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Summary

Estimating the risks heat waves pose to human health is a critical part of assessing the future
impact of climate change. In this paper we propose a flexible class of time series models to
estimate the relative risk of mortality associated with heat waves and conduct Bayesian model
averaging (BMA) to account for the multiplicity of potential models. Applying these methods to
data from 105 U.S. cities for the period 1987–2005, we identify those cities having a high
posterior probability of increased mortality risk during heat waves, examine the heterogeneity of
the posterior distributions of mortality risk across cities, assess sensitivity of the results to the
selection of prior distributions, and compare our BMA results to a model selection approach. Our
results show that no single model best predicts risk across the majority of cities, and that for some
cities heat wave risk estimation is sensitive to model choice. While model averaging leads to
posterior distributions with increased variance as compared to statistical inference conditional on a
model obtained through model selection, we find that the posterior mean of heat wave mortality
risk is robust to accounting for model uncertainty over a broad class of models.
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1. Introduction

Climate change is expected to cause an increase in the frequency, duration, and intensity of
heat waves (Meehl and Tebaldi, 2004). An important component in assessing the impact of
climate change on human health is quantifying the adverse health outcomes attributable to
extreme weather events, such as heat waves (IWGCCH, 2010).

Many epidemiologic studies have investigated the health consequences of an extreme heat
event, which has been selected for study in part because it has already exacted large health
tolls. For example, it is estimated that over 700 people died in a single day as a result of the
Chicago heat wave of 1995 (Semenza et al., 1996). Another extreme event, the European
heat wave of 2003, led to 15,000 excess deaths in France (Fouillet et al., 2006), and
additional thousands of deaths in other European countries (Garssen et al., 2005; Johnson et
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al., 2005; Conti et al., 2005; Grize et al., 2005). Additional single-site studies that have
analyzed specific heat events have looked at Maricopa County, Arizona (Yip et al., 2008),
Osaka Prefecture, Japan (Bai et al., 1995), St. Louis, Missouri (Bridger et al., 1976), and
New York City (Ellis and Nelson, 1978), among others (Hertel et al., 2009; Rocklöv and
Forsberg, 2009; Kovats et al., 2004).

The majority of heat wave studies have retrospectively analyzed the impact of specific,
extreme heat events. While such studies are useful for identifying factors associated with
increased risk of adverse health outcomes during heat waves, heat wave risks derived from
these retrospective analyses are potentially biased because they tend to study only the
highest impact heat events. Fewer studies have investigated the health effects of heat waves
in multiple locations over time in order to quantify the risks attributable to less extreme, but
still potentially harmful, heat wave events. In a study of three European cities, the estimated
percent increase in mortality during heat wave days compared to non-heat wave days were
4.3% (95% CI 0.8 to 7.9) for London, 7.9% (3.6 to 12.4) for Budapest, and 15.2% (5.7 to
22.5) for Milan (Hajat et al., 2006). In another multi-site time series study of temperature-
related mortality in the U.S., the pooled national estimate for increased risk associated with
heat wave days, adjusted for temperature ranged from 3.2% (95% posterior interval 2.1 to
4.3) to 10.6% (6.1 to 15.3) across six heat wave definitions of varying levels of severity
(Anderson and Bell, 2009).

Statistical models for estimating the relative risks of heat waves in the literature typically
include both temperature terms as well as a heat wave day indicator. Under these models,
the regression coefficient of the indicator provides an estimate of the “heat wave effect”
beyond the effect of temperature. Since heat waves are functions of temperature, inclusion
of both variables in the model may introduce multicollinearity. An alternative approach
would be to simply not include temperature as a covariate in the regression model; however,
since it is highly associated with mortality (Curriero et al., 2002; Hajat et al., 2002; Baccini
et al., 2008; Basu, 2009), not including it yields a model with poor fit. Multiple temperature
metrics have been considered both for inclusion in the models and as a basis for defining a
heat wave event: daily maximum, minimum, or average daily temperatures, temperature
measurements at various lags, as well as metrics that incorporate measures of humidity, such
as humidex (Mastrangelo et al., 2007), apparent, and dew point temperature. The
temperature terms have been modeled with a linear threshold model (Hajat et al., 2006),
with cubic splines with fixed (typically 3 or 6) degrees of freedom (Anderson and Bell,
2009; Hajat et al., 2006), or with penalized splines where the degree of smoothing is
determined by model selection on a smoothing parameter (Pauli and Rizzi, 2008). In the
extensive air pollution epidemiology literature, temperature has been modeled with
distributed lag models of both linear and nonlinear temperature covariates having time
varying regression coefficients (Welty and Zeger, 2005). To estimate the effect of a heat
wave event on mortality risk, studies have included day of week, smooth functions of
relative humidity or dew point temperature, and smooth functions of calendar time to adjust
for confounding (Anderson and Bell, 2009; Hajat et al., 2006; Pauli and Rizzi, 2008).

Studies investigating the shape of the temperature-mortality exposure-response relation have
reported that the slopes of the exposure-response curves vary by geographical region
(Curriero et al., 2002; Kalkstein and Davis, 1989). Previous multi-site studies of the
association between heat waves and mortality have assumed the same regression model
across locations, but they allow the exposure-response curves to vary across cities. In
addition, while uncertainty in climate model predictions has been studied thoroughly, to our
knowledge the degree of model uncertainty underlying heat wave risk estimates has not been
systematically incorporated into risk estimation. Quantifying the risk of mortality and other
health outcomes during heat waves, in conjunction with a comprehensive treatment of both
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statistical and model uncertainty, is a critical part of assessing the future impact of climate
change on human health.

In this paper we attempt to overcome several challenges in estimating health risks associated
with heat wave events. We develop an approach to estimate the relative risk of mortality
associated with heat waves that flexibly models the nonlinear temperature-mortality
association, incorporates multiple temperature metrics and their interactions, and allows the
regression model to differ by city. More specifically, we first model the association between
day-to-day changes in temperature covariates and mortality, with adjustment for potential
confounders. Then we define and estimate the relative risk of mortality during heat wave
days compared to non-heat wave days. Importantly, we implement Bayesian model
averaging to systematically address model uncertainty. The outline of the paper is as
follows. In section 2 we introduce the data and the definition of a heat wave event. Section 3
describes our within city modeling approach and Section 4 details the model averaging
implementation. In section 5 we apply our methods to a national analysis of heat wave
mortality risk for 105 U.S. metropolitan areas, and we compare our results to a common
model selection procedure. We summarize our findings and provide concluding remarks in
section 6.

2. Data and Heat Wave Definition

We use data from the National Morbidity and Mortality Air Pollution Study (NMMAPS)
(Samet et al., 2000). This dataset consists of daily time series of mortality counts, weather
variables, and air pollution concentrations, from 1987 to 2005, in 105 of the largest U.S.
urban communities. Mortality data were obtained from the National Center for Health
Statistics (NCHS), and consist of counts of numbers of deaths classified by cause, stratified
into three age categories: under 65, 65 to 74, and 75 and older. Daily weather data were
obtained from the National Climatic Data Center, consisting of measures of daily average,
minimum, maximum, and dew point temperature. Air pollution concentrations time series
were provided by the US Environmental Protection Agency’s Air Quality System. The data
does not go beyond 2005 because the NCHS no longer makes available city-level daily
mortality data.

Though there are many possible ways to define a heat wave that incorporate measures of
intensity and duration, we use the definition introduced by the heat waves and climate
change literature (Huth et al., 2000; Meehl and Tebaldi, 2004). This definition incorporates
two temperature thresholds, namely the 97.5th percentile (T1) and the 81st percentile (T2) of
daily maximum temperature tmax. We allow the thresholds T1 and T2 to vary by city, since
notions of what constitutes extreme heat is different across U.S regions. A heat wave is then
defined as the longest period of consecutive days satisfying the following three conditions:
(1) The daily maximum temperature is above T1 for at least 3 consecutive days; (2) the daily
maximum temperature does not drop below T2 during the entire period; and (3) the average
of daily maximum temperature over the entire period is greater than T1. For each city, we
create an indicator variable hwt that is 1 if day t belongs to a heat wave event and 0
otherwise. Since our goal is to compare mortality during heat waves to mortality during non-
heat wave periods, we restrict the data to include only the months May–October that contain
the warm season. The primary outcome considered is all death mortality, excluding known
accidental causes.

3. Modeling approach

For each city we model the association between day-to-day changes in temperature and
mortality using a class of generalized additive models (Hastie and Tibshirani, 1990). We
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assume the daily number of deaths for the ith age category Yit has a Poisson distribution with
mean model

(1)

where f(·; β) represents generically a series of one or more linear or nonlinear smooth
functions of different temperature variables, age denotes an indicator for the age category
(under 65, 65 to 74, and over 75), and ns(t; η, 3 df × 6 months) denotes natural cubic splines
of time (indexed by t and parameterized by η) with 3 degrees of freedom (df) per 6 months
time and knots at quantiles.

We consider a class of forms for the function f(·; β), which models the unknown
temperature-mortality exposure-response relation. Table 1 summarizes the list of candidate
models for each city. More specifically, the term f(·; β) may include one or more of the
following variables: current day’s maximum temperature tmax, average of the previous
three days’ maximum daily temperature ,(3) and current day’s dew point temperature
dptp. These three weather variables were selected because each incorporates different
features of temperature (current extreme, prior conditions, and humidity) that may pose
health risks independently as main effects or jointly through interaction terms. We consider
several models for the function f(·; β) in equation (1) that differ based on which of these
three covariates (tmax, ,(3) dptp) are included and which of the possible interactions
among them are incorporated into the model. The models also differ in the degree of
nonlinearity they allow. Specifically, nonlinear functions of the temperature variables are
modeled with natural cubic splines (denoted by ns(·)), and multiple possible values for the
degrees of freedom for the spline terms are considered. We define

, the functional adjustment for
confounders, which is parameterized by γ = (γ1, γ2, γ3, η). Inclusion of the smooth function
of time accounts for seasonal and long-term trends in mortality. The form of the function g(·;
γ) remains fixed across all models considered.

The relative risk of mortality associated with a heat wave day is defined as the average
mortality on heat wave days divided by the average mortality on non-heat wave days,
conditional on the confounders,

(2)

and we define θ = log RR to be the log relative risk of mortality associated with a heat wave
day. The equality in (2) is derived in Web Appendix A. Rather than selecting a specific
model for f, we conduct Bayesian model averaging to calculate the posterior expectation
averaged over a set of reasonable models for f (listed in Table 1). Details are discussed in the
next section.

4. Bayesian model averaging

We first provide a brief overview of how BMA may be applied in the context of our
problem and subsequently discuss prior specification and computational details.
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The relative risk defined in equation (2) depends on the functional form of f through the
parameters β. Thus, the inferential target is the posterior distribution of the parameter β
within each city. For a given city and a class of models M1, …, MK, this is calculated by

(3)

which is a weighted average of the posterior distributions of the parameters that describe the
unknown temperature-mortality exposure-reponse relation under each of the models,
weighted by the models’ posterior probabilities (Hoeting et al., 1999). The posterior
probability of model Mk, is given by

(4)

where

(5)

is the integrated likelihood of model Mk. Here βk is the vector of parameters in the function
fk(temperature; βk) and γk is the vector of parameters in the function gk(confounderst; γk)
under Mk.

4.1 Prior Specification

There are several choices that go into computing ℙ(Mk | y) using formulas (3)–(5). In
particular, we must select (i) the class of candidate models M1, …, MK, (ii) the models’ prior
probabilities π(Mk), and (iii) the parameters’ prior distributions π(βk, γk | Mk) for each model
Mk. Our choice of the class of models relies mainly on using prior knowledge to construct a
set of models to flexibly capture the temperature-mortality relation based on previous
studies of this association. To allow the data to provide evidence as to which model is the
most likely candidate for the data generating process, we place a discrete uniform prior on
the candidate models.

In specifying a prior distribution on (βk, γk) | Mk, again we would like a relatively non-
informative prior to allow the data to “speak maximally”. However, the prior specification
must take into account nesting when models are nested within another (e.g. In Table 1,
Models 1–6 are nested within Model 7). For example, if βk = (b1, …, bk) and βk+1 = (b1, …,
bk, bk+1), we want to ensure that π(βk+1 | bk+1 = 0) = π(βk). A reference class of prior
distributions for generalized linear models that provides consistent information across nested
models has been developed by Raftery (1996). This author found that this class of prior
distributions depends on three parameter values, and the selection of only one of these (φ)
has a significant impact on inference; thus, the author recommended to report results for a
range of values of φ between 1 and 5 (Raftery, 1996). In our BMA implementation, we use
this class of prior distributions with the parameter φ set to an intermediate value and
consider other values in a sensitivity analysis. Web Appendix B gives further details of the
prior distribution form and confirms, for our application, the insensitivity of results to the
other two hyperparameters.
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To provide a context for sensitivity analyses based on the parameter φ, we give some
intuition on the implications of φ for the prior of the log relative risk θ (defined through
equation (2)). In particular, it can be shown that, conditional on a model Mk, the variance of
θ is approximately equal to φ2 times a constant αx that depends on the design matrix for
model Mk. Since αx may be computed for each model Mk, this relation may be used to
incorporate prior information on θ through selection of φ (details in Web Appendix B).

4.2 Computational Details

In general, for generalized linear models there is no closed form solution to the integral in
equation (5), and so we approximate the model posterior probabilities by using the Laplace
approximation (Tierney and Kadane, 1986). To assess whether this approximation was
reasonable, we conducted a simulation study (details in Web Appendix D), finding that the
estimates of the posterior model probabilities based on the Laplace approximation
performed well in our application. This yields estimates p̂k of the probabilities ℙ(Mk | y) for
k = 1, …, K. We then obtain posterior samples of the log relative risk of mortality associated
with a heat wave day θ through equation (3) as follows.

1.
Sample a model  from its posterior distribution ℙ(Mk | y), which is
approximated by p̂k

2.
Sample  from 

Compute

(6)

where n1 is the number of heat wave days and n0 is the number of non-heat wave
days in that city during the study period (May–Oct., 1987–2005).

Repeat this process for j = 1, …, N = 2000. To obtain the samples from ℙ(βk, | Mk, y) in step
2, we implement the Metropolis-Hastings algorithm (Metropolis et al., 1953), where we
check for convergence every 100 iterations (after a minimum of 800 iterations) based on the
Monte Carlo standard error, and only keep the samples βk after convergence has been
achieved. Web Appendix C provides the details of our implementation. In this way, we
obtain samples θ(j), j = 1, …, N from the posterior distribution of the log relative risk
averaged over the class of candidate models, ℙ(θ| y).

4.3 Comparison

As an alternative to implementing BMA, a standard approach is to use a model selection
criterion to determine the best fitting model and conduct inferences conditionally on this
selected model. We consider the approach of fitting models M1, …, MK from Table 1 and
selecting the model M* with the lowest Bayesian Information Criterion (BIC). We then
compare the estimated posterior distribution of ℙ(θ | y) under BMA to the estimated
posterior distribution ℙ(θ | M*, y) under M*, which is the BIC-selected model. Samples are
obtained from ℙ(θ | M*, y) by performing N iterations of steps 2–3 from section 4.2 using
the same prior π(βk, γk | M*) as was used in the full BMA. By comparing the posterior
variance of θ estimated under BMA versus the posterior variance of θ under M*, we assess
the contribution of model uncertainty on statistical inference of heat wave risk.
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5. Results

Table 2 provides a summary of the distribution of heat wave events and the observed
thresholds T1 and T2 for the twenty largest cities. Across the twenty largest cities, heat
waves had the lowest frequency in Dallas/Fort Worth, Houston, and San Antonio at 0.6 heat
wave events per year, and the highest frequency in Oakland, San Jose, and Seattle at 1.3
events per year. The city having the longest-lasting heat waves was Dallas/Fort Worth,
where the average duration of a heat wave during the study period 1987–2005 was 19.4
days. Heat waves were of the shortest duration in San Jose and Oakland at 5.6 days per
event. The 97.5th and 81st percentiles of maximum daily temperature (T1 and T2,
respectively) were the lowest at 87.1°F and 75.2°F in Seattle and the highest at 111.9°F and
105.1°F in Phoenix. While the cities with the largest number of heat wave days per year tend
to be in the southern U.S. (Web Figure 1), there is not a clear latitude gradient; several cities
in Florida and southern California have few to a moderate number of event days, as well
many in the northeast and midwest.

Figure 1 displays bar plots summarizing the distribution of posterior model probabilities
within each city. For the purpose of describing these results, we denote the cities as ordered
from top to bottom in Figure 1 by c1, …, c105. On the right side of the figure, in
correspondence to each city, we denote the smallest number of models from the 33 model
candidate set needed to contain 99% of the posterior mass. For several cities, a linear term of
a single temperature predictor (Models 1–3) was the most likely data generating model, e.g.
San Jose (c11), Houston (c42), and Miami (c82); while for others spline terms of one or two
temperature variables with multiple degrees of freedom (Models 8–9, 23–27) were more
probable, e.g. New York (c1), Philadelphia (c36), and Detroit (c73). Cities also varied based
on the number of competing models that were plausible as the data generating mechanism.
For several cities a single model contained the majority of the posterior mass, such as New

York ( ), Chicago ( ), Jersey City ( ), and Seattle

( ). In other cases, two models shared the posterior mass nearly equally, as was
the case for Atlanta (c45), Phoenix (c60), Oakland (c71), and Detroit (c73). In a few instances,
namely Milwaulkee (c78), Minneapolis/St. Paul (c79), and Kansas City, KS (c105), the
distribution of posterior model probabilities was more diffusely spread out over the model
space, requiring 10, 7, and 9, models, respectively, to contain over 99% of the posterior
mass.

To capture the distinguishing features of the posterior distributions for each of the 105 cities,
Figure 2 displays 95% highest posterior density (HPD) intervals for the log relative risk,
where the grayscale of the intervals is proportional to kernel density estimates of the
posterior of θ. We find that there is consistent evidence of an elevated risk of mortality
during heat wave days in the industrial midwest, northeast, northwest, and southern
California regions. In the upper midwest, there is some evidence of increased risk, though
these posterior distributions are more diffuse. There is no consistent association in either the
southeast or southwest. In addition, the degree of heterogeneity in the posterior mode varies
by region, with the northeast exhibiting greater heterogeneity than the northwest and
southeast. There is evidence of a bi- or multi-modal distribution for several cities, including
Cleveland (region IM), Los Angeles (SC), Miami (SE), Phoenix (SW), and San Diego (SC).
For other cities, such as Houston (SE) and San Antonio (SW), there is a spike in the
posterior mass at zero, corresponding to no heat wave effect.

Of the 105 cities, 64 have posterior probability of θ > 0 greater than 80% and 49 have
posterior probability of θ > 0 greater than 95%. To provide numerical results for the
magnitude of the estimated heat wave effect, the posterior mean (95% HPD intervals) of the
distribution of the percent increase in mortality on a heat wave day compared to a non-heat
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wave day for the three largest cities are 3.5% (2.3% to 4.6%) for Los Angeles, 10.6% (9.5%
to 11.6%) for New York, and 12.4% (10.9% to 13.9%) for Chicago. There are 11 cities
having over 95% posterior probability that the percent increase in mortality on a heat wave
day is greater than 5%, namely Baltimore, Biddeford, Buffalo, Chicago, Detroit, Jersey City,
New York, Providence, San Jose, Washington, and Worcester. The percent increase in
mortality associated with a heat wave day is calculated as 100% ×{exp(θ(j))−1}, where θ(j)

is a posterior sample of the log relative risk. Web Figure 2 shows a map of these results
across the 105 U.S. cities. This map underscores the geographical pattern in heat wave
mortality risk, with northern and west coast regions exhibiting heightened risk, and
southeastern regions demonstrating little to no increased risk.

5.1 Sensitivity analysis

To assess the sensitivity of the posterior distribution of θ to prior specification, we
considered a range of values for the prior dispersion parameter φ.

Figure 3 shows, for the twenty largest cities, kernel density estimates of the BMA posterior
of the log relative risk θ under four different values of φ, and Web Table 1 shows
corresponding numerical summaries across the 105 cities. We find that the parameter φ does
not substantially impact the shape of the posterior for those cities with a clear cut “favorite”
model, i.e. cities for which a single model contains nearly all of the posterior mass (e.g.
Chicago, Dallas, New York). Among cities with a bi- or multi-modal posterior distribution
of the log relative risk, some exhibit sensitivity to φ (Detroit, Los Angeles, and Phoenix)
while others do not (Miami and Cleveland). In general, for cities where the likelihood of the
models M1, …, Mk is spread out over multiple models that differ in the number of df, the
shape of the posterior distribution of θ will be sensitive to the prior parameter φ. Though
different values of φ yield different weightings for the models describing heat wave
mortality risk for certain cities, across these weighting schemes the magnitude of the risk as
summarized by the posterior mean of θ remains relatively consistent (Web Table 1).

We additionally assessed sensitivity of our results to the class of models considered for
BMA. We repeated our analysis with an expanded set of models that included the 33 from
Table 1 as well as additional models from the literature that describe the temperature-
mortality association. Specifically, we considered three models of the form of equation (1)
from Anderson and Bell (2009), which have mean model

(7)

where γ1 is a vector of regression coefficients on the categorical variable for day of the week
dow, ns(tmaxlag; β1, 3) denotes natural cubic splines of maximum daily temperature for a
given lag from day t with 3 df, and ns(Dt; β2, 3) represents natural cubic splines of adjusted
dew point temperature on day t, again with 3 df. As in Anderson and Bell (2009), we
considered three lags for tmax (0, 1, and 2). This model is a slight adaptation of their model,
because we used only data from half of the year containing the warm season, while they
used a full year of data. As such, we necessarily reduced the number of degrees of freedom
in the smooth function of time from 7 df to 3 per year. We found, consistent across the 105
cities, that these three models were not well supported by the data, having zero or nearly
zero posterior mass.

5.2 Comparison to a single model

Model selection—Figure 3 shows, for the twenty largest cities, kernel density estimates of
the posterior of the log relative risk θ under the BIC-selected model M*, and Web Table 1
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compares posterior mean and standard deviation estimates conditional on M* to estimates
derived from the BMA approach. For the majority of cities (94 out of 105), the model with
the highest posterior probability is the same as the model that was selected under the BIC
criterion. Comparing the estimate of ℙ(θ | y) under BMA for different values of φ to the
estimated posterior under the BIC-selected model ℙ(θ | M*, y) in Figure 3, we see that for
some cities these posteriors are very similar, including Chicago, Dallas/Fort Worth, and San
Jose. For other cities, such as Los Angeles, San Diego, and Miami, there is a noticeable
discrepancy between estimates of the posterior distribution of the heat wave log relative risk
under BMA versus BIC. In general, the BMA approach and the BIC model selection
approach lead to divergent posteriors for those cities where two or more models provide
similar fits to the data; in these situations, the posterior under BMA may be multi-modal or
skewed, and it is typically more spread out than the posterior under the BIC-selected model.
When we compute the sample standard deviation σ ̂BMA and σ ̂BIC of the BMA and BIC
posterior samples of θ, respectively, we find that σ ̂BMA ≥ σ ̂BIC for nearly all of the cities (97
out of 105), and that on average σ ̂BIC is nearly 30% smaller than σ ̂BMA (Web Table 1).

Model from literature—Given that there is no “gold standard” model for estimating heat
wave mortality risk, we also compare our results to model (7) with a lag of 0 on tmax, which
is adapted from Anderson and Bell (2009). While the model selection approach based on the
BIC criterion generally yields smaller posterior standard deviation estimates as compared to
averaging over a set of multiple models, fitting this model from the literature across the 105
cities leads to larger posterior standard deviation estimates than does the BMA approach
(see Web Table 1). As described above, when we included model (7) within the candidate
set, this model was shown to be little supported by the data. As such, though heat wave risk
estimates derived conditional on this model have larger uncertainty, this uncertainty is not
incorporated into the BMA variability estimate.

6. Discussion

In this paper we develop a Bayesian model averaging approach to estimate the relative risk
of mortality associated with heat waves. We apply this methodology in the most extensive
study of heat wave mortality to date, covering 105 cities over 19 years of data (May 1987 –
Dec. 2005).

Our proposed approach overcomes many of the challenges in estimating the adverse health
effects of heat wave events. First, temperature variables are included in the model as
predictors of mortality rather than for the purpose of adjustment. In other words, instead of
viewing temperature and dew point temperature as confounding the heat wave-mortality
association, these temperature variables are viewed as components of a heat wave that
describe its various features. For example, higher current and previous days’ temperature
characterize more extreme heat wave events and have been shown to be important predictors
of mortality (Basu, 2009). Thus, our goal is to estimate the total heat wave effect, defined as
the expected number of deaths on heat wave days divided by the expected number of deaths
on non-heat wave days during the warm season, adjusted for time-varying confounders such
as season and long-term trends. Second, within each city, we specify a semi-parametric
model to flexibly capture the nonlinear relation between several weather variables and
mortality. The model makes as few assumptions as possible about the shape of the exposure-
response function and does not require the cities to have the same model or even to include
the same temperature predictors. This allows for heterogeneity of the temperature-mortality
association across cities, in accordance with findings in prior studies that the shape of the
temperature-mortality curve varies by U.S. region (Curriero et al., 2002). Third, we
incorporate model uncertainty in the specification of the temperature-mortality exposure-
response function by conducting Bayesian model averaging.
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While BMA has been used in air pollution epidemiology studies (Thomas et al., 2007;
Clyde, 2000; Clyde et al., 2000) and to evaluate stroke risk (Volinsky et al., 1997), among
other risk assessment studies (Bailer et al., 2005), to our knowledge it has not been used in
studies of temperature or heat waves and mortality. Rather, a primary model for the
association of temperature variables and heat waves with the outcome is selected and other
secondary models are considered through sensitivity analyses (Anderson and Bell, 2009;
Hajat et al., 2006) or a model selection procedure is employed. In a previous study of heat
waves and hospital admissions, a resampling procedure was proposed to assess the
robustness of the model selection criterion (in this case the UBRE score) when a set of
competing models, which may contain many similar models, is considered (Pauli and Rizzi,
2008).

Applying our approach to 105 U.S. cities, we found a heightened risk of mortality during
heat wave days compared to non-heat wave days, especially in northern regions of the U.S.
For example, we estimated a percent increase in mortality (95% HPD interval) of 8.8%
(5.4% to 11.9%) in Washington, D.C., 3.7% (0.7% to 6.5%) in St. Louis, and 5.6% (3.9% to
7.6%) in Seattle. We generally did not find increased risk in southern regions. Though
temperatures are higher at lower latitudes causing heat waves to be more extreme, it is
possible that individuals and/or communities in hot climates have adopted precautions to
limit the impact of heat, such as air conditioning use. For two cities (Oklahoma City and
Shreveport, LA), we estimated a protective heat wave effect. Both had Model 2 as the most
probable model of the set of 33 candidates, with temperature-mortality exposure-response

function ,(3) a linear term of the average of the previous three days’
temperature. Several factors could contribute to a protective effect, including prevalence of
air conditioning, presence of a heat response plan, and differences in demographic factors
related to heat wave susceptibility. Previous studies have identified effect modifiers of the
temperature-mortality association (Basu, 2009), but further research is needed to determine
which factors explain heterogeneity across cities in heat wave mortality so that targeted
interventions may be developed.

Implementing our approach for 105 cities and conducting BMA provides valuable insight
into modeling heat wave mortality risk. First, we found that across cities the posterior
distribution of model probabilities varies widely, and no single model best captures the
temperature-mortality exposure-response function. Thus it is important for multi-site studies
of heat wave risk to allow for heterogeneity in model specification across cities. Second, we
found that for some cities heat wave risk estimation is sensitive to model selection, as
demonstrated by the multi-modality of the posterior distributions under BMA. Additionally,
our comparison of the posterior variance of the log relative risk under BMA to the variance
under a single model emphasizes a twofold benefit of model averaging. On the one hand,
models are weighted by their posterior probabilities so that the uncertainty of estimates
conditional on less plausible models do not contribute to the model-averaged uncertainty
estimate. On the other hand, when multiple models are plausible, BMA incorporates the
variability from each potential model; thus conditioning inference on a single model
obtained through a model selection procedure likely underestimates statistical uncertainty. In
fact we found that the posterior standard deviation estimates of θ under the BIC-selected
model were smaller compared with those under BMA. Nonetheless, our results demonstrate
that the association of heat waves with elevated mortality is robust to accounting for model
uncertainty over a broad class of candidate models and a range of prior distributions.

We accounted for model uncertainty in our analysis, but our results still depend on certain
choices, such as the class of candidate models, the set of temperature covariates we
considered for the function f(temperaturet; β), the adjustment for confounders, and the
choice of prior distributions for BMA. Any model selection procedure must similarly first
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determine a set of models to consider, and our BMA approach does not preclude the
possibility that a better-fitting model exists outside of the model candidate set. Findings
from previous studies informed the development of our candidate model set and the
particular weather variables included. Time series generalized additive models for count
data have been widely used in studies of the association of temperature and mortality (Basu
and Samet, 2002; Basu, 2009). Additionally, models including smooth functions of current
days’ temperature together with smooth functions of an average of previous days’
temperature and dew point temperature have been used in studies of the effect of air
pollution on mortality, and have been shown to adequately control for weather effects
(Welty and Zeger, 2005). Curriero et al. (2002) found that current days’ temperature and the
average of the previous three days’ temperature had stronger associations with mortality
than temperature variables at further lags, and that dew point temperature added predictive
power to the model in a study of 11 U.S. cities. We included adjustment for confounders
through a smooth function of time to account for seasonal and longer term trends in
mortality, as has been used in many previous epidemiological studies of the effects of air
pollution on health and previous temperature and heat waves time series studies (Peng et al.,
2006; Bell et al., 2004). Future work might extend the set of candidate models in order to
assess uncertainty in specifying the confounder adjustment model and to evaluate the
importance of including PM, ozone, and other air pollution variables in the model. While
none of the models we considered model serial dependence of the mortality counts,
exploratory data analysis suggested that autocorrelation has little impact for this application.
To assess the possibility of serial dependence in light of the different degrees of smoothing
among the 33 candidate models, we fit a simple, intermediate, and complex model (models
2, 24, and 31) to each city’s data and estimated the autocorrelation function (ACF) of the
deviance residuals for each model and city combination. Visual inspection of the ACFs
showed no consistent pattern, indicating that working independence is reasonable for our
data. While we found that estimates of the posterior model probabilities based on the
Laplace approximation were reasonable in this application, future work could explore the
use of more accurate approximations such as integrated nested Laplace approximations (Rue
et al., 2009).

We considered a discrete uniform prior on the set of candidate models, though it may be
desired to include prior information on some of the models. Since we assumed a uniform
prior, the posterior model probabilities calculated are proportional to the likelihood, and so
Figure 1 may be examined to determine for which cities inclusion of prior information on
the models would impact the results. In particular, we observe that under the uniform prior,
over 85% of the posterior mass for cities c1 – c23 is contained in a single model, implying
that including prior information on the models will not highly impact the results. On the
other hand, cities having a likelihood that is spread out, such as c78 – c105, will be more
heavily impacted by the incorporation of prior information.

The sensitivity of our results to prior specification on the vector of regression parameters
was assessed by considering a range of values of the dispersion hyperparameter φ. We also
considered the addition of three models of the temperature-mortality association from the
literature to the set of candidate models considered and found that their inclusion did not
impact our results. We did not directly investigate the sensitivity of the choice of heat wave
definition on the posterior distribution of the log relative risk, since our goal was to conduct
an analysis of heat wave risk, conditional on a particular definition of a heat wave, that
incorporates model uncertainty in the risk estimation. While changing the heat wave
definition would almost surely impact the risk estimates themselves (e.g. greater intensity as
measured through the thresholds T1 and T2 yielding larger estimates), it would not influence
our findings on the contribution of model uncertainty: since the set of temperature-mortality
models we considered did not include the heat wave indicator, the calculation of the
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posterior model probabilities in equation (4) is independent of the selected heat wave
definition. Nonetheless, a better grasp of the features of heat waves that most impact
mortality, such as intensity, duration, or timing in the summer is an important direction of
future work.

Understanding the contributions of different sources of uncertainty is an integral part of a
systematic assessment of future health risks under climate change. In order to combine
estimates of present and historical relative risk of mortality associated with heat waves with
output from climate simulation models based on various climate change scenarios, a
measure of the corresponding uncertainty is desired. This measure should include both
model uncertainty as well as statistical uncertainty conditional on a given model. In this
study we provide the first comprehensive assessment of heat wave risk that incorporates
model uncertainty.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Bar plots summarizing the distribution of the posterior model probabilities  for the models

Mk within each city c. Let  denote the kth largest estimated posterior probability for city

c. For each city, the bar denotes the cumulative posterior probability . Number
within each bar denotes which of the 33 models is represented by the bar; numbers at the
right side of the plot denote the smallest number of models that contain 99% of the posterior

mass, i.e. . Cities are listed from top to bottom in decreasing order

of .
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Figure 2.

95% highest posterior density (HPD) intervals for the log relative risk of mortality
associated with a heat wave day θ. Shading is proportional to f̂, the kernel density estimate
of the posterior of θ, with black corresponding to f̂max = maxθ f̂(θ) and white corresponding
to f̂0.05 = minθ∈H f̂(θ), where H is the 95% HPD interval. Cities are categorized into 7
regions: southeast (SE), southwest (SW), southern California (SC), northeast (NE), upper
midwest (UM), industrial midwest (IM), and northwest (NW). Within regions, cities are
listed from top to bottom in order of decreasing latitude.
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Figure 3.

Kernel density estimates of the posterior ℙ(θ | y) under BMA for four values of the
hyperparameter φ, as well as the kernel density estimate of the posterior under the BIC-
selected model ℙ(θ | M*, y) for the twenty largest cities, where θ is the log relative risk of
mortality associated with a heat wave day. Legend is in the top left plot.
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Table 1

Candidate statistical models for the relationship between daily temperature and log mortality. The first column
contains the form of the function f(temperature; β), where tmax is the maximum daily temperature,  is

the average of the maximum daily temperature from the previous three days, and dptp is daily dew point
temperature. The notation ns(·; β, λ) denotes a natural cubic spline with parameter vector β and degrees of
freedom λ. The functional adjustment for confounders

 is the same across models.

Models f(temperature; β) df of natural cubic splines Total df of f(·; β)

1 β1tmax 1

2 1

3 β1dptp 1

4 2

5 β1tmax + β2dptp 2

6 2

7 3

8–12 ns(tmax; β, λ) λ ∈ {2, …, 6} 2–6

13–17 λ ∈ {2, …, 6} 2–6

18–22 ns(dptp; β, λ) λ ∈ {2, …, 6} 2–6

23–27 λ ∈ {2, …, 6} 4,6,8,10,12

28 ns(tmax; β, λ) + ns(dptp; β, λ) λ = 3 6

29 λ = 3 6

30 λ = 3 9

31 λ = 3 15

32 ns(tmax; β, λ) × ns(dptp; β, λ) λ = 3 15

33 λ = 3 15
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