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There are a nearly unlimited number of situations in which the

status of time-varying processes must be updated. The monitoring of

these processes usually occurs at periodic intervals. Whether the

monitoring is performed by man or machine, a decision must be made

regarding the frequency of these activities, that is, an optimal

sampling interval must be determined.

This thesis presents two theoretical models, based on a Bayesian

analysis, from which optimal sampling intervals can be determined.

The necessary information for the use of these models includes the

sampling costs, quadratic error costs, and a normally distributed

measure of the uncertainty of the process as a function of the time

since the last sample. This uncertainty can be measured either

objectively, from historical data, or subjectively, from the decision

maker's personal knowledge of the process. The first model assumes

that immediately after sampling, the decision maker knows precisely

the value of the process. That is, the variance at the time of sam-

pling is zero. In the second model, this assumption is not made. A

certain amount of uncertainty exists immediately after sampling.



This uncertainty can be reduced by taking a larger sample size.

With a knowledge of the value, or a distribution of the values

of the process when a sample is taken, the decision maker "forecasts"

values for the period until the next sample. Action will be taken on

the basis of these forecast values. An error in these values will

cause inappropriate actions to be taken. An error cost will be in-

curred on the squared difference between these two values. The ex-

tent of the difference will be dependent on the degree of uncertainty

the decision maker has regarding the process. By sampling more fre-

quently, he reduces the uncertainty and therefore the error cost, but

increases the sampling cost. The sampling interval (and in the case

of the second model, the sample size) that minimizes the sum of

these costs determines the optimal sampling policy.

This thesis develops the necessary eqUations and suggest solu-

tion techniques from which these optimal intervals can be determined.

A sensitivity analysis is also performed to show the effects of

changes in cost parameters on the optimal sampling interval.
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A BAYESIAN MODEL FOR THE DETERMINATION

OF OPTIMAL SAMPLING INTERVALS

I. INTRODUCTION

The world around us abounds with numerous situations in which one

must periodically check the status of a certain process of interest.

In these instances, the major question that arises is, "how often should

this sample be taken?" This question becomes particularly important

when the process parameters vary in some unpredictable manner and the

decision maker's degree of uncertainty about the process increases

with time. That is, the longer the time since the last sample, the

more uncertain the decision maker is about the status of the process.

This concept is illustrated graphically in Figure 1, shown below.

Process

Variance +

Time of

r Last Sample

Time

Figure 1. Range of Uncertainty at a Specific Confidence

Interval, as a Function of Time Since the Last Sample.
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As was mentioned earlier, there are many situations in which an-

swering the sampling question is important. It will be helpful to now

discuss a few examples.

The monitoring of continuous processes in industry requires sam-

ples to be taken periodically. Control of the process is based on the

result of these samples. The refining of crude oil, liquefaction of

natural gas, oxygen, or rare gases; the production of paper; and the

processing of aluminum, steel, etc., all fall into this category.

Many so-called management functions are also subject to periodic

sampling or review. A physical inventory must be taken at some point

in time to determine an actual, as opposed to a perpetual inventory.

This count is usually performed once a year, but it might be wiser to

sample it more frequently. Financial auditing is another example of

sampling that is performed on a process or processes. Audits are

supposed to find any discrepancies that have developed since the last

audit. In some cases, the period between audits may be too long, or

on the other hand, it may be too short.

Many times, a company or a contractor will bid on a package of

work or a job that will not be started for some period of time. At

the time the bid is prepared, a certain amount of uncertainty exists

concerning labor and material costs. The company may wish to update

their estimate. This may or may not be necessary, however. If it is,

it may be advantageous to update the bid more than once.

In a financial or investment situation, sampling problems also

exist. An investment counselor must determine how often a portfolio
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needs to be reviewed. Another question that he is concerned with is

how often he should check the price of a certain stock or commodity.

Finally, the transportation area also has some examples. The

captain of a ship must evaluate his position in relation to some ref-

erence points. Some questions he may have are how often should this

be done and does location of the ship, that is, the open seas or a

shipping channel, have any bearing on this interval between "fixes."

In a similar respect, a pilot of an airplane must make the same deci-

sions.

The preceeding discussion has presented several examples of the

sampling problem, as this type of research will be termed. Although

this paper makes no pretense to solve all of these problems, it is

hoped that the groundwork will be laid and with some additional re-

search in each area, the specific problems may be solved.

The processes to be studied in this paper will, in a way, be

similar. In all cases, the objective of the decision maker, supervisor

or operator, will be to maximize the system's value function. This

function is a function of the uncontrollable, independent input to the

system, x; the control variable, y; and the output, Z. This general

description of the processes of interest is shown on the following

page in Figure 2.

In most cases, the output Z, is a function of the controlled and

uncontrolled inputs. (Z = Z(x,y)). When this occurs, the variable Z

becomes redundant. Therefore, Z can be treated as an intervening

variable that may be of no direct interest to the operator. In any
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case, Z is not necessary in determining the value function. This re-

lationship allows us to write V = V(X,Y) and reduces the system in

Figure 2 to a simpler system, as shown in Figure 3.

x

gpmgroill VALUE

1

i

1

1 V
i

1

*

OPERATOR

PROCESS

ml .m .Nwr .NEN OW am .1.1

I.. Z

Figure 2. Schematic Diagram of Optimizing Control System

Sheridan [1970]
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OPERATOR

x )4 PROCESS

<-

Figure 3. System of Interest to Operator

Sheridan [1970]

The controller may employ one of the three different strategies

in his attempt to maximize the value function. At one extreme, he

may continuously monitor x and modify y accordingly. That is, for a

given x, he will set y so as to maximize V. On the other hand, he may

refrain from sampling or monitoring x and set y on the basis of some

distributional constraint of x and y. In essence, he is setting y

so as to maximize the expected value of V. The third strategy is a

mixed strategy in which he samples x periodically, at some time inter-

val T. On the basis of this sample, he adjusts y in a manner similar

to the second strategy.

There has been considerable research in continuous controls,

where the process changes rapidly, with both automatic and manual

operators. Research in areas where the process varies slowly



6

has been limited. This is the area where continuous monitoring is

not necessary.

The need for such research is illustrated in Crossman (1971).

When designing displays, one tends to assume that the

operator will attend it continuously or at frequent inter-

vals because he needs all the information that they can

provide and that the main problem is insuring that their

data are conveyed as quickly and as accurately as possible.

But in real life operators ignore displayed data for long

periods without ill effect and they can often manage per-

fectly well with very poor instruments, as a brief visit

to almost any factory will show.

Although Crossman is speaking specifically about displays, the same

reasoning can be applied to all of the areas discussed previously.

This paper attempts to develop a model for the conditions dis-

cussed and proceeds to solve the sampling question for this model.

Why is such a model necessary? The answer is, of course, it will

provide a means for answering the sampling question. This is import-

ant for many reasons. First, automatic controllers must be programmed.

Someone must make the decision concerning the sampling interval. Since

there is usually a cost associated with taking a sample, an "overkill,"

that is, sampling too often, may involve unnecessary expense.

By the same token, human operators must be programmed, that is,

they must know how often an observation must be made if they are to

operate at maximum efficiency.

A third use for the answers this model may give concerns operator

work load. If an operator has to monitor many variables, he could

become overloaded, having to sample faster than he is capable. This

possibility has long been a concern to aircraft designers in the de-
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velopment of instrument panels used by pilots. The question of over-

load should also be of interest to managers, not only when determining

operator work load, but also in determining managers' work load. How

many areas should a supervisor or manager be responsible for? This

question is related to how frequently he must look at each unit and

the associated variables under his control.

In many situations, an operator will be assigned to monitor a

certain number of variables. The monitoring process will not consume

his entire time, the remainder will be spent performing other tasks.

If a method is available for determining how often he must monitor

these variables, standards can be set and the operator's time may be

more efficiently used. This model is, "an attempt to devise a method

of analysis and assessment (of the) mental loading of process oper-

ators." (Kitchin and Graham, 1974)

Scope of the Investigation

This research is of an exploratory nature, and consequently, many

simplifying assumptions have been made. Although they are simplifying,

they are not unreasonable and can be justified on the basis of the

following:

1. The assumptions reasonably approximate real life situations.

It is hoped that this research can be applied to actual

situations. Therefore, there should be no objections to

simplifying the problem.

2. Where exploratory research is involved, it is better to first
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attack a relatively simple problem that can be solved rather

than a complex problem that cannot be solved or has a solu-

tion that cannot be easily understood. It is hoped that the

solution to the problems presented here will provide signigi-

cant insight into the complex problem. With additional re-

search, someone may carry this problem a step further.

Afterall, the automobile had its beginning with a stone wheel.

Therefore, the models presented in this paper may seem simple compared

to the general family of problems, but they are neither unrealistic

nor trivial.

Problem Formulation

The processes to be investigated have certain characteristics.

The process must be normally distributed. This form is the normal or

Gaussian distribution. This requirement is a very reasonable one.

The normal distribution is very popular because many real-life pro-

cesses do follow such a distribution. Although the calculations

would be different, the approach to solving the case where another

distribution is present would be similar.

Another important characteristic of the processes considered

concerns the uncertainty. The decision maker's uncertainty about the

process error (the difference between the actual value of the process

and the forecast value of the process) increase with time and is

symmetric and normally distributed. Figure 1, on page 1, shows how

the uncertainty increases with time. A discussion of the distribution
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of this uncertainty will be delayed until later chapters.

Finally, the decision maker's uncertainty about the value of the

process must be quantified. This may be done either objectively with

historical data or subjectively with the decision maker's personal

belief or "gut" feeling. A probability estimate of the process's

uncertainty is needed.

The use of subjective estimates may be the most controversial

part of this research. Although numerous references will support its

use, a nearly equal number will dispute its validity. This disagree-

ment is the fundamental difference between Bayesian and classical

statisticians.

There is little disagreement about the probability measure it-

self or the method by which mathematical probabilities may be manip-

ulated. There are, however, divergent opinions about "the nature

of the relations between the mathematics of probability and the real

thing and events to which it is applied." (Sheridan and Ferrell 1974,

page 30)

Classical statisticians contend that influences to be

defensible, must be based only on the observation or meas-

urement of appropriate data and must not be "biased" by

investigator's prior information or beliefs. Bayesian

statisticians, on the other hand, contend that the invest-

igator's prior information and beliefs are themselves rel-

evant data and should be considered along with more "ob-

jective" data, in making inference. (Weber, 1973, page 1)

Decision theorists and Bayesian statisticians admit a subjective

element into the seemingly most objective procedures for determining

qualitative probabilities. There does not have to be one correct

value, unless the evidence logically entails it.
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The essence of the 'subjective' or 'personalist' view

is that probability is intimately related to human decision

making, reflecting a person's degree of belief that the

event in question will actually occur. Degree of belief in

this context is interpreted as the extent to which the

belief would contribute to a disposition to act rather than

as an intensity of feeling. (Sheridan and Ferrell, 1974,

page 31-32)

There is a subjective element in the frequency view of probability.

The act of hypothesizing a limiting relative frequency and the reas-

sessment of the probability if the evidence indicate it, introduces

some human judgement.

The use of prior distributions and probabilities as well as

personal beliefs are important in this research. Therefore, the

subjective view of probability will not be discounted.

The costs used in the models developed in this paper are very

significant. Anytime that a sample is taken, a sampling cost is

incurred. This cost is equal to a constant (set-up cost) plus a

variable cost which is linearly related to the number of samples

taken. The general relationship is;

C
s
= S + U.n

where C
s
= sample cost

S = fixed sampling cost

U = cost per observation

n = number of observations per sample

As was mentioned before, there is also a cost of an error in a

forecast. This cost will be proportional to the squared error. The

algebraic relationship is;
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C
e
= C [x(t) - x(t)]

2

where C
e
= cost of an error

C = quadratic error coefficient

x(t) = process value at time t

x(t) = forecast value at time t

The forecast value may be either an "objective" forecast or a subject-

ive estimate by the decision maker. The value of this forecast will

cause certain actions to be taken, therefore, the importance of this

value.

There are two other important cost functions in addition to the

quadratic costs, that could be used, linear and step functions.

Quadratic costs will be used in this paper since they not only simp-

lify some calculations later on, but also approximate the other costs

reasonably well. Figure 4, on the following page, illustrates this

approximation. Although, as the error becomes large, the quadratic

costs deviate significantly, the approximation is quite good within

the region of interest.

The value function, V, can now be thought of as a cost, or nega-

tive value. As the sampling interval is increased (fewer samples per

unit time) the sampling cost is decreased, but the cost of an error

increases because the uncertainty about the process increases with

time. Similarly, as the sampling interval decreases, there is a

higher sampling cost but a smaller error cost. Since V is the total

of these two costs, the optimal value of T is such that V is minimized,

that is, the smallest cost. Restated, the value of the
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optimal sampling interval T minimizes the total cost of sampling and

error costs.

Error +

Cost

Error

Figure 4. Quadratic Approximation of Step and Linear Costs

+
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II. LITERATURE REVIEW

The problem and situations noted in Chapter I are by no means new.

The question being asked, namely, "how often should a sample be taken?"

has been asked many times before. Many times, the answers have been de-

termined out of convenience rather than reason. That is to say, a man-

ager decides to look at his reports once a week, the process is checked

every hour, etc. In other situations, however, the operator or super-

visor will evaluate the process in his own mind, based on his knowledge

of the process in question and perform the sampling accordingly. This

is an attempt to systematically determine the sampling interval. Only

in a few cases is the process actually analyzed, taking into considera-

tion the effects of sampling versus the effects of not sampling.

The reason for this lack of analysis in situations where samp-

ling must be performed could stem from the lack of any widely accepted

technique for determining the sampling intervals. Literature on this

subject is limited. That which is available is usually limited to a

specific area, such as control charts, or multi-instrument sampling

associated with aircraft pilots.

Control Charts

Acheson Duncan, a leader in the field of statistical quality con-

trol, published one of the first papers in which economic factors were

used in determining the design of control charts (5: charts) (Duncan,

1956). The design is based on the determination of the sample size,

the upper and lower control limits, and the time interval between sam-
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pies. The specific application is for control charts that were designed

to maintain control of a process, as opposed to those used to bring a

process under control.

The primary objective in designing the charts was to maximize the

long run average net income per unit time, assuming there is informa-

tion or knowledge available concerning the risk of occurrence of an

assignable cause that will cause a shift in the process average. Cost

and income parameters must also be available. The maximum average in-

come criterion was chosen because it is of most interest to business.

Initially, statistical considerations were used to design control charts,

but more recent work have used this income criteria (Montgomery and

Heikes, 1976).

Two important assumptions are made concerning the process in

Duncan's model. First, the process is not shut down while the search

is conducted and second, the cost to bring the process back into con-

trol after the assignable cause is found is not included in the in-

come function. It is not charged to the control chart program.

Assuming that the probability of a non-occurrence of an assignable

cause before time t, when the process begins from a state of control,

is e
-At

(consistant with waiting analysis), Duncan proceeds to develop

implicit equations for the sample size and control limits, and an ex-

plicit equation for the sampling interval. The solutions are, how-

ever, only approximations. The sample size and the control limits are

determined using a graphical technique. The sampling interval, h, is

then found using the following equation,

h

/dr + b + cn .

AM (1/P-1/2)
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A description of the various terms can be found in the Glossary. The

sampling interval is a function of the various costs, the sample size,

and the various terms that relate to the probability of an occurrence

and detection of an assignable cause.

Certain assumptions and limitations are inherent in any model.

The fact that such limitations will be mentioned in this paper is not

an attempt to criticize the work of the original paper's author. It

will, however, point out the differences between the work upon which

this paper is based and that work which is being reviewed.

Duncan's article focuses only on control chart processes and in

doing so makes its application somewhat limited. Control charts are

assumed to be either in control or out of control. It is hard to

adjust the control chart model to situations in which this is not the

case.

Also, the process is considered Markovian or memoryless in

nature. This Markovian model, which has been used extensively, was

first applied to quality control by Girshick and Rubin (1952). More

recent studies (Baker, 1971 and Heikes, et.al., 1974) have shown that

control charts are sensitive to the Markov assumption. While both of

these studies develop non-Markovian models, they do not solve the

sampling interval problem. The time intervals are referred to as time

periods, with no attempt to determine the length of this time period.

One final criticism of Duncan's model is the fact that the values

for the design parameters are only approximations. However, an algo-

rithm for determining the exact values has been developed in a subse-

quent article by Goel, Jain, and Wu (1968).
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Multi-Instrument Sampling

In addition to the area of control charts, another field in which

the work done in this paper may be applied is the area of multi-instru-

ment sampling, usually associated with aircraft pilots.

Visual system overload is of great importance to aircraft design-

ers. Therefore, there must be a method of determining how often an

instrument must be sampled (looked at) or how much time is spent

looking at all the instruments.

John W. Senders (1955) proposed the first theoretical model deal-

ing with man's capacity to use information generated from several in-

struments on a control panel. In a later article (1964), he compares

the theoretical calculations to experimental results.

The underlying idea of these articles is that the amount of time

spent observing a given instrument will be related to the amount of

information presented.

An instrument, i, generates a time function of indicated values

f.(0.Frollivisfunction,thepowerdensityspectrum), can be

calculated. The cutoff frequency of is Wi. If Wi is given, and if

the original fi(t) is to be specifiable from the sample, then accord-

ing to the information theory, the minimum sampling rate for period-

ically taken samples must be equal to 2Wi. Furthermore, if fi(t) is

assumed to be a white noise source, then instrument i is generating

information at the rate of W.log
2

A.
bits/sec., where A. is the

E.
2

power of the message (RMS amplitude) of instrument i and Ei is the

2
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allowed RMS error between the original and the recovered messages of

instrument i.

The operator wishes to be able to reconstruct the original time

function from remembered or recorded readings. He must, therefore,

sample with a fixation frequency (FFi) at least equal to 2Wi. If FFi

is exactly equal to 2Wi, then the average amount of information which

the operator must assimulate at each sampling is,

Hi

A.2 A.
1

1

H =
244

W.log2 E- log
2 t"--.

- bits..
The duration of fixation (Di), that is the time spent observing the

instrument, is linearly related to the amount of information presented

in a manner similar to the relation of reaction time and information,

A

D. = k log
2

C sec. where k has dimensions of time per bit and

C, a constant to account for movement time and minimum fixation time

has dimensions of seconds per fixation.

The proportion of the total time spent on instrument i (Ti), is

related to the amount of information generated.

A4

Ti = FF. x D. = 2kWilog2 2WiC where FF. = 2W..

i

Senders proceeds to show that the total time spent on an instru-

ment is minimized when FF. = 2W..

If the operator has many instruments that he must observe, his

total workload will be the summation of the individual workloads.

TheworkloadwillbeminimizedwhenFF.=2W.for all the various
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instruments. Given m different instruments,

Ai

Min T
m

2 E W.[k log2 + C].

i=1 Li

If T
o

is the duration of the duty cycle during which all instruments

must be observed and To > Min Tm, then another instrument may be added

if To > Min Tm+1. In this way, a designer can determine when he must

stop adding new instruments.

In the second article by Senders (1964), the theoretical base is

extended to include fixation sequences and then tested with actual

experiences. Fixation sequence refer to the frequency distributions

of transitions from one instrument to another. The sequence of trans-

itions is assumed to be a random series, constrained only by the rel-

ative frequencies of fixation of the instrument involved in the

transition. Over a sufficiently long interval the relative number of

fixations on each instrument will be an estimate of the probability

of fixation on that instrument. If P.
'

equals the probability of fix-

ation on instrument i, then,

T. x FF. FF.

. = 1

1 1

1 m m

Ti x. E FF. E FF.

i=1
1

i=1
1

The probability of a transition between two instruments, a and b, will

be the product of their individual probabilities of fixation. The

probability of going from a to b is Pab PaPb and the probability of

transition in both directions, Pb is 2P
a
P
b

.
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The freedom of path through the set of instruments increases as

the transition probabilities approach one another and is maximal when

the probabilities are equal. There are greater opportunities for

logical scanning to occur when the constraints of relative frequency

diminish.

In addition to transition probabilities between a pair of instru-

ments, there is also a finite probability of observing the same instru-

ment on two consecutive sampling instances. This fact effects empir-

ical data obtained from measurements from multi-instrument tasks in

two ways. First, the measured frequency of observation of instrument

a will fall short of the value predicted by Pa x FFa, samples per

second. The observed frequency of a, FFa, must be corrected,

FF
a

= FF
a

(1-P
a

) = 2W
a

(1-P
a

) if FF
a
= 2W

a
.

Secondly, the probability of an unobservable transition between instru-

ments a and a will equal Pat. The observable transition probability

between instruments a and b, in either direction, must also be

corrected,

P
oab

PaPb
2

2
1-E (P4)

'

Likewise, the observable mean duration of fixation needs correction,

A

D
oa

=
1 -Pa

(k
4 E

a

+ C).

An experimental test using four instruments with different band

widths and five subjects produced results showing the observed trans-
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ition probabilities very close to the calculated probabilities.

Sender's model does have some limitations, but, these limitations

"do not detract from its merit, especially taking its simplicity into

account" (Carbonell, 1966, page 158). One such limitation is the fact

that no control is assumed on the part of the pilot. He is, in essence,

a passive observer who cannot modify the signals. Secondly, there is

mcoststructureMthisrmW.Wle.El can be adjusted to show the

need for tight control, it does not show the critical nature of an

error, that is, there is no error cost. There is also no provisions

for sampling costs, however, in the situation investigated, sampling

costs could be assumed to be zero.

This model may give an aircraft designer help in determining

the number of instruments to include on a panel, but it does not give

the pilot much help. It will predict the number of times an instru-

ment will be looked at and thus gives the pilot an indication of the

relative importance of the various instruments, but it does not spec-

ify and sequence.

Jaime R. Carbonell (1966) also investigated the muli-instrument

sampling problem. However, he tries to predict what instrument

should be observed . As with Senders, he is concerned with pilots of

aircraft.

The pilot has two types of instruments to observe; desired value

instruments, such as air speed, altitude, etc., and threshold instru-

ments, such as indicator lights. All of these instruments compete

for his attention. When he looks at one, he postpones looking at the
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others. Some instruments are "more important" than others. This

urgency is measured by the risk of an instrument exceeding a certain

threshold while not being observed. The risks vary somewhat, depend-

ing on the type of maneuver the pilot is executing. For example,

speed and altitude have a greater importance while landing than during

level flight.

Carbonell's model assumes that the pilot evaluates the risks

involved in not looking at an instrument and tries to minimize this

risk. At each sampling instant, he compares the instruments noting

the probability and cost of exceeding each threshold.

The variables used in this model are defined below:

M = number of instruments

t = observation time

C4(t) = the total cost of looking at instrument j at time t

J C. = the cost associated with exceeding the threshold of

instrument i

P.(t) = the probability that instrument i will exceed the

threshold at instant t

Given the variables

m cPi(t)

cj(t) = z

l -P(t)
- cji,j(t)

i=1

The pilot theoretically will look at the instrument j that makes

C.(t) a minimum. In other words, he will choose the instrument with

the largest value C.P.(t).
J J

The instruments can now be considered to queue for the observer's

attenLioo. Arrivals can be considered lu be coincident with service

completion. The queue discipline will be based on three priority

factors. The first factor is a conditional random number, represent-
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ing the last known value of the instrument. The probability of an

instrument exceeding a threshold will be less if the last reading was

"right on" a desired value as opposed to being near the threshold

limit. The second factor is based on waiting time. The final factor

in the queue discipline is the risk factor. As time increases, the

observer's uncertainty about a particular instrument also increases.

The risk of exceeding the threshold will also increase and approach

one if a sufficiently long period of time has elapsed. Figure 5

shows this growth of uncertainty or risk.

y(0)=Y0

vINII/MA

442)=Y0)=1

113(3f(ti)1Y(0)=Y0) Upper

Thresholds

/4(ti)

Control

Action

Last

Sampling

Instant

t I

y(t2)1

tr
t
2

P(Y(t2)1y(0)=Y0)

mom. 1110

I

Figure 5. Risk Growth With Time

Carbonell [1966]

Lower /

Threshold
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The model represents a priority queueing system with complex

priorities. The priority function developed is,

pi(t) = ai + bi (t-to)

Whered.isarand01111101berrepresentingthelastvahleread,10.is a

constant particular to each instrument (related to the costs, vari-

ances, and divergencies), to is the time of the last reading, and t

is the sampling instant.

In order to solve this problem, Carbonell developed a simulation

program to determine the instrument to be sampled at each sampling

instant. Two examples were given, one in which 110 decisions were

used and in the other, only 70 decisions were used. The various

parameters were changed with the different runs.

Tests were to be conducted to see if changing the parameters

could match actual test results. Carbonell's model may be useful in

explaining actions of pilots, but it is not helpful in determining how

often a pilot should sample. Some of the other limitations of the

model include the fact that the pilot is assumed to be a first order

observer, that is, he observes only the position of the pointer on

any given instrument. No consideration is given to the rate of change

of the pointer. The cost structure is similar to that of Sender's,

a go-no go type situation. Only deviations outside of the threshold

are considered significant.

However, Carbonell's discussion concerning the increase of un-

certainty as time increases are an integral part of the models being

discussed in this thesis.
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Supervisory Sampling

The term supervisory sampling, as used in this paper, will refer

to the situations in which someone must determine when to sample a

process input and what values to specify for the controlled input in

order to maximize the system's value function output.

The uncertainty concepts used by Carbonell have been extended

by Sheridan (1970) to questions that are generally the same as those

in this thesis.

The relationships shown in Figure 3 are repeated in Figure 6.

The variables are defined in a manner consistant with Chapter I, that

is, x is the independent input, y is the controlled input, and V is

the value of the output.

OPERATOR

I

PROCESS

Figure 6. System of Interest to Operator

Sheridan [1970]

V
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It is the controller's objective to adjust the input y in order

to maximize V. Three alternatives are open to him. At one extreme,

he may set y at a value based on his prior knowledge of the process

and not monitor the process at all. At the other extreme, he may

monitor x and V continuously and constantly modify y to maximize V.

Finally, he may adopt a mixed strategy in which he samples x at regu-

lar intervals.

In Sheridan's notation,

x is a random event with known probability density {x}

V(x,y) is the value gained per unit time and has a known

expected value <VIxy> when x and y are specified.

The expected value of V(y) is

<V1y> =f<VIxy> {x} .

x

If the controller makes a decision based only on the prior dis-

tribution {x}, then the best strategy will be to determine <V1y> and

adjust y to maximize this function

<V1> = max <V1y> = max f <VIxy> {x} .

y y x

The situation in which the controller samples continuously corre-

sponds to perfect information. In this case, the best strategy will

be to find a value for y that maximizes V for all x.

<V
2
Ix> = max <V1xy>

y

The expected value of V before x is known will be,

<V2> = f<V9Ix> {x} = f max <V1xy> {x} .

x x y
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In many cases, knowledge of x can be updated periodically. Let x'

represent the controller's state of knowledge about x at some inter-

mediate time, and x = xo at t = 0. The distribution {x'Ixot}t..= {x}.

The best strategy at each t is to optimize y based on the distribution

of x' given xo and t.

<V3Ixoyt> = f <V1x1y> {x'Ixot}

x'

where <VIx'y> = <VIxy>.

<V3It> = f <V3Ixot>{x} since {x} = {x}

x
o

= X[ ax f <VIx1y> {x'Ixot} {x0}.

x
o
y x'

The expected value per unit time averaged over a sampling interval T

is,

1

T

<V
3
> = T f <V

3
It>

t=0

If the cost per sample is C,

<VneeT <Vet C/T*

The optimal strategy is to pick T such that <Vnet
>T is maximized.

Figure 7 illustrates this graphically.
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Sheridan and Rouse (1971) used this theoretical model in com-

paring the behavior of actual subjects in predicting values of a time

series, a second-order digital filter driven by white noise. The

subjects had to "pay" to sample the process, but were rewarded for

correct predictions.

This study revealed that the subjects tended to choose shorter

sampling intervals than, the optimal intervals. Two reasons were

given for this sub-optimal behavior. First, the subjects appeared

unable to predict over longer periods of time without sampling. Sec-
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ond, there appeared to be a tendency toward risk aversion. There was

a certain amount of the "fear-of-the-unknown." The possibility ex-

isted that a major error may occur during a longer sampling period.

The work of Sheridan is an appealing approach to determining

optimal sampling intervals for time-varying processes, and has formed

as a significant reference in the work of this thesis. Sheridan men-

tions one area for future work should include partially random pro-

cesses. This thesis does investigate this area.

Summary

In this chapter, some of the more relevant works in the area of

optimal sampling intervals have been reviewed. The volume of such

work is small. The models developed in this paper use ideas from

some of the articles reviewed, and new ideas to build what is intended

to be, a more refined technique for determining optimal sampling

intervals. Of course, it is not a panacea and will have its limi-

tations. Some of these will be discussed in Chapter VI.
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III. THE LOOK-SEE PROBLEM

Bayesian statistics form an integral part of the models developed

in this paper. A discussion of the concepts involved in this type of

analysis will not be included here, however. The reader who is un-

familiar with these concepts is referred to any elementary book on

Bayesian statistics. An excellent discussion can be found in Morris

(1968).

The processes to be considered in this paper consist of two in-

puts, the independent input x, and the controlled input y, as shown

in Figure 3. The controlled input is used to adjust the value of x

so that the total process input will be equal to the desired value.

This desired value is known beforehand. The system's output will be

a negative value function, that is, a cost or loss function. The

value of this function will depend not only on how successful the

controller is at adjusting the input to equal the desired input, but

also on how often he samples the process. That is, a cost is incurred

every time the controller observes the value of x. The controller

must determine the time interval between samples so as to minimize

the sum of the error cost (assessed on the squared difference between

the actual value of x and the forecast value) and the sampling cost.

As stated in the introduction, the approach to solving the

sampling problem will be to take a simplified approach to the problem

dnd then progress to the more sophisticated problem.
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Model Description

The first model of the general sampling problem to be investi-

gated will be referred to as the "look-see" problem. In this case,

in order to determine the value of x at any given time, the decision

maker needs only to look and see the value. The value of x is pre-

cisely known, that is, the variance of x at the time of sampling is

zero (x is a mathematical variable). There is, however, a cost as-

sociated with looking.

Since the value of x changes with time, it is reasonable to as-

sume that the decision maker's uncertainty about x will increase with

time. Figure 8 illustrates this change in uncertainty. In this case,

the prior distribution, that is, the decision maker's belief about

the distribution of x immediately prior to sampling is normally dis-

tributed with mean equal to and variance equal to

Figure 8. Uncertainty Change

Sheridan [1970]
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If the decision maker were to proceed with this problem based

only on the prior information, his best action would be to assume a

forecast value of x that would be equal to the prior expected value

of x. That is, X(T) = E[X(T)], where T is the time since the last

sample. If the error costs are symmetric about zero and quadratic

costs are used, the instantaneous expected error cost of such a

policy is,

+op

Instantaneous Expected Error Cost = f C[x(T) - x(T)]
2
f(xIT) dx

+.

= C f (x(T)-E[x(T)])
2

f(x(T) dx

= C Vx(T) (3-1)

where f(xl ) is the prior distribution of x given time T5 and Vx(T) is

the variance or uncertainty of x at time T. *

This result is an interesting and important result. It implies

the instantaneous expected error cost is only dependent on the unit

cost of a squared error and the variance or uncertainty of the process.

While the prior distribution must be normal, the expected error cost

is independent of the parameters of this distribution.

The expected error cost per unit time given prior information

for a sampling interval of length T, will be,

1

T

E[Error Cost Per Unit TimelPrior Info.] =TfCVx(T) dT (3-2)

If no sampling is performed, the expected error cost per unit

time given this policy is found by letting the sampling interval

* If the error costs are one-sided, that is, assessed only when the

deviation is positive (negative) and zero when the deviation is

negative (positive), equation (3-1) becomes,

Instantaneous Expected Error Cost = 1/2 C Vx(T).
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approach infinity,

E[Error Cost Per Unit TimelNo Sampling] = lim E[Error CostiPrior Info]

1 T
lim [".f I C dT] =

o

T

f C Vx(T) dT

lim [ ° (3-3)

T-

Since V
x
(T) is assumed to be monotonically increasing and both the

numerator and demoninator in equation (3-3) approach infinity as T

approaches infinity, it can be evaluated by l'Hospital's rule to

yield the following relationship.

E[Error Cost Per Unit TimelNo Sampling] = C lim Vx(T). (3-4)

T-

Equation (3-4) shows the expected error cost per unit time given

a no sampling policy increases as the limit of the variance or un-

certainty increases. This cost will be finite if the decision maker's

uncertainty about the process is bounded above by some finite value.

If the uncertainty approaches a value of A, the expected error cost

per unit time would be CA. If, on the other hand, the variance in-

creases without bound as time increases, the expected error cost will

be infinite. A further discussion about bounded and unbounded un-

certainty functions is included in a later part of this chapter.

The decision maker will be able to determine the value of x

exactly if he samples. This is a characteristic of the "look-see"

problem. Therefore, if he decides to sample he will need only one

sample, that is, one look. His problem, as stated above, is to

determine how often to sample.
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Since only one sample is taken at fixed time intervals equal to

T, the sampling cost per unit time will be S/T. The total expected

cost per unit time for periodic sampling policy will be the sum of

S/T and the expected error per unit time, equation (3-2).

1 T
E[Cost Per Unit TimelSample of 1] = E[C11] = Tf C vx(T) dT + .

(3-5)

The decision maker's objective, as stated before, is to minimize

the expected cost per unit time. To do this, equation (3-5) can be

differentiated with respect to T and set equal to zero. Using the

chain rule of differentiation, this yields,

C T
SE

6 T

[C11]
J Vx(T) dT + Vx(T)

s
2 O. (3-6)

0

The value of T that satisfies equation (3-6) will be the optimal samp-

ling interval, referred to as T*. Because of the complicated form of

this expression, it is not convenient to solve it explicitly for T*

unless the form of the uncertainty function is known. This will be

done in the next section.

However, if an optimal value for T is assumed to exist, equation

(3-6) may be written

T*

T.* f vx(T) dT + C Vx(T*). (3-7)

0

The left hand side of equation (3-7) is equal to the right hand side

of equation (3-5), when T=T*. Therefore, the expected cost per unit

time given an optimal sampling policy will be,
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E[CIT *] = C Vx(T*). (3-8)

In situations in which sampling is performed, the sample infor-

mation has a value to the decision maker. This value, defined as the

expected value per unit time of sample information (EVSI) is the dif-

ference between the expected cost per unit time given no sampling and

the expected cost per unit time given sample information.

EVSI = C lim Vx(T) - C Vx(T*) (3-9)

1.4°°

where the two expected costs are defined in equations (3-4) and (3-8).

Since the sample information will cost the decision maker a

certain value to obtain, the expected net gain, per unit time, of

sample information (ENGSI) is the difference between the EVSI and the

cost per unit time of obtaining this information.

ENGSI = EVSI - S/T* (3-10)

The expressions for EVSI and ENGSI are valid only for situations in

which periodic sampling is optimal.

The next step in the analysis of the "look-see" model will be to

introduce two general classes of uncertainty functions; the unbounded

case, and the bounded case.

Unbounded Uncertainty

There may be some instances when the decision maker's uncertainty

about the process becomes very large as time increases and increases

without bound. A random walk process would be an example. Depending

on the circumstances, there could be a number of equations that

would express this growth of uncertainty. One such equation would be,
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V x(T) = kT (3-11)

where k is a constant greater than zero. Solving equation (3-6) for

this example (when C > 0) results in the following:

r T*

J

( krC ...0 T*

S
)a + C- (kT*) -

(T*)2 o (T*)

- C [k(T2)
2

2

0] + .-Cf.k (kT*) = 0

(T*)
(T*)

- Ck
+ Ck =

2
(T*)2

T* = (3-12)

This is an interesting and intuitively appealing result. It

shows that if the cost of sampling increases, the optimal sampling

interval will increase. That is, the more expensive it is to take a

sample, the less often the decision maker will sample. Also, the

more costly an error, the more often the sampling will be performed.

Finally, the faster the rate of growth of the decision maker's un-

certainty, the more often he should sample.

If equation (3-11) is substituted into equation (3-8), the

expected cost per unit time of this policy can be found.

E[C11] = CkT*

=Ck /TS
kC

=VTOT. (3-13)

Again, this appears to be a logical result. When either the error

cost, the sampling cost, or the uncertainty constant increases, the
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expected cost per unit time will also increase.

As mentioned in the beginning of this section, Vx(t) = kT, is

just one of the many ways the unbounded variance can be expressed, but

solutions to different functions would be handled in a similar manner.

Another alternative form of the uncertainty to be studied in

this section is the bounded case.

Bounded Uncertainty

In many instances, it is reasonable to assume that the decision

maker's uncertainty about the process will be bounded above by some

value. This uncertainty will not increase without bound, but will

approach a limiting value. Without sampling, the uncertainty function

may resemble the function in Figure 9a. However, with sampling, the

picture would change to resemble Figure 9b.

A reasonable example of such a function (again, this is just one

of many possible examples) is

Vx(T) = A (1 - e-I/T) (3-14)

where A and b are constants, greater than zero. The expected cost per

unit time given no sampling is found by substituting the function in

equation (3-14) into equation (3-4).

E[Cost Per Unit TimelNo Sampling] = C lim A(1
_e-bT)

T4w

= CA (3-15)
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Uncertainty

Uncertainty

Upper Bound

Time

a) Without Sampling

Time of

Sampling

Time of

Sampling

Time of

Sampling

T Time

b) With Sampling

Figure 9. Uncertainty Function

In order to determine the optimal sampling interval T*, the

uncertainty function must be substituted into equation (3-6) and

solved. Using elementary calculus, this will reduce to,

CA-bSe-bT (i
+ bT*) =

CA -bS

* See Appendix 1 for mathematical derivation.
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where C is again assumed to be greater than zero. Three statements

can be discerned from this equation, relating the optimal sampling

interval to the process parameters.

1. T* = 0 if and only if S = 0. This situation corresponds to

continuous monitoring.

2. 1-* = ... if and only if CA < bS. This situation corresponds

to no sampling.

3. 1** is contained on the open interval (0, in all other cases.

Periodic sampling will be optimal.

Given numerical values for the process parameters, several methods

can be used to solve for the optimal sampling interval. A trial and

error approach or the Newton-Raphson method are two examples. Appendix

2 discusses some of these solution techniques. Figure 10 presents a

third approach, a graphical solution.

In order to use this graph, the value C = (CA - bS)/CA must be

calculated. The value for T corresponding to C is then read from the

graph. The optimal sampling interval, 1*, is found by dividing T by

b. The expected cost for this optimal policy, the EVSI, and the ENGSI,

then can be determined by substituting the appropriate information into

equations (3-8), (3-9), and (3-10) respectively.

Table I presents a numerical example of a bounded uncertainty

function.

An analysis of this example, and in fact any example in which

V
X
(T) = A(1-e

-13T
) reveals the fact that as the cost of sampling in-

creases, sampling is performed less often. As the cost of an error

increases, or the limit of the uncertainty is increased, sampling is

performed more often. Finally, as the rate of growth of uncertainty

increases, the sampling interval will decrease. These results are
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Vx(T) = A (1 -
e-bT)

CA-bS
=

CA

T* = T/b
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Figure 10. Graphical Solution Technique
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TABLE I. LOOK-SEE PROBLEM: BOUNDED UNCERTAINTY EXAMPLE

V
X
(T) = A(1-e

-bT
)

A = 2.0 (feet)2

b = .25 (hours)-1

C = $10/(feet)2-hour

S = $20

E[Cost Per Unit TimelNo Sampling] = CA = $20/hour

CA-bS 20-5
C

CA 20
= .75

From Figure 8, T = .96

Therefore, T* = 3.84 hours

E[Cost Per Unit TimelNo Sampling] = 10[2.0(1-e 25(3.84))]

= $12.35/hour

EVSI = $20.00/hour - $12.35/hour

= $7.65/hour

ENGSI = $7.65/hour - $20/3.84 hours

= $2.44/hour

consistant with those obtained in the unbounded uncertainty case.

Again, the results are intuitively appealing.

Summary

A model has now been developed to determine optimal sampling

intervals in which Vx(0) = O. That is, the value of the process is

known precisely whenever a sample is taken. Because it is known

precisely, the sample size needs never to be greater than one.

In order to determine the optimal sampling interval, three pieces
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of information must be known. First, the cost of taking a sample,

the second item is the quadratic error cost, and finally, the func-

tional form of the decision maker's uncertainty about the process,

whether bounded or unbounded, and the values of the associated param-

eters. The optimal sampling interval can then be found by substitut-

ing this information into the appropriate equation contained in this

section.

The next step in the logical development of a general model will

be to consider the case where Vx(0) # 0. The following chapter pre-

sents such a model.
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IV. THE SAMPLING ERROR PROBLEM

The previous chapter laid the ground work and developed the con-

cepts necessary to solve a more general class of sampling interval

problems. The "look-see" problem was a simplified, but by no means

trivial example of the general problem.

Model Description

A more difficult and in some instances a more realistic problem

occurs when the process input, x(T) is not directly observable to the

controller. In this case, the value the controller observes is not

the exact value of the process input as it was in the "look-see"

problem but contains a noise or error component. In many instances,

this error may be the variance of the instrumentation used to record

the input.

0.(T) = x(T) + e.(T).

Since more than one observation may be taken at the time of sampling,

the subscripts of Oi(T) and ei(T) refer to specific observations.

Thus,

n

(T) = E 04(T)
n

where n is the number of observations per sample.

If the variance of e(T) is a
e

2
, then the variance of 0 (T) will

be a,/n. Unlike the "look-see," performing more observations at the

time of sampling will reduce the uncertainty. Therefore, the optimal

sample size will also need to be determined. This problem will be

dealt with later.
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The value of x(T) is again considered to be a realization of a

random process. However, since the value of x(T) immediately after

sampling is not precisely known, Figure 8 must be revised. Figure 11

shows this revision.

Figure 11. Uncertainty Change With Time

Variance Restriction

The purpose of sampling is to reduce the decision maker's un-

certainty about the state of the process. In the "sampling error"

problem, sampling will not, however, reduce the uncertainty at the
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time of sampling to zero. The variance at the time of sampling (when

T = 0) referred to as the posterior variance (V
po

), will be a function

of the sample size n, and the sampling interval T. The decision

maker's uncertainty about the process an instant before sampling (when

T = T) will be referred to as the prior variance (V
pr

). The uncer-

tainty or variance function itself will be a function of the two

variables previously mentioned, and the time since the last sample,

T. Figure 12 shows this relationship.

U

n

e

r

t

a

n

t

y

V
pr

V
po

Time

Figure 12. Prior and Posterior Variance Relationship
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Because the prior distribution of x(T) has been assumed to be

normally distributed, and the samples that are taken are also normally

distributed, then as shown in Morris (1968), the posterior distribu-

tion will also be normally distributed. The prior and posterior

variances will be related as follows:

VV 2

V
po V + nV

pr
, where V = ae.

pr

With this in mind, the development of the necessary equations to

describe this model will follow.

Solution Development

Given the quadratic cost assumption as previously discussed and

the decision rule to adjust the controllable unit y(T) on the basis

of a forecast value of x(r), the expected error cost at any time T,

after a sample given a sampling interval of T, and a sample size of n,

is,

Instantaneous Expected Error Cost = CVx(n,T,T). (4-1)

This solution is derived in the same manner as equation (3-1). The

logic used to develop the remaining equations is similar to the logic

used in Chapter III.

If no sampling is performed, y(T) is adjusted on the basis of

prior information about the process. In this case, the sampling int-

erval will approach infinity. Using l'Hospital's rule, the expected

cost per unit time given this situation will be,

T
E[Cost Per Unit TimelNo Sampling] = lim [C.1T. f Vs,(n,T,T) dT]

o A

= C lim V(n,T,T). (4-2)

T-x. A
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If the uncertainty function is unbounded as T approaches infinity,

the expected cost will also approach infinity. If, on the other hand,

the uncertainty is bounded above, the expected cost per unit time will

be the quadratic error cost times this limiting value. The implica-

tion is that sampling will be optimal if the uncertainty is unbounded.

If there is a sampling cost, whether a fixed or setup cost, S,

or a variable or unit cost, U, the expected cost of continuous moni-

toring will be infinite. This would imply a continuous sampling

policy will never be optimal.

The extreme cases of no sampling and continuous sampling have now

been investigated for the "sampling error" problem. The results are

very similar to those obtained in the "look-see" problem. The next

step is to look at the case of periodic sampling. Here too, the de-

velopment and results will be similar to those in Chapter III.

The expression for the expected cost given periodic sampling is

relatively easy to obtain but, as will be seen later, may be difficult

to explicitly evaluate. Following the same steps as in the previous

chapter;

T

E[Cost Per Unit Timein observations] =
T

f C V
x
(n,T,T)dT + S+Un

o T

(4-3)

It is the decision maker's objective to minimize this expression.

Therefore, the value of T that will minimize this cost, given a fixed

number of observations per sample, will be the optimal sampling inLe-

val T* for that sample size.
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In order to attempt to derive an explicit solution for T*,

equation (4-3) must be differentiated with respect to T and set equal

to zero.

r

T

T* r

x
* (ST*

T* V (n,TIT)

2
f V

x
(n,T*,T)dT + [f dT + V

x
(n,T*,T*)]

T*

S+Un

T*
2

0 (4-4)

This equation cannot be solved explicitly until the functional form of

the uncertainty is known. This will be done in a later section.

Equation (4-4) can, however, be rewritten in the following form,

C
T* T* 6 V

x
(n,T*,T)

T*
f Vx(n,T*,T)dT + S+±..;11 C[f

a*
dT + V

x
(n,T*,T*)]

o o

(4-5)

The right hand side of equation (4-5) is equal to the left hand side

of equation (4-3) when T = T*. Therefore, once the optimal sampling

interval is known for a given sample size, the expected cost per unit

time can be found using equation (4-6).

T* 6 V(n,T*,T)

E[Cost Per Unit TimeiT*,n] = C[f 1(s). dT + V
x
(n,T*,T*)]

(4-6)

It should be noted that equation (4-6) gives the expected cost per

unit time given a sample size of n only when the optimal sampling

interval has been determined. As n increases, so does the optimal

sampling interval, but the expected cost will decrease to a minimum

and then begin to increase. The optimal sampling policy will be to

choose the sample size with the lowest expected cost.
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> E[Cost1T71]n E[CostITI*1+1]n (4-7)

The value of n that satisfies equation (4-7) will be the optimal

sample size, referred to as n*. The optimal sampling interval, T**

will be equal to T.k.

In order to solve equation (4-7) for n*, the sampling interval

and expected cost must be calculated for a sample size of one and for

two. If a sample size of one is optimal, E[CostITT] will be less than

E[CostIT*]. If it is not, n must be increased by one until the minimum

cost is found.

The optimal policy is actually determined using a two stage dy-

namic programming process. The first step is the calculation of T*

while fixing the value of n. Then, in the second stage, the value for

n* is determined on the basis of minimum cost.

Since the functional form of the uncertainty affects of optimal

sampling policy, the next step will be to examine the special cases

where the uncertainty function is either unbounded or bounded. This

concludes the development of the general equations for the "sampling

error" problem.

Unbounded Uncertainty

The first uncertainty function case to be looked at is the one

in which the uncertainty increases without bound as time increases.

There are many ways to express such a function. A discussion on

choosing an appropriate one is contained in Chapter V. One such

example is,
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,

Vx(n,T,T) = (V/n)(1
_e-bT)

k

ebT
). (4-8)

Notice that V
x
(n,T,T) increases to infinity as T increases and V

po

(V
x
(n,T,O)) and V

pr
(Vx(n,T,T)) satisfy the prior, posterior relation-

ship presented earlier.

If equation (4-8) represents the uncertainty function, the

optimal sampling interval can be found by substituting this expression

into equation (4-4). With some algebraic manipulation, this reduces

to,

(S

+Un)bn

-2CV
bT* sinh (bT*)-cosh (bT*)

(S+U

(4-9)*

where sinh (bT*) = e
bT*

- e
-bT*

and cosh (bT*) = e
bT*

+ e
-bT*

.

2 2

The expected cost per unit time given a sample size of n and the

corresponding optimal sampling interval is found using equation (4-6).

E[Cost Per Unit TimelT*,n] = 2nV sinh (bT*). (4-10)

There are numerical methods available to solve the preceding

equations. Appendix 2 mentions some of the more established techni-

ques. Table II presents a numerical example of an unbounded variance

function in which the uncertainty function was substituted into

equation (4-3) and minimized using a Golden Section Search procedure.

The solutions were verified using the Newton-Raphson numerical approx-

imation method to solve equation (4-9). The computer programs used

for this example are contained in Appendix 2. In this example, the

optimal policy would be to take six observations every seven hours

and twenty minutes. This policy would result in an expected cost of

* See Appendix 3 for mathematical derivation.
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$10.15 per hour.

TABLE II. SAMPLING ERROR PROBLEM: UNBOUNDED UNCERTAINTY EXAMPLE

Vx(n,T,T) =(V/n)(1-e
-bT

) (e
-bT

)

b = .25 (hour)-1 V = 1 (foot)2 S = $15

U = $5/observation/sample C = $10/(feet)2-hour

n(obs/sample) T*(hours) E[C1T*]n ($ /hour)

1 2.68 $14.42
2 3.98 11.68
3 5.02 10.74
4 5.89 10.34
5 6.66 10.18
6 7.33 10.15 *
7 7.94 10.20

ENGSI and ENSI are infinite since V
x
(n,T,T) is unbounded.

* Optimal Policy

Bounded Uncertainty

In many situations, there is an upper limit on the decision

maker's uncertainty. The uncertainty approaches, but does not exceed

a certain upper limit. An example of such a function is,

Vx(n,T,T) = n82(1
_e-bT)2

+ B(1
_e-bT)

(4-11)

V - nB(1-e
-bT

)

where B =
VA

V + nA

The limit of Vx(n,T,T) as T approaches infinity is A.

The solution to this example, is somewhat more complicated than
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the previous examples. The major difficulty occurs when the variance

is substituted into equation (4-3) or (4-4). The term f (n,T,T)dT

o A

is difficult to explicitly evaluate. Tables of indefinite integrals

can provide a solution, however, the solution will be correct only for

certain values of the parameters. The values of the parameter in this

example make some of the restrictions impossible to satisfy. For

example, one term in the solution involves LN (1/(1-(V/nB))). Obvi-

ously 1-(V/nB) must be greater than zero. This means B must be

greater than V/n. Since B is defined as VA/(V+nA) it becomes clear

after some algebraic manipulation that B will never be greater than

V/n since V,n, and A are all greater than zero. Therefore, the

solution by indefinite integration is inappropriate for this example.

A numerical approximation of the integral must be used. Using the

trapezoidal method of integral approximation and the Golden Section

Search procedure to find the minimum of equation (4-3) an answer can

be found when the parameter values are specified. Table III shows the

results of such an example. Again, the computer programs are shown

in Appendix 2.

In the example presented in Table III, the optimal policy would

be to take five observations every seven hours and thirty-six minutes.

The expected cost of such a policy will be $9.13 per hour.



TABLE III. SAMPLING ERROR PROBLEM: BOUNDED UNCERTAINTY EXAMPLE

Vx (n,T,T) =
n82(1-e-bT)2

-bT
B (1-e

-bT
)

V - nB(1-e )

VA
where B =

V+nA

A = 4.0 (feet)2 C = $10/(feet)2-hr

S = $15 b = .25(hours)-1

U = $5/observation/

sample

V = 1 (foot)2

n(observations/sample) T*(hours) E[CIT*]n ($ /hour)

1

2

3

4

5

6

EVSI
n*=5

= 4(10) - 9.13

= $30.87/hour

3.55 11.81

4.91 10.06

5.97 9.43

6.86 9.19

7.63 9.13 *

8.31 9.16

ENGSI
n
*
=5

= 30.87 - 15 + 5(5)

7.63

= $25.63/hour

* Optimal Policy

Sensitivity Analysis

52

A sensitivity analysis performed on the two examples presented

in this chapter resulted in some interesting observations concerning

the changes in the optimal sampling interval and the optimal sample
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size as one of the three cost parameters (C, S, or U) was varied

while holding the other values constant. The general results were

the same in both the unbounded and bounded uncertainty examples. The

following discussion therefore refers to both examples and should

apply to the general "sampling error" problem.

As was mentioned in a previous section, for a given set of param-

eter values, as the number of observations per sample is increased,

the optimal sampling interval increases. That is, the time between

samples will be longer if the sample size is larger.

The first results of the sensitivity analysis concerns the change

in T*, given a fixed sample size, while varying one of the cost param-

eters and holding the remaining two constant. The analysis shows;

1) as the quadratic error cost C, increases, the optimal

sampling interval T*, decreases;

2) as the fixed sampling cost S, increases, T* increases,

3) as the variable or unit sampling cost U, increases, T*

also increases.

In other words, given a fixed sample size, the more costly an error,

the more often the decision maker should sample; the most costly the

setup charge for taking a sample, the less often he should sample;

and finally, the more costly it is to make an observation, the less

often he should sample. These three results are intuitively appealing.

Also,

1) if the increase of C is great enough, n* increases;

2) if the increase of S is great enough, n* increases;

3) if the increase of U is great enouah, n* decreases.

The meaning of "great enough" will be explained in more detail later

in this section. For the present, assume this means doubling the
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value of the parameter. Then, according to the previous results:

when the increase in the cost of an error is great enough, the sample

size should be increased in order to reduce some of the uncertainty;

when the setup charge is increased enough, more observations should

be made each time a sample is taken; and, if the cost of making these

observations is increased enough, the number of observations per

sample should be decreased. Once again, these results are to be

expected.

If n is thought of as a continuous variable rather than the

discrete variable it actually is, the preceding statements could be

made without reference to a "great enough" increase. For instance,

an increase in C, would cause an increase in the optimal sample

size. However, since n is a discrete variable, there are intervals

of values for C (or S or U) for which a specific value of n is

optimal. The length of these intervals is a function of the sample

size. While holding the other parameters constant:

1) when C increases, the length of the interval for which n

is optimal is less than the interval for which n+1 is

optimal;

2) when S increases, the length of the interval for which n

is optimal is less than the interval for which n+1 is optimal;

3) when U increases, the length of the interval for which n is

optimal is greater than the interval for which n+1 is optimal.

Thus, when either C or S becomes large, the optimal sample size will

be large and the interval for which this sample size is optimal is

also large. When U becomes large a sample size of one will be opti-

mal. The interval for which one is optimal will be very large.

Figure 13 presents a graphical display of the previous results.
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In each graph, there is a family of curves representing optimal

sampling intervals for given sample sizes. The bold lines represent

the optimal sampling policies. The optimal policies were determined

on the basis of minimum expected cost per unit time.

Notice that as C increases, T* decreases on a given interval.

However, there exists a critical value where taking an additional

observation with a longer sampling interval results in the same ex-

pected cost per unit time. A further increase in C will cause an

increase in the optimal sample size and a jump in the optimal sampl-

ing interval. Still further increases cause a decrease in T* until

another critical value is reached.

The opposite situation occurs when U increases. Within a given

interval, T* increases until a critical value is reached. A value of

C to the right of this point, causes a change in the optimal policy.

The new policy will be to take one less observation at the value of

1-* less than the previous value.

When S increases, the value of T* increases within a given in-

terval. When a critical value of S is reached, the optimal sampling

interval increases as does the optimal sample size.

Summary

Once the groundwork was laid in Chapter III for determining

optimal sampling intervals, the solution to the "sampling error"

problem was fairly straightforward.

Chapter IV developed the equations needed to determine an
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optimal sampling policy, when the variance at the time of sampling is

not equal to zero, once the functional form of the uncertainty is

known. The optimal policy will consist of the optimal sampling

interval and the optimal sample size.

Since the solutions are heavily dependent on the functional form

of the decision maker's uncertainty, two forms were introduced,

unbounded and bounded uncertainty. Numerical examples were given for

both situations. Although solutions to these examples are difficult

and time consuming to obtain using hand calculations, a computer will

provide speedy, accurate answers.

A sensitivity analysis performed on both examples yielded the

same general results. These results are assumed to be applicable to

the general class of "sampling error" problems.

Since the uncertainty function is a major part of the analysis

of this problem, the following chapter discusses the various interp-

retations of the uncertainty and methods for determining it.
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V. PHYSICAL INTERPRETATION OF THE UNCERTAINTY FUNCTION

In the previous chapters, discussions concerning the uncertainty

function, V
x
(n,T,T), assumed that this function was known. It was

mentioned that the functional form of the uncertainty could be deter-

mined by objective data or subjective estimation, but the method of

determination was not discussed. The purpose of this chapter is to

discuss these methods.

Objective Uncertainty

In situations in which there are historic records of the process

to be sampled, it may be possible to develop an objective estimate for

the uncertainty function.

In one situation, the values of x(t) and x(t+T) are considered to

be multi-variate, normally distributed random variables, both with mean

ux and variance p(T)cqi. The term p(T) is the autocorrelation function

and a2 is the process variance. If the probability distribution of

x(t) equals the probability distribution of x(t+T), the process is

strongly stationary and the conditional probability of x(t+T) given

x(t) will be as follows;

f(x(t+T)1x(t)) = N(ux+p(i)(x(t)-px), cl((1-p2(7.))).

When a sample of size n is taken at time t

where 01(t) = x(t) + ei(t)

n
and 6

I

(t) = 04(t)

u i=1

then O(t) = N(x(t), a:/n).
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If the prior distribution is normally distributed and the sample

observations are also normally distributed, then, as discussed in

Chapter IV, the posterior distribution of x(t) given -NO and prior

information will also be normally distributed when mean 11; and variance

a-2
X

Po(x(010(t), Pr) = N(11;, a;(2) (5-1)

+.

f(x(t+-0(6(t), Pr) = f f(x(t+T)(x(t)) f(x(t)(O(t), Pr) dx(t)

Therefore,

= N(Px P(T) (Px P
x
)3 a2 P2(T) (a2 a-2)) (5-2)

x x

(Morris, 1968)

V (n,T,T) = a2 - p2(T) (a2 - a-2)
(5-3)

x x

and V
po

= V
x
(n,T,O)

x

a2
-

a2 + a-2 because p2(0) = 1

x x

= a-2
(5-4); as stated in (5-1)

V
pr

= V
x
(n,T,T) = a2 - p2(T) (a2

- a-2). (5-5)
x

In order to determine the value of a-2, the equation relating the

prior variance to the posterior variance that was presented in Chapter

IV must be used.

V

V.V
pr

po V + nV
pr

v(a2 p2(T) (a2 a-2))
x x

therefore, a-2 (5-6)
V+n(a2 - pz(T)(Gz u'zr

With some basic algebraic manipulation, this equation will reduce to

a quadratic equation from with a)-(2 can be determined.
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+ b
2

- 4ac
a (5-7) since b > 0A 2a

and ac < 0

where a = n p2(T)

b = (a2 + na2) (1-a2(T))

c = -a2 a2
e

(1-p2(T))

In order to illustrate the use of the objective data, two ex-

amples will be given.

Look-See Example

In the "look-see" problem, the uncertainty function is only a

function of T. Also, the prior variance, a;2 is zero, since at the

time of sampling the process value is known precisely. Therefore,

equation (5-3) will reduce to,

Vx(T) = a; (1-p2(T)). (5-8)

If the autocorrelation function of the process is e
-kT

, then

Vx(T) = ax (1-
e2kT). (5_9)

Furthermore, if U2 is referred to as the constant A,

Vx(T) = A (1-e
-21).

(5-10)

Equation (5-10) is identical to equation (3-12), the examples used in

the section in Chapter III concerned with bounded uncertainty functions,

when k = b/2.

This is, of course, just one example of an autocorrelation func-

tion. The determination of the uncertainty function for different

functions would be handled in a similar manner.
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Sampling Error Example

In using objective data in the "sampling error" problem, two

pieces of information are needed in addition to the autocorrelation

function. These two items are the process variance, a and the error

variance, a:. With this information and equations (5-3) and (5-7),

V
x
(n,T,T) can be determined and substituted into equation (4-3). A

Golden Section Search or similar procedure can be used to minimize the

function and determine T* for a given sample size. The same method as

presented in Chapter IV can be used to determine n*. Table IV presents

the results of an example. These results were obtained using a Golden

Section Search method. The computer program used to solve this ex-

ample is contained in Appendix 2.

TABLE IV. SAMPLING ERROR PROBLEM: OBJECTIVE UNCERTAINTY EXAMPLE

p2(T) e-bE = 4.0 (feet)2 ae = 1.0 (feet)
2

b = .25(hr)-1 C = $10/(feet)2-hour

S = $15 U = $5/observation/sample

n(obs/sample) T*(hours) E[CIT*]n($/hour)

1 2.56 23.39

2 2.94 23.08 *

3 3.29 23.84

EVSI = 4.0(10)-23.08

= $16.92/hour

ENGSI = 16.92 - (15 + 5(2))

2.94

= $8.42/hour
* Optimal Policy
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A method has now been developed from which objective data can be

used in determining the uncertainty function. The next step in this

analysis is to investigate the use of subjective data.

Subjective Uncertainty

If records are not available to the decision maker concerning the

autocorrelation function, he must rely on another method for determin-

ing uncertainty function. Two options available to him include a sub-

jective estimate of the autocorrelation function, or a subjective

estimate of the entire uncertainty function. A brief discussion of

these two alternatives will follow.

Autocorrelation Function Estimation

Since it has been assumed that the decision maker is relatively

familiar with the process, he may have an estimate of the autocorrela-

tion function. He may be able to sketch the function directly, from

which the equation can be derived, or a subjective estimation procedure

may be used. One such procedure is a paired comparison method in which

several possible shapes of the autocorrelation function are shown to

the decision maker, one pair at a time. He is then asked to decide

which curve better expresses his belief about the process. The various

combinations of pairs are presented to him and he is asked to make a

decision for each pair. After this process is finished, the results

for each test can be used to determine the curve that best fits the

decision maker's belief about the autocorrelation function.
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Once this function has been determined it can be considered

"objective" and substituted into the appropriate equations in the first

section of this chapter.

Uncertainty Function Estimation

If the decision maker is unsure about the shape of the autocor-

relation function or is unfamiliar with the concept of autocorrelation,

it may be advisable to subjectively estimate the uncertainty function

itself.

The first step in developing this estimate is to obtain a func-

tional relationship between the sampling interval T, and the prior

variance V
pr

(V
pr

= Vx(n,T,T)). The prior variance should increase as

the sampling interval increases. This increase may be unbounded or

bounded. Once the decision maker has determined whether the uncertainty

is unbounded or bounded, a paired comparison test can be performed to

determine the functional form of the prior variance.

Once Vpr is known, the posterior variance, Vp0, can be found using

the equation relating Vpp to Vpr.

V Vpr

V
po V + n Vpr

When the prior and posterior variance have been determined, the

uncertainty function Vx(n,T,T) can be developed. For simplicity, it

will be assumed that Vx(n,T,T) will be in one of the two following forms.

Vx(n,T,T) = Vp0 + X. (5-11)

or Vx(n,T,T) = Y Vp0. (5-12)

There are admittedly many forms the uncertainty can take, however,
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these forms would be very difficult to obtain. The amount of effort

needed could not be justified since any form is only a subjective ap-

proximation. At this point, the uncertainty function cannot be drawn

unless the sampling interval is known. Therefore, it is questionable

whether the decision maker could make a valid distinction between a

function in the form of equation (5-11) or (5-12) and a function of

another form.

The functions X and Y will be a function of the time since the

last sample, T. Since Vx(n,T,T) = Vp0,

V
po
+ X' = V

pr
(5-13)

or Y' V
po

= V
pr

(5-14) when T = T.

Therefore, given equations (5-13) and (5-14), X'and Y' can be found.

The solutions show X' and Y' as functions of T. To obtain the final

estimate for the uncertainty function, T must be set equal to T for the

X' and Y' terms (X = X' when T = 1). Finally, the decision maker must

determine which of the final forms of equations (5-11) and (5-12) best

fits his process.

To illustrate the preceding procedure, suppose it has been deter-

mined that,

V
pr

= V
x
(n

'

T
'

T) = (V/n) (e
bT

- 1)

then, V
po V

V

+

V

nV
Pr

= (V/n) (1 - e
-bT

)

pr

so, (V/n) (ebT - 1) = (V/n) (1
_e-bT)

or (V/n b
bT

- 1) = (V/n) (1-e-bT) Y'.

Solving these equations yields,
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_ (V/n) (1 e
-bT

)

2

and X
(V/n) (1 - e

-bT
)

2

e
-bT

e

Y' = e
bT

and Y = ebT.

Therefore,

Vx(n,T,T) = (V/n) (1 - e
-bT)

+
(V/n)

-b(1

ebT)2

(5-15)

e

or Vx(n,T,T) = (V/n) (1 - e
-bT

) (e
bT

) (5-16)

Notice that equation (5-16) is the function used in the example in the

unbounded section of Chapter IV.

Summary

This chapter has attempted to give a physical interpretation to

the uncertainty function Vx(n,T,T). A determination of this function

can be made using objective or subjective data.

The use of objective data involves determining the autocorrelation

function between x(t) and x(t+T). The uncertainty function can be de-

termined from the autocorrelation function.

If the decision maker does not have this objective data available

to him, he may attempt to estimate the autocorrelation function or the

prior variance function, Vpr.

There may be some discussion concerning the methods used in devel-

oping these functions from subjective data. The argument will be that

these functions may be something other than one of the functions shown

the decision maker. However, since the functions will be subjective

estimates, the decisior maker will not be able to distinguish between

subtle differences between two different functions. Therefore, only
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common functions, such as the autocorrelation function e
-bT

, need be

shown him. Refinements can be made only if there is an abundance of

actual data available.

The uncertainty function is one of the major variables in the

determination of an optimal sampling policy. The ability to use ob-

jective or subjective data to determine this function should allow for

a much broader application of the procedures developed in this thesis.
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VI. SUMMARY AND CONCLUSIONS

The sampling interval problem, as defined in this thesis, refers

to any situation in which someone must determine how often a time-

varying process should be sampled. Sampling refers to the actions

that must be taken in order to monitor the process. There are many

examples where the sampling interval problem exists. The monitoring

of continuous manufacturing processes or the publication of business

reports are just two examples.

In this thesis, a theoretical model, based on a Bayesian analysis,

is developed, from which the optimal sampling interval can be deter-

mined. The information needed to use this model includes sampling

costs, a quadratic error cost, and a normally distributed measure of

the growth of the uncertainty of the process with time. The sampling

interval with the least expected cost per unit time is considered opti-

mal.

The first step in developing a general model to solve this prob-

lem was to look at a specific, but simplified application. This is the

"look-see" problem. In this problem, the value of the process is known

exactly whenever the decision maker samples or looks at the process.

His uncertainty immediately after sampling will be equal to zero. The

sample size needs never be greater than one, since nothing can be gain-

ed by additional sampling. Equations were developed from which the

optimal sampling interval can be determined once the functional form

of the uncertainty is known.

The next step was to examine the case where the uncertainty im-
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mediately after sampling was not equal to zero. In this case, an

error term is introduced into the reading. This is the "sampling

error" problem. Additional samples will tend to decrease the amount

of uncertainty that exists concerning the state of the process. There-

fore, in addition to determining an optimal sampling interval, an

optimal sampling size must also be found. The solution to this prob-

lem involves determining the optimal sampling interval in a manner

similar to the "look-see" problem for different sample sizes and

choosing the sample size with the lowest expected cost per unit time.

To illustrate the use of the solution techniques that were devel-

oped, two examples were presented for each problem. In one case, the

uncertainty was unbounded, that is, it increased without bound as

time increased. In the other case, there was a limit that the un-

certainty would never exceed. The uncertainty was considered bounded.

A sensitivity analysis was performed to show the effect on the

optimal sampling policy when one of the cost parameters is changed.

Although several examples were used, they did not represent "real

world" examples. One of the obvious areas for future research is in

the application of the models developed here to a practical example.

The purpose of this paper was to develop a general model that could

be adopted to specific situations and from which more sophisticated

models could evolve.

There are, of course, some significant areas for future research.
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Some of the items to be mentioned may be more important than others

and may have a larger impact on the sampling intervals. The order in

which they are presented is not in order of importance.

One area that can and should be explored concerns the effect of

different error cost functions on the optimal sampling intervals.

While quadratic costs can approximate linear and step cost functions,

it may be found that the approximation is not sufficiently accurate.

A second area for future research involves the correction action.

The time needed for correction should be investigated. In this paper

the assumption has been made that an instantaneous correction is pos-

sible. In some instances, performing the necessary adjustments may

take a significant amount of time during which the process will remain

out of control" or have to be shut down. The cost of correction may

also be significant.

An area that may prove very interesting is in the area of para-

metric analysis, showing the effects of simultaneous changes in the

costs.

A final area in which additional research may prove useful involves

multi-process sampling. One method of determining sampling intervals

when several processes are involved is to determine the interval for

each process separately. This method will be adequate if the processes

are independent, but a different approach must be used if the process-

es are related in some manner. In this situation, the uncertainty

functions would have to be revised to reflect this dependence.

There are undoubtedly other extensions to the research presented
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in this paper. Solutions involving the items discussed will not solve

the entire sampling problem, but would provide solutions to a wider

range of processes.

In conclusion, the models in this paper provide a general approach

to the sampling interval problem. While not claiming to be a panacea,

it should provide insight into the problems of this nature and set the

stage for "scientific" methods for determining optimal sampling inter-

vals.
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APPENDIX 1

DERIVATION OF EQUATION (3-16)

V x(t) = A(1 - e-bt), (3- 14)

from equation (3-6),

T*
-C

(T*)' 0

*. S

T*)
2

f A(1 - e )elT + C-
*
A(1 - e

bT
) = 0

T
(

T*
* -S

5 (1 - e-
t
)th

bT
- T*(1 - e ) =

CA
0

1 -bT* 1

T* + b b- - T* + T*e-bT* =
CA

bS
bT* + e-bT* - bT* + bT*e-bT* = 1 -

CA

e-bT* (1 + bT*)
CA

CA

- bS
(3-16)
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APPENDIX 2

SOLUTION TECHNIQUES

Given the various solution equations presented in this thesis,

there are several ways in which the optimal sampling intervals can be

determined. The purpose of this section is to explain some of the

techniques that can be used and illustrate how the solutions were ob-

tained to the examples presented in this paper.

The first example presented was the unbounded uncertainty case in

the "look-see" problem. Solving the appropriate equation when

V
X
(T) = kT, yields an explicit equation for T*, as shown in equation

(3-12). Therefore, no special solution techniques were needed. If

the uncertainty function was something other than the one presented,

one of the methods to be discussed may be needed.

In the second example of Chapter III, the bounded uncertainty

case, an explicit equation is not given, what is given is,

-
e
-bT*

(1 bT*)
CA

CA

bS
(3-16)

One way to solve this equation is a trial-and-error method. Once the

right hand side of the equation is calculated, various values for T*

can be tried until the correct value is found. Another technique is

to use the graph in Figure 10. In order to draw this graph, the values

for bT* were calculated for various values of (CA-bS)/CA using the

Newton-Raphson method. Given a function, f(x), the solution is found

using an iterative process with the following relationship
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X X.
1+1 f'(Xi)

f(Xi)

Since equation (3-16) was easily differentiated, a computer program

was written to solve the equation for values of C ranging from 0.01

to 1.00 in increments of 0.01. The listing of this program is at the

end of this Appendix and is labeled Program A.

In the unbounded example contained in Chapter IV, equation (4-9)

can be solved by trial-and-error or by the Newton-Raphson method.

Program B is a Newton-Raphson solution to this example. Although it

was not done, Program B could be easily modified to compute values for

bT* for any number of values for the right side of this equation. This

would provide a graphical solution procedure.

Another method that can be used to solve this example is to use a

Golden Section Search method on equation (4-3) to minimize this equa-

tion. This eliminates the need to calculate the integral of a partial

derivative. If differentiation is difficult, this procedure is very

helpful. Since the objective is to minimize the expected cost per unit

time, the expected cost for the optimal policy is calculated without

having to make use of a separate equation. Program C is a listing of

a program from which the optimal sampling policy can be determined.

Due to the'complex nature of equation (4-11), a Golden Section

Search method is suggested for solving this example. Program D is a

listing which will calculate this solution. This program uses the

trapezoidal method of numerical integration to evaluate the function
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since, as discussed in Chapter IV, indefinite integration will not

yield satisfactory results.

Finally Program E is the program used to solve the objective

uncertainty example in Chapter V.

Program B, C, D, and E have been written so that only the data

file must be changed in order to solve an example with different

parameter values. Also, the Golden Section Search routine in Programs

C, D, and E is identical. A functional subroutine is used to solve

the individual problems.

These problems do not represent the only way and perhaps not

the best way to solve the examples presented. They did, however,

when run on an IBM 370-168, provide accurate and speedy answers at

a reasonable cost.
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Program A

DIMENSION T(100)
NEW00010C*0.01
NEW00020WRITE(6,10)
NEW0003010 FORMAT(1H0r3WCIVr6WTV)
NEW0004OERROR-0.00001
NEW0005O20 1=1
NEW00060T(I)=1.0
NEW0007030 AlvEXP(-T(/))*(111.(1))-C
NEW000SOA2=EXP(-T(I))*T(I)
NEW0009O

T(I.1-1)=T(I)+A1 /A2
NEW00100

DIFF=ADS(T(I+1)-T(I))
NEW00110IF(DIFF.LT.ERROR) GOTO 40
NEW00120ImI+1
NEW00130GOTO 30
NEW0014040 XmT(I.1.1)
NEW00150WRITE(6,50) CrX
NEW0016050 FORMAT(1H rF6.2,F9.4)
NEW00170CRC-1.0.01
NEW00180IF(C.GT.1.0) GOTO 60
NEWOO19OGOTO 20
NEW0020060 CALL EXIT
NEW00210END
NEW00220

RP

C>
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Program B

DIMENSION T(100) NRF00010
READ(9.5) NTB.S.U.V.Z.ERROR NRF00020

5 FORMAT(I2r5F8.4,F7.5) NRF00030
WR/TE(6,10) NRF00040

10 FORMAT(1H0r1WI'r4WT(I)') NRF00050
I=1 NRF00060
T(I)=5 NRF00070
WRITE(6.20) NRF00080

20 FORMAT(1H .12.F13.9) NRF00090
30 A1m(EXP(B*T(I)).-EXP(-11*T(I)))/2 NRF00100

A2m(EXP(B*T(I))+EXP(-B*T(I)))/2 NRF00110
.A34.(94-(U*N))*BAWN NRF00120
A4=2*C*V NRF00130
A5m(A3-144)/A4 NRF00140
A6=1)*T(I)*A1 NRF00150
A7=B**2*T(/)*A2 NRF00160
T(/.1.1)=T(I)-((A6-A2-..-A5)/A7) NRF00170
J=I+1 NRF00180
X=T(I.1.1) NRF00190
WRITt(6,40) J.X NRF00200

40 FORMAT(1HO,I2.F10.5) NRF00210
DIFF=ABS(T(I+1)-T(I)) NRF00220
IF(DIFF.LT.ERROR) OOTO 50 NRF00230
1=1+1 NRF00240
GOTO 30 NRF00250

50 CALL EXIT NRF00260
END NRF00270

RI

C>T



Program C

DIMENSION EC(50)
REAL LrLOWER
INTEGER D.N
N=1

EC(1)=99f.
WRITE(6,10)

10 FORMAT(1H1r3(/),2X.'N'r8XriTIrr8WE(C)')
11 READ(9.15) CVIBPS.UrLOWERrUPPERrERROR
15 FORMAT(8F8.4)

D=N+1

L=UPPER-LOWER
Rm(SGRT(5.)--1)/2

X=LOWER4.(L*(1-R))
Y=LOWER4.(L*R)

FOFX=CALC(NrCrlirB.SrUrX)

FOFY=CALC(N.C.V.BrSrUrY)
25 IF(L.LE.ERROR) SOTO 80

L=L*R
IF(FOFX.LE.FOFY) GOTO 50
LOWER=X
X=Y
Y=LOWER4.(R*L)

FOFX=FOFY
FOFY=CALC(NPCIV,D.StUrY)
GOTO 25

50 UPPER=Y
Y=X

X=LOWER+((l-R)*L)
FOFY=FOFX
FOFX=CALC(N,C0.0,8rSrUrX)
GOTO 25

80 TOPT=LOWER-ML/2)
EC(D)=FOFX+((FOFY-FOFX)/2)
WRITE(6.85) NrTOPTrEC(D)

85 FORMAT(/114 ,12,2F12.4)

IF(EC(D).GT.EC(D-1))GOTO 87
N=N+1
REWIND 9
GOTO 11

87 CALL EXIT
END

FUNCTION CALC(NrCA4B,SrUrT)
Al=(C*V)/(B*N*T)
A2=EXP(B*T)+EXP(-B*T)-2.0
A3=(84.(U*N))/T
CALC=(A1 *A2)4413

RETURN
END

RI

C>

80

GOL00010
GOL00020
GOL00030
00100040
GOL06050
GOL00060
00100070
GOL00080
GOL00090
GOL00100
00100110
00100120
001.00130

00100140
00100150
60100160
00100170
00100180
GOL00190
60100200
00100210
00100220
00100230
00100240
00100250
00L00260
GOL00270
00100280
60100290
00100300
60L00310
00L00320
GOL00330
GOL00340
00100350
00100360
GOL00370
00100380
00100390
00100400
00100410
00100420
00100430
60L00440
00100450
60L00460
00100470
00100480
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Program D

DIMENSION EC(50) PAR00010
REAL L. LOWER. FOFX, FOFY.M.FPART.FSUB.FUPPrINT.FVAL PAR00020
INTEGER DrZ PAR00030
N=1 PAR00040
EC(1)=999 PAR00050
WRITE(6.10) PAR00060

10 FORMAT(1H1,3(/).2WN',8X.'T*'.8X.'E(C)') PAR00070
11 READ(9.15) AlB.S.C.U.V.LOWERUPPER.ERROR PAR00080
15 FORMAT(9F8.4) ; PAR00090

D=N41 .PAR00100
L=UPPER--LOWER PAR00110
Rm(SORT(5.).-14)/2. PAR00120
X=LOWER4(L*(1.-R)) PAR00130
Y=LOWER4(L*R) PAR00140
FOFX=RINTEG(A.D.S.C.U.N.V.X) PAR00150
FOFY=RINTEG(A.B.S.C.U.N.V.Y) PAR00160

25 IF(L.LE.ERROR) GOTO 80 PAR00170
L=R*L .PAR00180
IF(FOFX.LE.FOFY) GOTO 50 PAR00190
LOWER=X PAR00200
X=Y PAR00210
Y=LOWER4(R*L) PAR00220
FOFX=FOFY PAR00230
FOFY=RINTEG(A.B.S.C.U.N.V.Y) PAR00240
GOTO 25 PAR00250

50 UPPER=Y PAR00260
Y=X PAR00270
X=LOWER4((1.-R)*L) PAR00280
FOFY=FOFX PAR00290
FOFX=RINTEG(A.B.S.C.U.N.V,X) PAR00300
GOTU 25 PAR00310

80 TOPT=LOWER4(L/2.) PAR00320
EC(D)=FOFX4((FOFY-FOFX)/2) PAR00330
WRITE(6,85)N.TOPTrEC(D) PAR00340

85 FORMAT(/1H v/2,2F12.4) PAR00350
IF(EC(D).GT.EC(D -1.)) GOTO 87 PAR00360
104,14.1 PAR00370
REWIND 9 PAR003130
GOTO 11 PAR00390

87 CALL EXIT PAR00400
E N D PAR00410
FUNCTION RINTEG(A.B.SC.UN.V.T) PAR00420
INTEGER Z,N PAR00430
REAL FOFX.FOFY.M,FPARTFSUB.FUPPrINT.FVAL PAR00440
Mm(V*A)/(V-I.(N*A)) PAR00450
Z=IFIX(50*T) PAR00460
FSUB=0. PAR00470
N1=Z-1 PAR00480

DO 90 I2=1.N1 PAR00490
TI=I2*T/Z PAR00500
FPART=N*M**2.*(1-EXP(-B*TI))**2./(V-N*M*(1-EXP(-D*TI))) PAR00510
FSUB=FSUB4FPART PAR00520

90 CONTINUE PAR00530
FLOW=0. PAR00540
FUPP=N*M**2.*(1-EXP(-B*T))**2./(V-N*M*(1-EXP(-B*T))) PAR00550
INT=(T/Z)*(((FLOW-FFUPP)/2)+FSUB) PAR00560
RINTEG=((C/T)*INT)4(C*M*(1-EXP(-B*T)))+((8+(U*N))/T) PAR00570

RETURN PAR00580
E M D PAR00590

RO

C>
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Program E

DIMENSION EC(50) OBJ00010
REAL Le LOWER, FOFX, FOFY,M,FPART,FSUBrFUPPrINT,FVAL OBJ00020
INTEGER DrZ O8J00030
N=1 08J00040
EC(1)=999 OBJ00050
WRITE(6,10) OBJ00060

10 FORMAT(1H1,3(/),2X,'N'reXr'T*',8WE(C)') OBJ00070

11 READ(9,15) VARX,VARErCeSrU,B,LOWERrUPPERrERROR OBJ00080
15 FORMAT(9F8.4) OBJ00090

D=N+1 OBJ00100
L=UPPERLOWER OBJ00110
Rm(SORT(5.)-10/2. OBJ00120
X=LOWER.1-(L*(1.R)) OBJ00130
Y=LOWER.1.(L*R) 08J00140
FOFX=CALC(NrVARX,VARErCrSsUrBrX) 08J00150
FOFY=CALC(NrVARX,VARErCrSrUrBrY) OBJ00160

25 IF(LrLE.ERROR) GOTO 80 OBJ00170
L=R*L OBJ00180
IF(FOFX.LE.FOFY) GOTO 50 O8J00190
LOWER=X OBJ00200
X=Y OBJ00210
Y=LOWER.1.(R*L) 08J00220
FOFX=FOFY 0BJ00230
FOFY=CALC(NrVARX,VARErCrSrUrBrY) O8J00240
GOTO 25 08J00250

50 UPPER=Y 08J00260
Y=X OBJ00270
X=LOWER+((1.R)*L) OBJ00280
FOFY=FOFX 0BJ00290
FOFX=CALC(NpVARX,VARErC,SrUrBrX) OBJ00300
GOTO 25 OBJ00310

80 TOPT=LOWER.F(L/2.) O8J00320
EC(D)=FOFX+C(FOFYFOFX)/2) OBJ00330
WRITE(6,85)NrTOPTrEC(D) OBJ00340

85 FORMAT(/1H ,12,2F12.4) OBJ00350
IF(EC(D).GT.EC(D-1)) GOTO 87 09J00360
N=N+1 O8J00370
REWIND 9 O9J00380
GOTO 11 OBJ00390

87 CALL EXIT 0BJ00400

E N D O8J00410
FUNCTION CALC(NrVARX,VARE,C,S,UrBrT) 0BJ00420
RHO2=EXP( B*T) O8J00430
AO=N*RHO2 O8J00440
BO=(VARE4.(N*VARX))*(1RH02) 08J00450
CO=VARX*VARE*(1RH02) O8J00460
VPRIM=(-804-SORT((B0**2)-1.(4*AO*C0)))/(2*A0) 0BJ00470
81=T*VARX OBJ00490
S2=VARXVPRIM O8J00490
S3=1/8 OBJ00500
84=1EXP( B*T) OBJ00510
PART =S1 (S2 *S3 *S4) OBJ00520
CALC=C(C/T)*PARTM(S-1.(U*N))/T) OBJ00530
RETURN 08J00540

E N D 08J00550

RI
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DERVIATION OF EQUATION (4-9)

Vx(n,T,T) (V/n) (1 - e
bT

) (e
-bT

) (4-8)
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(S+Un)bn - 2CV . (4-9)
bT* sinh(bT*) - cosh(BT*) =

2CV
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APPENDIX 4

MISCELLANEOUS OBSERVATIONS ABOUT SELECTED RESULTS AND ASSUMPTIONS

The solution to the unbounded example in the "look-see" problem

bears a striking resemblance to this classic EOQ model. It will be

worthwhile to draw a parallel between these two models. The two cost

components in the EOQ model are the carrying costs and the procurement

costs. The two costs in the "look-see" model are the error cost and the

sampling cost. Figure 14 graphically portrays both situations.

C

0

S

T

EOQ

C

0

Holding

Cost

Procurement

Cost

Q

Holding Cost =
2

Look-See (Vx(T) = kT)

T

Error Cost =
CkT

2

Procurement Cost =
OD

Sampling Cost =

Q*
/ 20D 2S

H Ck

Figure 14. EOQ, Look-See Model Comparisons

Error

Cost

Sampling

Cost
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If holding costs in the EOQ model are based on a maximum inventory

as opposed to the average inventory, the holding cost expression be-

comes HQ, and the solution for Q becomes,

435
H

Likewise, if the error costs in the "look-see" model are assessed on the

maximum error, the error cost will become CkT, and the solution for T

will be,

T* = 13:
Ck

At several points during the development of the models used in this

paper, the term infinite costs has been used. Some may argue that there

is no such thing as an infinite cost. However, when one of the costs

is three or four orders of magnitude greater than the other cost, the

first cost would be essentially infinite. For example, a process that

has a small sampling cost and a very narrow tolerance limit outside of

which a catastrophic situation occurrs, could be considered as having

an infinite error cost.

In situations in which the variance function is determined on the

basis of a subjective estimate, the resulting determination of optimal

sampling intervals may be different than if the variance was objectively

determined. As Sheridan and Rouse (1971) showed, the subjectively de-

termined variance will result in a smaller sampling interval. The im-

portant consideration is that the decision maker must be convinced that

he is providing a reasonable estimate of the actual process variance.

This is similar to the use of the Markov Assumption. In this situation,

the process in question must at least "appear" to be Markovian. Like-
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wise, the subjective estimate of the process variance must "appear" to

be a reasonable estimate of the actual process variance.
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APPENDIX 5

SELECTED RESULTS FROM NUMERICAL EXAMPLES

Sampling Error Problem

Vx(n,T,T) = V/n (1-e
bT bT

) (e )

where b = .25 (hours)-1 and V = 1 (foot)
2

S = $ U = $/obs/sample T** = hours

C = $/(feet)2-hr n = observations/sample E[C] = $/hours

S C U n* T** E[C]

15 5 5 5 8.25 11.54

15 10 5 6 7.33 10.15

15 20 5 7 6.36 13.45

15 5 2.5 8 9.09 6.0

15 10 2.5 9 7.85 7.75

15 20 2.5 12 7.33 10.15

15 10 2.5 9 7.85 7.75

15 10 5 6 7.33 10.15

15 10 10 4 6.87 13.45

15 20 2.5 12 7.33 10.15

15 20 5 7 6.36 13.45

15 20 10 4 5.40 18.02

5 10 5 4 5.22 8.54

15 10 5 6 7.33 10.15

25 10 5 7 8.37 11.42

5 5 10 2 5.22 8.54

15 5 10 3 7.33 10.15

25 5 10 4 8.90 11.44
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Sampling Error Problem

(i_e-bT12
n82

V(N,T,T) = B (1
_e-bT)

V-nB (1-e-"kjT)

where B =
VA

nA
and A = 4 (feet)2

V +

b = .25 (hours)-1

V = 1 (feet)2

S = $ U = $/obs/sample T** = hours

C = $/(feet)2-hr

S C

n* = observations/sample

U n* T**

E[C] = $/hour

E[C]

15 5 5 4 8.88 6.81

15 10 5 5 7.63 9.13

15 20 5 6 6.52 12.29

15 5 10 2 7.74 8.56

15 10 10 3 7.03 11.73

15 20 10 4 6.25 16.09

15 10 2.5 8 8.21 7.13

15 10 5 5 7.63 9.13

15 10 10 3 7.03 11.73

15 20 2.5 11 7.58 9.43

15 20 5 6 6.51 12.29

15 20 10 4 6.25 16.09

5 10 5 3 5.05 7.62

15 10 5 5 7.63 9.13

25 10 5 6 8.90 10.32

5 10 10 2 4.91 10.06

15 10 10 3 7.03 11.73

25 10 10 4 8.65 13.04


