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23. A Bayesian Model for Visual Space Perception 

RENWICK E. CURRY 

Massachusetts Institute of Technology 

A model for visual space perception is proposed that contains desirable features in the 
theories of Gibson (ref. 1) and Brunswik (ref. 2) .  This model is a Bayesian processor of proximal 
stimuli which contains three important elements: an internal model of the Markov process 
describing the knowledge of the distal world, the a priori distribution of the state of the Markov 
process, and an internal model relating state to proximal stimuli. The universality of the model 
is discussed and it is compared with signal detection theory models. Experimental results of 
Kinchla are used as a special case. 

INTRODUCTION 

There have been two broad theories of visual 
perception expounded in the past several decades; 
they are usually attributed to Gibson (ref. 1) and 
Brunswik (ref. 2) .  Gibson seems to be the first to 
present a unified picture of all the various cues 
about the three-dimensional world that are 
available from the two-dimensional retinal image, 
especially motion cues and cues of the gradient 
of texture. Gibson’s theory is a deterministic one, 
and it is his thesis that the visual stimulus con- 
tains enough information to provide veridical 
perception of distal objects. However, Gibson’s 
theory does not account for the fact that per- 
ceptual responses are inherently stochastic. 

Brunswik (ref. 2 ) ,  on the other hand, proposes 
the perceptual theory of probabilistic function- 
alism. Unlike Gibson, he assumes that the per- 
ceptual process is random, and that people are 
continually learning about the validity of the cues 
of the proximal stimuli. Brunswik proposed that 
massive ecological surveys be taken to determine 
the correlations between the range of stimuli and 
the perceptual response. He, unlike Gibson, felt 
that a detailed examination of the proximal 
stimulus would not be a worthwhile course of 
action because the real scenes observed everyday 
do not contain these limited number of stimuli. 
The major criticism of Brunswik’s approach 
seems to be that there is no hope or interest in 

finding the stimuli which determine the various 
responses. (See Hochberg (ref. 3) for a further 
discussion of Gibson’s and Brunswik’s theories.) 

In  this paper we present a model of visual 
space perception which has been influenced by 
Gibson and Brunswik. Briefly, it models visual 
space perception by a Bayesian processor which 
operates on the proximal stimuli; the percept is a 
conditional probability density function. The 
model has the advantage that the many stimuli 
noted by Gibson are incorporated, yet it describes 
the randomness and ambiguities observed in 
experiments. 

This paper contains a review of the very basic 
concepts of Bayesian estimated theory; a descrip- 
tion and discussion of visual space perception 
model; a notation of the similarities and differ- 
ences to signal detection theory in psychophysics; 
and an application of the model to some experi- 
mental results by Kinchla and Allen (ref. 4). 

REVIEW OF BAYESIAN 
ESTIMATION THEORY 

In thissection we give a very brief review of 
some important results in the field of estimation 
theory. A discussion of the results for estimating 
constant but unknown parameters is presented 
first, and a treatment for dynamic systems 
Markov processes) follows. Jaswinski (ref. 5 )  
and Nahi (ref. 6 )  are general references. 
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Let us denote by x the (column) vector of 
variables which we are trying to estimate, and 
let x(t)  be a vector of “measurements” or varia- 
bles observed at time t. Let Z(t) be thecollection 
of all known information up through time t, Le., 
the a priori distribution and the set of all measure- 
ments taken between l o  and t ;  p ( x )  represents the 
a priori probability density function,of the vector 
x at to. In concept, the Bayesian processor does 
nothing more than find the conditional distribu- 
tion of x from the measurements z and the a 
priori distribution. This is shown schematically 
in figure 1. 

Parameter Estimation 

The Bayesian processor requires the joint 
probability density function (PDF) p(x,z). Many 
times this is not available directly and must be 
calculated from a measurement equation 

2 = h(x,v) (1) 
and the PDF p(s ,v ) ,  where v is a vector of obser- 
vation disturbances. The PDF of x conditioned 
on one observation x and the a priori distribu- 
tion, i.e., Z = {p(x) ,x )  is given by Bayed Rule 

where p ( x )  is the scale factor found by integrating 
the numerator with respect to x. This conditional 
PDF can be used to find a variety of estimates, 
e.g., conditional mean, conditional median, or 
conditional mode. 

Figure 2 shows an example of an a priori prob- 
ability density function for a scalar x and exam- 
ples of conditional probabilities that result from 
particular realizations of x.  

BAYESIAN 
PR 0 C ESSO R 

FIGURE 1.-Inputs and output of a Bayesian processor. 

FIGURE 2.-Examples of a priori and conditional 
probability density functions. 

Linear regression is a Bayesian estimation 
technique which uses the first two moments of 
p(x ,x ) .  For x and x of zero mean, the minimum 
variance linear estimate 2 is 

where the superscript T denotes transpose. 

Markov Processes 

A Bayesian processor for a Markov process can 
be found when observations related to the state 
of the process are available. In general the pro- 
cessor computes p[x(tl)  IZ(t2)J where x(t1) is the 
state of the process at  time t l ,  and 

This corresponds to predicting, filtering, and 
smoothing when tl is greater than, equal to, and 
less than t 2 ,  respectively. 

The Bayesian processor requires the follow- 
ing items to carry out the computations of 
the conditional PDF. The discussion will be 
limited to continuous-state, continuous-time sit- 
uations with the knowledge that the general 
concepts hold for discrete-state and/or discrete 
time models. 

(1) The state equation.-This is an equation 
which describes the evolution of the state of the 
Markov process with time. This may be written 

%=k(t) =f (x ( t ) ,  w(t),  t )  
dt 

where x ( t )  is the state at  time t, and w(t) a ran- 
dom forcing function (sometimes called the 
process noise). For equation (4) to be a Markov 
process with state x;(t), w(tl) and w(t2) must be 
independent for t l f t z .  It is also referred to as 
white noise since its power spectral density func- 
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tion is a constant, that is, it contains equal 
amounts of power at  all frequencies. The pre- 
scription of p(w(t)) is pmt of the specification 
for the state equation. 

(2) The a priori distribution.-The a priori dis- 
tribution of x(to)  is required not only to describe 
the state before any observations are taken but 
it is the “initial condition” for the computation 
of the conditional distribution. The state equa- 
tion (4) and the a priori distribution can be used 
to calculate p[x(t)] the a priori distribution of 
the state for t > to, i.e., without the benefit of 
any observations. In general, this requires a solu- 
tion to a partial differential equation, although 
the linear-Gaussian ease can be solved with a 
vector and matrix differential equation for the 
mean and covariance (Jazwinski (ref. 5 ) ) .  

(3) The measurement equation.-The measure- 
ment equation describes the instantaneous rela- 
tionship between the observations z(t) and the 
state. It may be written as in equation (1) but 
now z(t) is a vector of time functions: 

4) = W O ,  m, 0. (5) 
The observation noise v(t1) is independent of 
v(&) if tlZt.2; p[v(t)f is needed to complete the 
description of the measurement equation. 

The following example may help to solidify the 
Bayesian concepts. Suppose we have a linear RC 
circuit being driven by white noise w(t). We 
measure the voltage across the capacitor with a 
voltmeter which gives erroneous readings, and 
wish to find the probability density function of 
the capacitor voltage as a function of time. In  
this case z(t) is the capacitor voltage, w(t) is the 
input voltage to the circuit, z(t) is the voltmeter 
reading and v(t)  is the source of error in the volt- 
meter. The result of the calculating p[i(t)[Z(t)] 
continuously might appear as shown in figure 3 
which shows a particular realization for x(t), 
z(t) ,  and p[z(t)(Z(t)] at several time instants. 
This conditional PDF can be used to derive an 
estimate for the voltage at  any time. 

A MODEL FOR VISUAL 
SPACE PERCEPTION 

In this section we present a probabilistic model 
for visual space perception that exhibits impor- 
tant characteristics of the human response: 

t 

FIGURE 3.-Sketch of conditional 
probability density function. 

(1) On any one trial observers may express 
uncertainty about objects’ relationships (e.g., 
distance). 

(2) Repeated presentation of stimuli results in 
a distribution of responses. These may fall into 
multiple categories if the stimulus is ambiguous 
(for example, the Necker Cube). 

The proposed model for visual space perception 
is shown in figure 4. The central element in this 
model is a Bayesian processor consisting of a 
state equation, an a priori distribution, and a 
measurement equation. The processor operates 
on z(t), which is the vector of stimuli as modified 
by the sensory processes, and yields a conditional 
probability density function for the state. There 
is some justification for calling this conditional 
PDF the percept because it recognizes the possi- 
bility of uncertainty of interrelationships between 
objects after observations have been made. 

The state equation describes the behavior of 
the perceiver’s knowledge of the distal world. 
The process noise is used to account for the two 
types of uncertainties that the perceiver has about 
the distal world. The first type is the imprecise 
modeling of distal constraints, e.g., assuming con- 
stant velocity motion when an object is actually 
accelerating. The second type is the degradation 
of certainty due to imperfect memory process. 

The sensory process and/or response processes 
shown in figure 4 must be of a random nature to 
yield different responses in different trials to the 
same proximal stimulus if the parameters of the 
Bayesian processor remain constant. The deter- 
mination of these two processes is similar to a 
problem faced by early users of signal detection 
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FIGURE 4.-A Bayesian model for visual space perception. 

theory in psychophysics, and we postpone dis- 
cussion on sensory and response processes until 
the section which compares the Bayesian pro- 
cessor with signal detection theory. 

DISCUSSION OF THE MODEL 

Rationale for the Model 

There are four major reasons for postulating 
the model described above. The first is that the 
model is probabilistic : it describes the uncer- 
tainty on any one trial through a conditional 
PDF (the percept), and the ensemble of percepts 
which may exhibit ambiguous responses. These 
are two major characteristics of visual space 
perception. 

A second reason for choosing a model of this 
type is that it provides the capability for model- 
ing perception of state variables of which there 
is no direct observation. An example of this is the 
perception of velocity even though only the 
instantaneous position is contained in the proxi- 
mal stimulus. 

A third advantage of this model is that it pro- 
vides the capability for modeling space perception 
in a time-varying dynamic environment. Arbi- 
trary motion of objects relative to the observer 
or to other objects is allowed, and the static scene 
used in so many studies (e.g., size-distance, shape- 
slant) is just a special case. Whether or not the 
distal stimulus changes, the conditional distribu- 
tion of the internal state will exhibit transient 
behavior. 

The fourth reason for choosing this model is 
the possibility for unifying many of the concepts 
and experimental results in visual space percep- 
tion. The model is general and perhaps should be 
considered as a framework for organizing the 

important variables and their interplay. It is not 
necessary that all three parts of the model receive 
equal attention, and in fact, portions of the model 
might be ignored in certain situations. See the 
discussion below on how the model might be 
applied in some specific situations. 

Relationship to Other Work 

There are two aspects of the proposed model 
that are related to prior work in human informa- 
tion processing : Bayesian processing, and inter- 
nal models. Bayesian models have been used to 
describe decision making (see, for example, Ed- 
wards (ref. 7)). It has been found that humans 
accumulate information at approximately one 
half the rate of an optimal Bayesian processor 
in discrete observations. The same effect can be 
realized in visual space perception by postulating 
noise sources to reduce the rate of accumulation 
of information. The primary difference between 
the Bayesian model for space perception and the 
Bayesian decision maker is that the former is 
more of a reflex action (Brunswick (ref. 2 ) )  
whereas the latter involves conscious deliberation 
and thought. 

The concept of an internal model of the distal 
stimulus has been found useful in other models 
of information processing (e.g., Carbonell (ref. 8) , 
Smallwood (ref. 9), and Carbonell, Ward, and 
Senders (ref. 10)). In these papers the internal 
model is used for extrapolation, that is, to 
describe the time evolution of the observer's 
knowledge in the presence of null stimuli; this 
function is performed by the state equation in the 
visual space perception model. Another role of 
the internal model is to relate distal to proximal 
stimuli, and this is accomplished through the 
measurement equation in the space perception 
model. 

It is interesting to note that the concept of an 
internal model may have a physiological basis. 
I n  discussing the orienting reflex, Sokolov (ref. 
11) gives some justification for a neuronal model 
of the stimulus. The orienting reflex is activated 
when a mismatch occurs between the afferent 
signals and the extrapolations of the model. On 
the behavioral level, Berlyne (ref. 12) uses the 
concept of the novelty of a stimulus as a determi- 
nant of arousal and exploratory behavior. The 
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very notion of novelty implies a standard for 
comparing stimuli, i.e., an internal model. 

Potential Applications of the Model 

The overall purpose of the model is that of 
predicting visual space perception with some 
degree of certainty, and that of providing insight 
into the perceptual process. Very little has been 
done in the way of experimental verification of 
this model, so a t  this point in time no definite 
statements can be made concerning the constan- 
cies of the model nor the range of validity. 
Corroboration of the model with previously pub- 
lished results is usually difficult because of the 
lack of proper data presentation to evaluate the 
model. 

However, there are several situations in which 
the model may prove valuable. One of these is 
the problem of determining the relative strengths 
of visual cues and higher order variables in per- 
ception, especially in an environment which is 
more or less uncontrolled (Brunswick (ref. 2)) 
but which may be measured. This includes the 
possibility of taking observer motion into ac- 
count. If the parameters of the model are sensi- 
tive indicators, then it might be useful as a 
descriptor of changes in perceptual response in 
learning, attention, and other studies. 

Application of the Model 

The model as presented is limited to visual 
space perception, i.e., the perception of position, 
orientation, and motion of objects relative to the 
observer. The studies of figure, form, etc. cannot 
be treated in this formulation because they 
imply spatial processing of the proximal stimulus 
as opposed to the temporal processing considered 
here. 

The model is general, and one of the major 
criticisms of it is that there are too many degrees 
of freedom to provide useful quantitative insight 
into the perceptual process. Yet the model is 
simple in concept, and we feel that judicious use 
of the general framework will be fruitful. Some 
specific applications have already been carried 
out by other investigators and one of these (on 
movement perception) will be discussed in detail. 

The basic procedure in determining the form 
of the model is to first derive an estimate of the 
conditional PDF of the internal state, and from 
these experimental data, determine an a priori 
distribution, a state equation, and a measure- 
ment equation which would produce the mea- 
sured conditional PDF. We note here that the 
results of this type of analysis will not, in general, 
yield unique results. First, the number and choice 
of internal state variables must be determined, 
that is, the internal state variables might be a 
subset of the distal state variables, but which 
subset? Second, there may be intervening param- 
eters incompletely specified for a given input/ 
output function. For example, their sum or 
product is a known quantity, but no other 
equations exist. 

The freedom in choosing the state equation 
and measurement equation is immense, yet sim- 
plifications in each application can be made to 
reduce the choice to a manageable level. Care 
must be exercised, however, since as Brunswik 
(ref. 2) points out, perception is an irrational 
process, and assumptions which are reasonable 
on the basis of physical laws may be inappropri- 
ate. However, some general guidelines can be 
used. In  situations involving the (perhaps) com- 
plex motion of a simple object, the emphasis 
should be placed on the state equation since 
there is no complexity in determining what pa- 
rameters make up the proximal stimuli. For 
studies of depth perception, size estimation, and 
orientation from static scenes, the state equation 
can be ignored, and the effort concentrated on 
the measurement equation which contains a 
myriad of cues (Gibson (ref. 1)) and functional 
relationships between the proximal stimulus and 
the elements of the internal state vector. There 
are many situations, however, where both the 
state and measurement equations are necessary, 
as would be the case for depth perception when 
there is relative motion between the object and 
the observer. 

The a priori distribution represents such effects 
as experimental set and previous knowledge of 
the state variables, e.g. “familiar size” in depth 
perception experiments. (Whether familiar size 
is beneficial in depth perception or not is another 
matter.) The conditional PDF may also undergo 
abrupt changes if discrete (rather than con- 
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tinuous) measurements are incorporated. This 
situation arises when a subject is given some 
feedback on his errors in perception, leading to 
improved performance, reductions of illusions, 
etc. 

COMPARISON WITH STATISTICAL 
DECISION THEORY MODELS I N  

PSYCHOPHYSICS 

The main purpose of the application of detec- 
tion theory in psychophysics is to separate the 
detectability of a signal from the decision pro- 
cesses of the observer (Green and Swets (ref. 13)). 
The Bayesian model of perception is an attempt 
to model perceptual behavior and to examine 
the interactions of visual cues and the internal 
models. In  most of the experiments using signal 
detection theory (SDT), the signal is a single 
point in signal (state) space, whereas we are 
dealing with a continuum. Moreover, the stimuli 
are usually discrete time presentations whereas 
we are allowing for a continuous presentation of 
signal and noise. 

As a further comparison of the two techniques, 
we next formulate the signal detection problem 
as a special case of the Bayesian processor. 
Although the majority of the work seems to have 
been done in psychoacoustics (see, for example, 
Swets (ref. 14)), the original application was in 
visual detection (Tanner and Swets (ref. 15)). 
This exercise will also point up the need for 
random elements in the sensory and response 
processes in the Bayesian perception model. 

Let x be the signal level which has a probabil- 
ity p of being X and (1-p) of being zero. An 
observation z of signal x plus noise v is made: 

x=z+v. (6) 
Using this information and Bayes’ Rule the 
a posteriori probability density function for x 
becomes 

(7) 

signal level is limited to two values, the a priori 
PDF of x is a pair of impulses a t  x = 0 and 2 = X ,  
of areas (1-p) and p respectively. The a pos- 
teriori PDF remains a t  two impulses, but of 
modified areas depending on the distribution of 
the noise and the observed value of z. 

The SDT model assumes that the decision is 
based on the likelihood ratio * being greater or 
less than some criterion level. Because the re- 
sponse process is perfect, there must be some 
source of uncertainty in the model to account for 
incorrect responses when the proximal stimulus 
consists of a small signal and no noise. The SDT 
model, therefore, assumes an internal source of 
noise between the proximal stimulus, which is the 
block labeled “sensory processes” in figure 4, in 
addition to the ideal response process. 

As shown in Green and Swets (ref. 13), and as 
can be easily derived from equation (S) ,  the ratio 
of a posteriori probabilities and the likelihood 
ratio are related by 

P(x=Xlz) p 
P(z=OIx) 1-p 

= ---.e(Z). (9) 

Since these are monotonically related, the likeli- 
hood criterion and the ratio of a posteriori proba- 
bilities are equivalent statistics upon which 
decisions can be based (Green and Swets (ref. 13)). 
The most important point, however, is that the 
wealth of experience in using SDT techniques 
may be used to great advantage in experimental 
verification of the model proposed in this paper 
if the response processes are assumed ideal, and 
the sensory processes introduce uncertainty. I n  
other words, we can use SDT to help identify 
and measure the conditional PDFs of the percep- 
tual process. 

Perfect response may not always be the most 
accurate model, however, since the criterion level 
of the observer may change from trial to trial, 
and optimal thresholds involve precisely defined 
probabilities and entries in the payoff matrix 
which can hardly be expected to be realized 
internally by the observer (Swets (ref. 14, ch. 4)). 
In  addition to these noisy decision processes, 
faulty memory of the signal will produce behavior 
not predicted by the model. This can easily be 

where pu( ) is the PDF of the observation 
noise v. Because the a priori distribution of the 

*The likelihood ratio for this problem is @)= 
P ( 4 d  = X ) / P ( Z l Z  = 0). 
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modelled with the Bayesian processor by defining 
the signal level to come from the following 
distribution 

0 with prob. 1-p 
X+m with prob. p 

where m is a memory “error” drawn from p,( ). 
The a posteriori distribution of x conditioned on 
an observation z is then 

X =  

APPLICATION OF THE MODEL TO 
VISUAL MOVEMENT PERCEPTION 

Experimental Apparatus 

In  this section we apply a special case of the 
Bayesian model of visual space perception to the 
problem of absolute movement perception and 
use data reported in Kinchla and Allan (ref, 4). 
The experiments involve the presentation of 
clearly visible tungsten sources subtending an 
angle of 0.036’ energized for 0.1 see. A stimulus 
pattern (Xi) is the successive presentation of two 
lights with intervening time intervals of 0.5, 1.0, 
1.5 or 2.0 see. The movement (m,) of the stimulus 
pattern is the angular displacement of the second 
light relative to the first. Stimulus patterns were 
presented in pairs (with equal probability) to 
well trained observers familiar with the patterns. 
This allows the use of SDT to remove the effects 
of response thresholds from the data. 

The Bayesian Model 

We now proceed to specify the form of the 
model for the experiment described above. Four 
sources of uncertainty will be accounted for: 

(1) Unperceived eye movement 
(2) Recorded but unexecuted eye movement 

(3) Memory uncertainty 
(4) Sensory noise. 
State equation.-Rather than deal with an 

explicit form of the state equation, we will be 
concerned with the conditional distributions 
which it describes, and these will be considered 
shortly. 

commands (efferent copy) 

A priori distribution.-The experiment was 
performed in the dark with almost no information 
about the position of the first light. Thus we will 
assume that the a priori position of the light is 

Measurement equation.-At the time of the first 
light we assume that the stimulus received by the 
Bayesian processor is 

N[O, I. 

z(0) =do)  +V(O)  (12) 

where x(0) is the “position” of the light in a 
stimulus domain and v(0)  is sensory noise assumed 
to be N[0,uV2 1. At the time of the second light we 
bave 

z ( T )  =z(T)+v(T)+we(T) (13) 

where x ( T )  is the position of the light a t  time T ,  
v ( T )  is sensory noise N[O,uV2],  and w,(T) is the 
change in stimulus due to unperceived eye move- 
ments, with distribution N[0,ue2(T) ]. 

Conditional Distributions 

We now present the calculations that would be 
carried out under the conditions described above. 
The general form of these calculations may be 
found in Nahi (ref. 6) or Jazwinski (ref. 5) .  

Because the a priori variance of the initial 
position is very large (specifically, much larger 
than uVz)>, it can be shown that the conditional 
distribution of x(0) just after the first light 
(t=O+) is N[x(0),uV2]. Just prior to the second 
light the conditional distribution of x(0) is 
N[z(0)+u(T) ,~ ,~+u~, , (T)  ] where u ( T )  is the 
effect of unexecuted eye movement commands 
and umem(T) is the increase in uncertainty due to 
faulty memory. 

The stimulus received by the processor at time 
T can be expressed by 

z ( T )  =x(O)+mfv(T)+wdT) (14) 

where m is the movement mi or mi. Thus, when 
z ( T )  arrives, the Bayesian processor must decide 
whether it comes from a Gaussian distribution 
with variance 2uV2+ue2(T) +ufem(T) and mean 
either z(0) + u( T ) +mi or z (0) + u ( T )  +mi. 

To evaluate the parameters of the model from 
experimental data, we assume that the ideal 
decision making portion of the model behaves as 
follows. Let Rj denote the response “stimulus 
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Sj," and the probability of this response condi- 
tioned on Sj is 

P(RjlSj) =P[z(T)  >z(O)+u(T) 
+mi+8lm=mjl (15) 

where 8 is the threshold criterion relative to the 
smaller mean of the conditional distributions of 
z(T) .  Using equation (14) this becomes 

P(RjISj) =P[z(O) -z(O) +u(T)+we(T) 
-u(T)>p-(mi-mi>l (16) 

= 1 --F[Z(RjJSj)] 

where F(  ) is the cumulative distribution func- 
tion for a normalized Gaussian variable, and 
Z(R,ISj) is given by 

(17) 
Similarly, the probability of response R, condi- 
tioned on stimulus Si is 
P(RjI&) =P[z(T)  > z ( O )  +u(T) +mi+Plm =mil 

(18) 
= 1 -F[Z(R,ISi)] 

where 

At this point we specify the functional form 
for the time-dependent variances. In particular 
it is assumed that 

au2(T) +aLem(T>+aa2(T) =@T (20) 

where @ is a constant. This form assumes that 
the variables are drawn from random walk pro- 
cesses, but as Kinchla and Allan (ref. 4) point out, 

F(nj/s,r 

FIG- 5.-Equivalent detection problem. 

there is little if any experimental data on the 
variances of these variables, although Carbonell 
et al. (ref. 10) have found this form to be of some 
value in other contexts. 

Figure 5 shows the equivalent detection prob- 
lem. The "discriminability index" (Kinchla and 
Allan, ref. 4) is the normalized distance between 
distributions, and is given by 

The parameters of the model are found by ob- 
serving the empirical probabilities i?( RjISi) and 
P(RjlSj), looking up the corresponding values 
of 2 in a normal probability table, and then 

3 

Do.1 

OBSERVER ONE OBSERVER TWO 

& = .io8 DEG~/SEC. 
3 

Do.1 

8m.151 

e 

0 
0 .5 1.0 1.5 2.0 0 .5 1.0 1.5 20 

T SECONDS T SECONDG 

OBSERVER THREE OBSERVER FOUR 

8 = .171 3t 
Do.1 

1 

Do,: 

1 

0 
0 .5 1.0 1.5 2.0 0 5 1.0 1.5 2.0 

T SECONDS T SECONDS 

Stirnuluspattern: rn = 0, ml = .449 0 
Number of Trials: 2400 for each obsenrer and time interval 

FIGURE 6.-Data from Kinchla and Allan (ref. 4) for 
stationary judgement task (stimulus pattern: mo =0, 
rnl=0.44"; number of trials: 2400 for each observer 
and time interval). 
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OBSERVER ONE OBSERVER TWO 

$5 .i92 DEGZISEC. 

0 .5 1.0 1.5 2.0 
0 

0 .5 1.0 1.5 2.0 

T SECONDS T SECONDS 

OBSERVER THREE OBSERVER FOUR 

3 [ p;'75 [ $=1.563 

2 

0 '  
0 .5 1.0 1.5 2.0 

I Do.1 

I L  

0 .5 1.0 1.5 2.0 

T SECONDS T SECONDS 

StimulusPatterns: mo= 0, ml = ,380 
m0= 0, m, = 76' 

Number of Trials: 500 for each observer, time interval, and 
movement (m, ) 

FIGURE 7.-Data from Kinchla and Allan (ref. 4) for 
stationary judgement task (stimulus patterns: mo =0, 
m1=0.38", mo=O, ml=76"; number of trials: 500 for 
each observer, time interval, and movement m,). 

finding s,,i from equation (21). Those values of 
an2 and & which give closest agreement in the 
least squares sense via equation (22) are the 
parameters of the model. 

Experimental Results 

Figures 6, 7, and 8 show data from three 
experiments. The first two are stationary judg- 
ment tasks with mo=O and ml=0.44" in ex- 
periment 1; mo=O and ml-O.38" or 0.76" in 
experiment 2. Experiment 3 contained both 
stationary and directional judgment tasks for 
which ml=4O0, m2= -0.40" in one pair of 
stimulus patterns, and ml = 0, m2 = - 0.40" for 
the other pattern. These curves are found by 
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FIGURE 8.-Data from Kinchla and Allan (ref. 4) for 
stationary judgment and movement discrimination 
tasks (stimulus patterns: mo=O, ml =0.40", m1=0.4Oo, 
mz= -0.40"; number of trials: 1800 per observer, per 
time interval, per stimulus pattern). 

minimizing sum of squared discrepancies between 
the observed statistic and that predicted by the 
model. In  all cases the observation noise uy2 was 
negligible and the curves are determined by one 
parameter &. The model accounts for at  least 
90 percent of the variance of b in all cases, and 
typically accounts for 95 percent. The behavior 
of CP for the four observers is shown in table 
1. Note that there are individual differences 
for & between subjects (which might be the basis 
for evaluating certain skills), as well as some 
variation within subjects. It is not known what 
time interval elapsed between experiments. 
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TABLE 1.-Estimates of @ in Three Experiments 
(Kinchla and Allan, ref. 4 )  

Subject 

Experiment 1 2 3 4 

1 0.108 0.151 0.171 0.167 
2 .192 .216 .275 1.563 
3 .114 .439 .321 1.194 

CONCLUSIONS 

We have proposed a model for visual space 
perception in which a Bayesian processor pro- 
vides the percept, a conditional probability dis- 
tribution of the knowledge of distal objects. This 
model incorporates desirable qualities of the the- 
ories of Gibson and Brunswik and has the poten- 
tial for unifying many of the concepts and results 
in visual space perception. Signal detection the- 
ory may be considered as a special case of the 
model, but its primary power lies in its ability 
to extract percepts independently of response 
thresholds. The model was applied to the prob- 
lem of visual movement perception and its 
parameters evaluated with previously published 
data. 
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