the number of cases in D, and Ch is the hth case in D.
We now introduce additional notation to facilitate the application of assumption 3. Let

dih denote the value assignment of variable i in case h. For example, for the database in
table 1, d21 = 0, since x2 = 0 in case 1. In Bs, for every variable xi, there is a set of parents
Ti, (possibly the empty set). For each case in D, the variables in the list TT, are each assigned
a particular value. Let wi denote a list of the unique instantiations for the parents of xi

as seen in D. An element in wi designates a list of values that are assigned to the respec-
tive variables in the list ir,-. If xi has no parents, then we define wi to be the list (0), where
0 represents the empty set of parents. Although the ordering of the elements in wi is arbi-
trary, we shall use a list (vector), rather than a set, so that we can refer to members of
wi using an index. For example, consider variable x2 in BS1, which has the parent list

V2= (x 1) - In tms example, vv2 = ((1), (0)), because there are cases in D where x1 has
the value 1 and cases where it has the value 0. Define wij to be thejth element of w,. Thus,
for example, w21 is equal to (1). Let a(i, h) be an index function, such that the instantia-
tion of Vj in case h is the a(l, h)ih element of w,. Thus, for example, a(2, 3) = 2, because
in case 3 the parent of variable x2—namely, x1—is instantiated to the value 0, which is
represented by the second element of w2. Therefore, w2,0(2,3) >s equal to (0). Since, accord-
ing to assumption 3, cases are complete, we can use equation (1) in section I to represent
the probability of each case; thus, we can expand equation (A3) to become

The innermost product of equation (A4) computes the probability of a case in terms of
the conditional probabilities of the variables in the case, as defined by belief network

(BS, BP).
By grouping terms, we can rewrite equation (A4) as

Let 0ijk denote the conditional probability P(xi = vij| Ti, = wij, BP). We shall call an assign-
ment of numerical probabilities to 0ijk for k = 1 to ri, a probability distribution, which
we represent as the list (0yl, . . . , 0 i jk). Note that, since the values of vik, for k = 1 to
ri, are mutually exclusive and exhaustive, it follows that Eistsr. 0ijk = 1. In addition, for
a given xi and wij let/(0yi, . . . , 0y>.) denote the probability density function over (0ijk,
. . . , 0 i j r). We call/(0ij1, .. ., 0jri) a second-order probability distribution because it is
a probability distribution over a probability distribution.

Two assumptions follow from assumption 4:

340 G.F. COOPER AND E. HERSKOVITS

4a. The distribution/^ [, . .., ^) is independent of the distribution f(0ij1, . .., 0 i j r) ,
for 1 < /, i' < n, 1 < j < </,, 1 < 7' < <?,<, and y ^ i ' j ' ;

4b. Distribution/(0ij1, . . ., 0ijrj) is uniform, for 1 < i < n, 1 < j < qi,.

Assumption 4a can be expressed equivalently as

Equation (A6) states that our belief about the values of a second-order probability distribu-
tion f(0ij1, . .., 0ijri) is not influenced by our belief about the values of other second-order

probability distributions. That is, the distributions are taken to be independent.
Assumption 4b states that, initially, before we observe database D, we are indifferent

regarding giving one assignment of values to the conditional probabilities 0ijr ..., 0ijr,
versus some other assignment.

By substituting 0ijk for P(xi = vik x, = w,-,-, BP) in equation (A5), and substituting equa-
tion (A6) into equation (A5), we obtain

where the integral is taken over all 0ijk for i = 1 to n, j = 1 to qi, and k = 1 to r,, such
that 0 < 0ijk < 1, and for every i and j the following condition holds: Ek 0ijk = 1. These
constraints on the variables of integration apply to all the integrals that follow, but for brevity

we will not repeat them.

By using the independence of the terms in equation (A7), we can convert the integral
of products in that equation to a product of integrals:

By Assumption 4b, it follows that/(0ij1, . . . , O i j 1) = Q, for some constant Cij. Since
f(0ij1, . . ., 0ijri.) is a probability-density function, it necessarily follows that, for a given
' and j,

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 341

We show later in this proof that solving equation (A9) for Cij yields Cij = (ri - 1)!,
and, therefore, that f(oij1, . . . , 0ijri.) = (ri - 1)!. Substituting this result into equation
(A8), we obtain

Since (ri - 1)! is a constant within the integral in equation (A10), we can move it outside
the integral to obtain

The multiple integral in equation (All) is Dirichlet's integral, and has the following solution
(Wilks, 1962):

Note that, by applying equation (A12) with Nijk = 0, and therefore Nij= 0, we can solve
equation (A9), as previously stated, to obtain Cij = (ri - 1)!.

Substituting equation (A12) into equation (All), we complete the proof:

Note that the symbol D in theorem 1 represents the cases in the particular order that
they were observed. Let D' represent the cases without regard to order. By assumption 2,
the cases are independent of one another, given some belief network (Bs, BP). Thus,
P(D'\BS, BP) = k P(D\BS, BP), where k is the number of unique ways of ordering the
cases in D, known as the multiplicity. Since k is a constant relative to D, by equation (2)
in section 1 the ordering of P(BS, D) and P(BS, D) is the same as the ordering of P(BS.,
D') and P(BS., D'). Furthermore, by Bayes' rule, it is straightforward to show that, if
P(D'\BS, BPi = k P(D\BS, BP), then P(BS.\D) = P(BS.\D'). Thus, in this paper, we
consider only the use of D.

Assumption 4 in theorem 1 implies that second-order probabilities are uniformly distrib-

uted (Assumption 4b), from which we derived that/(^1; . . . , 0,-,,..) = (r, - 1)!. This
probability density function is, however, just a special case of the Dirichlet distribution
(deGroot, 1970). We can generalize assumption 4b by representing each/(0,7l, . . . , 6^.)
with a Dirichlet distribution:

342 G.F. COOPER AND E. HERSKOVITS

where

The values we assign to Nijk determine our prior-probability distribution over the values
of O i j 1 , ..., Oijri.. All else being the same, the higher we make a particular Nijk, the higher
we expect (a priori) the probability 6ijk to be. As we discussed in section 2.1, we can view
the term P(BS) as one form of preference bias for belief-network structure Bs. Likewise,
we can view the terms Nijk in equation (A14) as establishing our preference bias for the
numerical probabilities to place on a given belief-network structure Bs. We summarize the
result of this generalization of assumption 4 with the following corollary.

Corollary 1. If assumptions 1, 2, 3, and 4a of theorem 1 hold and second-order probabilities
are represented using Dirichlet distributions as given by equation (A14), then

Proof. Equation (A15) results when we substitute equation (A14) into equation (A8) and
apply the steps in the proof of theorem 1 that follow equation (A8). D

Note that when Nijk = 0, for all possible i, j, and k, the Dirichlet distribution, given
by equation (A14), reduces to the uniform distribution, and equation (A15) reduces to equa-
tion (A13), as we would expect.

Theorem 2. Given the four assumptions of theorem 1, it follows that

Proof. This proof will be specific to determining conditional probabilities in belief net-
works; however, we note that it parallels related results regarding the expected value of
probabilities given a Dirichlet distribution (Wilks, 1962). To simplify our notation, we shall
use E[6 i j k \D] to designate E[6iik\D, Bs, £] in this proof. Also, for brevity, in this proof,
we shall leave implicit the following constraints on the variables of integration: all integrals
are taken over all diik for i = 1 to n, j = 1 to qi, and k = 1 to ri, such that 0 < 0^ < 1,
and for every i and j the condition Ek Qijk = 1 holds.

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 343

By the definition of expectation,

The function f (6 i j 1 , . .., 6ijri D) in equation (A16) is known as the posterior density

function, and it can be expressed as

where D(i, j) denotes the distribution of xi in D for those cases in which the parents of
Xi have the values designated by wij. Solving for P(D(i, j)) in equation (A17), we obtain

which, when the assumptions and methods in the proof of theorem 1 are applied, yields

where we use K as an index variable in the product, since in this theorem k is fixed. Similarly,
note that the numerator of equation (A17) can be written as

Substituting equations (A19) and (A20) into equation (A17), and substituting the resulting
version of equation (A17) into equation (A16), we obtain

344 G.F. COOPER AND E. HERSKOVITS

The multiple integral in equation (A21) can be solved by the methods in the proof of
theorem 1 to complete the current proof:

where, in the left-hand side of this equation, we have expanded our previous shorthand

for the expectation. D

Just as corollary 1 generalizes theorem 1, in the following corollary we generalize the-
orem 2 by permitting second-order probability distributions to be expressed as Dirichlet
distributions.

Corollary 2. If assumptions 1, 2, 3, and 4a of theorem 1 hold and second-order probabili-
ties are represented using Dirichlet distributions as given by equation (A14), then

Proof. Equation (A22) results when we substitute equation (A14) into equations (A17) and
(A18), and apply the steps in the proof of theorem 2 that follow equation (A17).

References

Agogino, A.M., & Rege, A. (1987). IDES: Influence diagram based expert system. Mathematical Modelling,

8, 227-233.
Andreassen, S., Woldbye, M., Falck, B., & Andersen, S.K. (1987). MUNIN—A causal probabilistic network

for interpretation of electromyographic findings. Proceedings of the International Joint Conference on Artificial
Intelligence (pp. 366-372). Milan, Italy: Morgan Kaufmann.

Beinlich, I.A., Suermondt, H.J., Chavez, R.M., & Cooper, G.F. (1989). The ALARM monitoring system: A
case study with two probabilistic inference techniques for belief networks. Proceedings of the Second European
Conference on Artificial Intelligence in Medicine (pp. 247-256). London, England.

Blum, R.L. (1982). Discovery, confirmation, and incorporation of causal relationships from a large time-oriented

clinical database: The RX project. Computers and Biomedical Research, 15, 164-187.
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. Belmont,

CA: Wadsworth.

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 345

Buntine, W.L. (1990a). Myths and legends in learning classification rules. Proceedings of AAAI (pp. 736-742).

Boston, MA: MIT Press.

Buntine, W.L. (1990b). A theory of learning classification rules. Doctoral dissertation, School of Computing

Science, University of Technology, Sydney, Australia.

Carbonell, J.G. (Ed.) (1990). Special volume on machine learning. Artificial Intelligence, 40, 1-385.

Chavez, R.M. & Cooper, G.F. (1990). KNET: Integrating hypermedia and normative Bayesian modeling. In R.D.
Shachter, T.S. Levitt, L.N. Kanal, & J.F. Lemmer (Eds.), Uncertainty in artificial intelligence 4. Amsterdam:

North-Holland.

Cheeseman, P. (1983). A method of computing generalized Bayesian probability values for expert systems. Pro-

ceedings of the International Joint Conference on Artificial Intelligence (pp. 198-202). Karlsruhe, West Germany:
Morgan Kaufmann.

Cheeseman, P., Self, M., Kelly, J., Taylor, W, Freeman, D., & Stutz, J. (1988). Bayesian classification. Proceed-
ings of AAAI (pp. 607-611). St. Paul, MN: Morgan Kaufmann.

Chow, C.K. & Liu, C.N. (1968). Approximating discrete probability distributions with dependence trees. IEEE

Transactions on Information Theory, 14, 462-467.

Cooper, G.F. (1984). NESTOR: A computer-based medical diagnostic aid that integrates causal and probabilistic

knowledge. Doctoral dissertation, Medical Information Sciences, Stanford University, Stanford, CA.
Cooper G.F. (1989). Current research directions in the development of expert systems based on belief networks.

Applied Stochastic Models and Data Analysis, 5, 39-52.

Cooper, G.F. & Herskovits, E.H. (1991). A Bayesian method for the induction of probabilistic networks from
data (Report SMI-91-1). Pittsburgh PA: University of Pittsburgh, Section of Medical Informatics. (Also available

as Report KSL-91-02, from the Section on Medical Informatics, Stanford University, Stanford, CA.)
Crawford, S.L. & Fung, R.M. (1991). An analysis of two probabilistic model induction techniques. Proceedings

of the Third International Workshop on AI and Statistics (in press).
deGroot, M.H. (1970). Optimal statistical decisions. New York: McGraw-Hill.

Fung, R. & Shachter, R.D. (1991). Contingent influence diagrams (Research report 90-10). Mountain View, CA:

Advanced Decision Systems.

Fung, R.M. & Crawford, S.L. (1990a). Constructor: A system for the induction of probabilistic models. Proceed-

ings of AAAI (pp. 762-769). Boston, MA: MIT Press.
Fung, R.M., Crawford, S.L., Appelbaum, L.A., & Tong, R.M. (1990b). An architecture for probabilistic concept-

based information retrieval. Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp. 392-404).

Cambridge, MA.
Geiger, D. & Heckerman, D.E. (1991). Advances in probabilistic reasoning. Proceedings of the Conference on

Uncertainty in Artificial Intelligence (pp. 118-126). Los Angeles, CA: Morgan Kaufmann.
Geiger, D., Paz, A., & Pearl, J. (1990). Learning causal trees from dependence information. Proceedings of AAAI

(pp. 770-776). Boston, MA: MIT Press.
Gevarter, W.B. (1986). Automatic probabilistic knowledge acquisition from data NASA Technical Memorandum

88224). Mt. View, CA: NASA Ames Research Center.
Glymour, C, Scheines, R., Spirtes, P., & Kelley, K. (1987). Discovering causal structure. New York: Academic

Press.
Glymour, C. & Spirtes, P. (1988). Latent variables, causal models and overidentifying constraints. Journal of

Econometrics, 39, 175-198.
Golmard, J.L., & Mallet, A. (1989). Learning probabilities in causal trees from incomplete databases. Proceedings

of the IJCAI Workshop on Knowledge Discovery in Databases (pp. 117-126). Detroit, MI.
Heckerman, D.E. (1990). Probabilistic similarity networks. Networks, 20, 607-636.

Heckerman, D.E., Horvitz, E.J., & Nathwani, B.N. (1989). Update on the Pathfinder project. Proceedings of
the Symposium on Computer Applications in Medical Care (pp. 203-207). Washington, DC: IEEE Computer

Society Press.
Henrion, M. (1988). Propagating uncertainty in Bayesian networks by logic sampling. In J.F. Lemmer & L.N.

Kanal (Eds.), Uncertainty in artificial intelligence 2. Amsterdam: North-Holland.
Henrion, M. (1990). An introduction to algorithms for inference in belief nets. In M. Henrion, R.D. Shachter,

L.N. Kanal, & J.F. Lemmer (Eds.), Uncertainty in artificial intelligence 5. Amsterdam: North-Holland.

Henrion, M. & Cooley, D.R. (1987). An experimental comparison of knowledge engineering for expert systems

and for decision analysis. Proceedings of AAAI (pp. 471-476). Seattle, WA: Morgan Kaufmann.

346 G.F. COOPER AND E. HERSKOVITS

Herskovits, E.H. (1991). Computer-based probabilistic network construction. Doctoral dissertation, Medical Infor-

mation Sciences, Stanford University, Stanford, CA.
Herskovits, E.H. & Cooper, G.F. (1990). Kutato: An entropy-driven system for the construction of probabilistic

expert systems from databases. Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp.

54-62). Cambridge, MA.
Hinton, G.E. (1990). Connectionist learning procedures. Artificial Intelligence, 40, 185-234.
Holtzman, S. (1989). Intelligent decision systems. Reading, MA: Addison-Wesley.

Horvitz, E.J., Breese, J.S. & Henrion, M. (1988). Decision theory in expert systems and artificial intelligence.

International Journal of Approximate Reasoning, 2, 247-302.

Howard, R.A. (1988). Uncertainty about probability: A decision analysis perspective. Risk Analysis, 8, 91-98.

Hunt, E.B., Marin, J., & Stone, P.T. (1966). Experiments in induction. New York: Academic Press.
James, M. (1985). Classification algorithms. New York: John Wiley & Sons.
Johnson, R.A. & Wichern, D.W. (1982). Applied multivariate statistical analysis. Englewood Cliffs, NJ:

Prentice-Hall.
Kiiveri, H., Speed, T.P., & Carlin, J.B. (1984). Recursive causal models. Journal of the Australian Mathematical

Society, 36, 30-52,
Kwok, S.W. & Carter, C. (1990). Multiple decision trees. In R.D. Shachter, T.S. Levitt, L.N. Kanal, & J.F. Lemmer

(Eds.), Uncertainty in artificial intelligence 4. Amsterdam: North-Holland.

Lauritzen, S.L. & Spiegelhalter, D.J. (1988). Local computations with probabilities on graphical structures and
their application to expert systems. Journal of the Royal Statistical Society (Series B), 50, 157-224.

Liu, L., Wilkins, D.C., Ying, X., & Bian, Z. (1990). Minimum error tree decomposition. Proceedings of the

Conference on Uncertainty in Artificial Intelligence (pp. 180-185). Cambridge, MA.

Michalski, R.S., Carbonell, J.G., & Mitchell, T.M. (Eds.) (1983). Machine learning: An artificial intelligence
approach (Vol. 1). Palo Alto, CA: Tioga Press.

Michalski, R.S., Carbonell, J.G., & Mitchell, T.M. (Eds.) (1986). Machine learning: An artificial intelligence
approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Mitchell, T.M. (1980). The need for biases in learning generalizations (Report CBM-TR-5-110). New Brunswick,

NJ: Rutgers University, Department of Computer Science.
Neapolitan, R. (1990). Probabilistic reasoning in expert systems. New York: John Wiley & Sons.
Pearl, J. (1986). Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29, 241-288.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan Kaufmann.

Pearl. J. & Verma, T.S. (1991). A theory of inferred causality. Proceedings of the Second International Conference
on the Principles of Knowledge Representation and Reasoning (pp. 441-452). Boston, MA: Morgan Kaufmann.

Pittarelli, M. (1990). Reconstructability analysis: An overview. Revue Internationale de Systemique, 4, 5-32.

Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1, 81-106,
Rebane, G. & Pearl, J. (1987). The recovery of causal poly-trees from statistical data. Proceedings of the Workshop

on Uncertainty in Artificial Intelligence (pp. 222-228). Seattle, Washington.

Robinson, R.W. (1977). Counting unlabeled acyclic digraphs. In C.H.C. Little (Ed.), Lecture notes in mathematics,
622: Combinatorial mathematics V. New York: Springer-Verlag. (Note: This paper also discusses counting of

labeled acyclic graphs.)
Shachter, R.D. (1986). Intelligent probabilistic inference. In L.N. Kanal & J.F. Lemmer (Eds.), Uncertainty in

artificial intelligence 1. Amsterdam: North-Holland.

Shachter, R.D. (1988). Probabilistic inference and influence diagrams. Operations Research 36, 589-604.
Shachter, R.D. (1990). A linear approximation method for probabilistic inference. In R.D. Shachter, T.S. Levitt,

L.N. Kanal, & J.F. Lemmer (Eds.), Uncertainty in artificial intelligence 4. Amsterdam: North-Holland.

Shachter, R.D. & Kenley, C.R. (1989). Gaussian influence diagrams. Management Science, 35, 527-550.
Spiegelhalter, D.J. & Lauritzen, S.L. (1990). Sequential updating of conditional probabilities on directed graphical

structures. Networks, 20, 579-606.

Spirtes, P. & Glymour, C. (1990). Causal structure among measured variables preserved with unmeasured variables

(Report CMU-LCL-90-5). Pittsburgh, PA: Carnegie Mellon University, Department of Philosophy.
Spirtes, P., Glymour, C., & Schemes, R. (1990a). Causal hypotheses, statistical inference, and automated model

specification (Research report). Pittsburgh, PA: Carnegie Mellon University, Department of Philosophy.

BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 347

Spirtes, P., Glymour, C, & Scheines, R. (1990b). Causality (mm probability. In G. McKee (Ed.), Evolving knowledge
in natural and artificial intelligence. London: Pitman.

Spirtes, P., Glymour, C., & Scheines, R. (1991). An algorithm for fast recovery of sparse causal graphs. Social

Science Computer Review, 9, 62-72.

Spirtes, P., Scheines, R., & Glymour, C. (1990c). Simulation studies of the reliability of computer-aided model
specification using the Tetrad II, EQS, and LISREL programs. Sociological Methods and Research, 19, 3-66.

Srinivas, S., Russell, S., & Agogino, A. (190). Automated construction of sparse Bayesian networks for unstruc-

tured probabilistic models and domain information. In M. Henrion, R.D. Shachter, L.N. Kanal, & J.F. Lemmer
(Eds.), Uncertainty in artificial intelligence 5. Amsterdam: North-Holland.

Suermondt, H.J. & Amylon, M.D. (1989). Probabilistic prediction of the outcome of bone-marrow transplanta-

tion. Proceedings of the Symposium on Computer Applications in Medical Care (pp. 208-212). Washington,
DC: IEEE Computer Society Press.

Utgoff, P.E. (1986). Machine learning of inductive bias. Boston, MA: Kluwer Academic.

Verma, T.S. & Pearl, J. (1990). Equivalence and synthesis of causal models. Proceedings of the Conference on
Uncertainty in Artificial Intelligence (pp. 220-227). Cambridge, MA.

Wermuth, N. & Lauritzen, S. (1983). Graphical and recursive models for contingency tables. Biometrika, 72,

537-552.

Wilks, S.S. (1962). Mathematical statistics. New York: John Wiley & Sons.

